Notes on Frisch Demands*

James J. Heckman

Econ 350, Winter 2023
*I thank David Malison and Mohsen Mirtaher for helpfubcomments.

Simple Two Good Model to Interpret Frisch Demands

This is a model for each period of a general life cycle model. Abstract from interest rates and time preference.

$$
\begin{aligned}
& \max U(C, L) \\
& \text { s.t. } P C+W L=E
\end{aligned}
$$

E is the resources available to be spent within the period. Assume fixed for the moment.

$$
\begin{aligned}
& U_{C}=\lambda P \\
& U_{L}=\lambda W
\end{aligned}
$$

$C=$ Consumption
$L=$ Leisure
$\lambda=$ LaGrange Multiplier associated with the budget constraint
Treat leisure as an ordinary good for the moment.

Comparative Statics of Model

Totally Differentiate

$$
\left[\begin{array}{ccc}
U_{C C} & U_{C L} & -P \\
U_{C L} & U_{L L} & -W \\
-P & -W & 0
\end{array}\right]\left[\begin{array}{l}
d C \\
d L \\
d \lambda
\end{array}\right]=\left[\begin{array}{c}
\lambda d P \\
\lambda d W \\
-d E+C d P+L d W
\end{array}\right]
$$

Let bars denote determinants
$\frac{\partial L}{\partial E}=\frac{\left|\begin{array}{ccc}U_{C C} & 0 & -P \\ U_{C L} & 0 & -W \\ -P & -1 & 0\end{array}\right|}{|\cdot|}$
Notation $|\cdot|=\left|\begin{array}{ccc}U_{C C} & U_{C L} & -P \\ U_{C L} & U_{L L} & -W \\ -P & -W & 0\end{array}\right|>0$ (second order conditions)

$$
\frac{d L}{d E}=\{\overbrace{\frac{\left(-U_{C C} W+P U_{C L}\right)}{\underbrace{\mid \cdot 1}_{>0}}}^{>0}\}>0 \text { (From Assumed Normality) }
$$

Now this can be related to displacements for λ :

$$
\begin{aligned}
\frac{\partial \lambda}{\partial W} & =\frac{\left|\begin{array}{ccc}
U_{C C} & U_{C L} & 0 \\
U_{C L} & U_{L L} & \lambda \\
-P & -W & 0
\end{array}\right|}{|\cdot|} \\
& =\frac{-\lambda}{|\cdot|}\left|\begin{array}{cc}
U_{C C} & U_{C L} \\
-P & -W
\end{array}\right| \\
& =(-\lambda) \frac{\left(-U_{C C} W+U_{C L} P\right)}{|\cdot|} \\
& =\lambda \frac{\left(U_{C C} W-U_{C L} P\right)}{|\cdot|} \\
& <0 \text { from normality of leisure }
\end{aligned}
$$

Thus

$$
\frac{\partial \lambda}{\partial W}=-\frac{\partial L}{\partial E}
$$

(Intuition: The cost of a component of utility rises, the marginal utility of income declines.)

Observe

$$
\begin{gathered}
\qquad \frac{\partial \lambda}{\partial E}=\frac{-\left|\begin{array}{ll}
U_{C C} & U_{C L} \\
U_{C L} & U_{L L}
\end{array}\right|}{|\cdot|} \\
\frac{d \lambda}{d E}<0 \text { under strict concavity } \\
\text { (Diminishing Marginal Utility of Income) }
\end{gathered}
$$

Take total differential:

$$
d \lambda=\frac{\stackrel{(-)}{\partial \lambda}}{\partial P} d P+\frac{\stackrel{(-)}{\partial \lambda}}{\partial W} d W+\frac{\stackrel{(-)}{\partial \lambda}}{\partial E}(d E-C d P-L d W)
$$

(This sign pattern assumes that all goods are normal.)

Consider

$$
\left.\frac{\partial L}{\partial W}\right|_{\lambda}
$$

Compensate the agent to keep λ fixed. Let $d K$ be the compensation.

$$
\begin{aligned}
d \lambda=0 & =\left(\frac{(-)}{\partial \lambda}\right. \\
0 W & =\frac{\frac{\partial \lambda}{\partial W}}{\frac{\partial \lambda}{\partial E}} d W-L d W+\left(\frac{(-)}{\partial \lambda}\right)(d K-L d W) \\
d K & =\left(L-\frac{\frac{\partial \lambda}{\partial W}}{\frac{\partial \lambda}{\partial E}}\right) d W
\end{aligned}
$$

\therefore The compensation required to keep λ constant is smaller than what is required to keep utility constant for the same change in the wage.

So
Hicks Slutsky compensated substitution effect

$$
\begin{aligned}
& \left.\frac{\partial L}{\partial W}\right|_{\lambda}=\overbrace{\left(\left.\left.\frac{\partial L}{\partial W}\right|_{(-)} ^{(-)} \right\rvert\,\right.}-L \frac{\partial L}{\partial=\bar{U}})+\frac{\partial L}{(+)} \underset{\substack{\text { compensation to } \\
\text { keep } \lambda \text { tixed }}}{\left(\frac{\partial K}{\partial W}\right)} \\
& \left.\frac{\partial L}{\partial W}\right|_{\lambda}=\left.\frac{\partial L}{\partial W}\right|_{U=\bar{U}}+\frac{\partial L}{\partial E}\left(\frac{\partial K}{\partial W}-L\right) \\
& =\left.\frac{\partial L}{\partial W}\right|_{(-)}+\frac{\partial L}{\partial=\bar{U}}\left(-\frac{\left.\frac{\partial \lambda}{\partial W}\right|_{\bar{U}}}{\frac{\partial \lambda}{\partial E}}\right)
\end{aligned}
$$

Clearly $\left.\frac{\partial L}{\partial W}\right|_{\lambda} \leq\left.\frac{\partial L}{\partial W}\right|_{U=\bar{U}} \leq 0$

Digression

Direct derivation (assume λ fixed).

$$
\begin{aligned}
U_{C} & =\lambda P \\
U_{L} & =\lambda W
\end{aligned}
$$

$$
\begin{aligned}
U_{C C} d C+U_{C L} d L & =\lambda d P \\
U_{C L} d C+U_{L L} d L & =\lambda d W
\end{aligned}
$$

Take Cramer's Rule:

$$
\begin{aligned}
\left.\frac{\partial L}{\partial W}\right|_{\lambda} & =\frac{\left|\begin{array}{ll}
U_{C C} & 0 \\
U_{C L} & \lambda
\end{array}\right|}{\left|\begin{array}{ll}
U_{C C} & U_{C L} \\
U_{C L} & U_{L L}
\end{array}\right|} \\
& =\frac{\left(U_{C C} \lambda\right)}{U_{C C} U_{L L}-U_{C L}^{2}}<0
\end{aligned}
$$

Claimed result follows because

$$
\begin{gathered}
U_{C C}<0 \\
U_{C C} U_{L L}-U_{C L}^{2}>0 \\
\text { (concavity) }
\end{gathered}
$$

$$
\begin{aligned}
\left.\frac{\partial C}{\partial W}\right|_{\lambda} & =\frac{\left|\begin{array}{ll}
0 & U_{C L} \\
\lambda & U_{L L}
\end{array}\right|}{\left|\begin{array}{ll}
U_{C C} & U_{C L} \\
U_{C L} & U_{L L}
\end{array}\right|} \\
& =\frac{-\lambda U_{C L}}{U_{C C} U_{L L}-U_{C L}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& U_{C L}>\left.0 \Longrightarrow \frac{\partial C}{\partial W}\right|_{\lambda}<0 \\
& U_{C L}<\left.0 \Longrightarrow \frac{\partial C}{\partial W}\right|_{\lambda}>0
\end{aligned}
$$

(See e.g. Heckman, 1974, AER)

Back to the main thread:

$$
0 \geq\left.\frac{\partial L}{\partial W}\right|_{U=\bar{U}} \geq\left.\frac{\partial L}{\partial W}\right|_{\lambda}
$$

Intuition: we have to pay less compensation to keep λ fixed than U fixed and leisure is a normal good, so we get less leisure with λ fixed and hence the λ-constant wage response is more negative.
Moreover,

$$
\left.\frac{\partial L}{\partial W}\right|_{U=\bar{U}} \geq \frac{\partial L}{\partial W} \quad \text { (From normality of leisure.) }
$$

How to order

$$
\underbrace{\frac{\partial L}{\partial W}}_{\text {ompensated }} \text { and }\left.\frac{\partial L}{\partial W}\right|_{\lambda}
$$

We have thus far abstracted from the fact that people have a time endowment, T. (Implicitly, we set $T=0$). The Hicks-Slutsky uncompensated wage effect for leisure is (for $T \geq 0$)

$$
\frac{\partial L}{\partial W}=\left.\frac{\partial L}{\partial W}\right|_{U=\bar{U}}+(T-L) \frac{\partial L}{\partial E}
$$

This makes the wage effect on labor supply ambiguous.

$$
\text { Define } h=T-L
$$

$$
\begin{gathered}
\frac{\partial h}{\partial L}=-1 \\
\frac{\partial h}{\partial W}=\left.\frac{(+)}{\partial W}\right|_{U=\bar{U}}+h\left(\frac{(-)}{\partial E}\right)
\end{gathered}
$$

K is compensation required to keep λ constant.

$$
\left.\frac{\partial h}{\partial W}\right|_{\lambda}=\left.\frac{\stackrel{(+)}{\partial h}}{\partial W}\right|_{U=\bar{U}}+\frac{\stackrel{(-)}{\partial h}}{\partial E} h+\frac{\stackrel{(-)}{\partial h}}{\partial E^{-}}\left(\frac{\partial K}{\partial W}\right)
$$

What is $d K ?$

$$
\begin{aligned}
d \lambda=0 & =\left.\left(\frac{\partial{ }^{(-)}}{\partial W}\right)\right|_{\bar{U}} d W+\left(\frac{(-)}{\partial \lambda}\right)(d K+h d W) \\
0 & =\frac{\left.\frac{\partial \lambda}{\partial W}\right|_{\bar{U}}}{\frac{\partial \lambda}{\partial E}} d W+h d W+d K \\
\frac{\partial K}{\partial W} & =-\underbrace{\left(\frac{\left.\frac{\partial \lambda}{\partial W}\right|_{\bar{U}}}{\frac{\partial \lambda}{\partial E}}+h\right)}_{+}<0
\end{aligned}
$$

So

$$
\begin{gathered}
\left.\frac{\partial h}{\partial W}\right|_{\lambda}=\left.\frac{\stackrel{(+)}{\partial h}}{\partial W}\right|_{U=\bar{U}} \underbrace{-\frac{(-)}{\partial E}\left(\left.\frac{\partial \lambda}{\partial W}\right|_{\bar{U}} ^{(+)}\right.}_{(+)} \frac{\partial \lambda}{\partial E}) \\
\therefore 0
\end{gathered}
$$

and with respect to the uncompensated Marshallian elasticity:

$$
\frac{\partial h}{\partial W}<\left.\frac{\partial h}{\partial W}\right|_{U=\bar{U}} \leq\left.\frac{\partial h}{\partial W}\right|_{\lambda}
$$

In the case of labor supply more income is transferred out periods where wages increase. $d K$ is larger (more negative) in this case than the previous one considered.
(There is a more negative wage effect on borrowing, i.e. a force toward saving. This is intuitively so because wage increase generates income in the period which is likely transferred to other periods.)

- This is for a single period.
- We connect back to the multiperiod model by using the intertemporal arbitrage condition

$$
\lambda_{t+1}=\frac{1+\beta}{1+r} \lambda_{t}
$$

(see Browning, Heckman, and Hansen).

- This determines the allocations of the E_{t} across the periods in a two stage budgeting procedure.
- In those periods where λ_{t} is high ship resources in (borrow).
- Where it is low, ship out (save).
- As we showed, holding $U=\bar{U}, W \uparrow \lambda \downarrow$.
- Tends to create a force for saving in periods of wage increases.
- Possibly offsetting it, is substitution toward consumption when leisure goes down.

