
Genetics and Economic Outcomes

Kevin Thom
Dept. of Economics, UW-Milwaukee

February 2, 2023

1 / 77



Genetics Background

Genetic Factors and Economic Outcomes

Very old question in social sciences

“Nature v.s. Nurture” (quite the cliche)

Why do we see variability across individuals in important economic
outcomes?

Intuition that traits (e.g. eye color) “run in families” - does this
extend to economic outcomes like education, earnings, risk
preferences, etc.

Huge problem: parents are passing along both genetic material and
rearing environments. How can we identify these things separately?
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Genetics Background

• Human DNA is a sequence of approximately 3 billion nucleotide
molecules spread across 23 chromosomes.

• Each human has two copies of each chromosome: one from each
parent.
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Genetics Background

• Panel A: parental genetic material at a particular chromosome.

• Panel B: genetic material of two siblings (not identical twins).
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Genetics Background

• Process of genetic inheritance creates the following regularities:

Full siblings will share 50 percent of the same genetic material.

Identical (monozygotic, or MZ) twins share 100 percent of their genetic
material.

Non-identical (dizygotic, or DZ) twins share 50 percent of their genetic
material (just like regular siblings)

The basic rationale for the twin study approach to identifying the
contribution of genetic factors to an outcome:

Compare pairs of MZ twins to DZ twins

Both share same parents, neighborhood, in utero environment, etc.

Big difference - MZ twins have same genetic material, DZ twins only
share half.
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Genetics Background

Twin Studies - A Basic Model

• Assume that outcome yi is determined by a genetic component (gi)
and an environmental component, (ϵi):

yi = gi + ϵi (1)

• One goal would be to estimate the heritability of the outcome yi:

h2 =
V ar(gi)

V ar(yi)
(2)

• This is the fraction of the variance of yi accounted for by variation in
genetic factors.

• Notice, making strong assumptions here about independence of
distribution of gi and ϵi
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Genetics Background

Twins Studies

• Assume that yi is determined by a genetic component (gi) and an
environmental component, (ϵi):

yi = gi + ϵi (3)

• Suppose we have pairs of observations for twins, < yi, yi′ > :

• Importantly, there are two varieties of twins:

Monozygotic Twins: Share all genetic material, so gi = gi′

Dizygotic Twins: Share approximately 50 percent of their genetic
material.
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Genetics Background

Twin Studies .

• We can estimate heritability using the covariance in y for both
monozygotic twins and dizygotic twins:

• For monozygotic pairs:

Cov(ymi , ymi′ ) = V ar(gmi ) + Cov(ϵmi , ϵmi′ ) (4)

• For dizygotic pairs we have :

Cov(ydi , y
d
i′) =

1

2
V ar(gdi ) + Cov(ϵdi , ϵ

d
i′) (5)

• Note: There are some assumptions that go into these covariance
formulae - especially the lack of assortative mating (which would
cause the genetic covariance for dizygotic pairs to be higher).
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Genetics Background

Twin Studies

• Make some assumptions:
1 Common Environments Assumption: Cov(ϵmi , ϵmi′ ) = Cov(ϵdi , ϵ

d
i′)

2 V ar(gmi ) = V ar(gdi )

• Then, we have the following system:

Cov(ymi , ymi′ ) = V ar(gi) + Cov(ϵi, ϵi′) (6)

Cov(ydi , y
d
i′) =

1

2
V ar(gi) + Cov(ϵi, ϵi′) (7)

• Which permits the following estimator for heritability:

̂V ar(gi)

V ar(yi)
= 2

 ̂Cov(ymi , ymi′ )

V ar(ymi )
−

̂Cov(ydi , y
d
i′)

V ar(ydi )

 (8)
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Genetics Background

Twin Studies

• Some terminology: Often the canonical model is refereed to as the
ACE model:

yi = ai + ci + ei (9)

• ai is the additive genetic component

• ci is the common environmental component (shared by all siblings
within a house)

• ei is the idiosyncratic environmental component (specific to each
individual).

• So ϵi = ci + ei in our previous notation.
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Genetics Background

• From Branigan et al (2013) - a meta-analysis of many recent twins
studies on educational attainment:�����������	
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Genetics Background

• Branigan et al (2013) table continued:����� ���	 �
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Genetics Background

Critiques of Twin Methodologies

• Equal Environments assumption is strong - parents may treat
identical twins more similarly than non-identical twins.

• Model assumes lack of interactions between genes and environments -
evidence that this may not be true.

• Assume additivity and lack of interactions between genes, or
non-linearities in effects of genetic variants.

• What do you do with these estimates? If heritability is high (or low) -
doesn’t this only indicate that genes matter more (or less) in the
particular environments studied?
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Genetics Background

From Twins Studies to Molecular Genetics

• Twins studies are useful, but face some limitations:

Cannot tell us which genes matter.

Difficult to explore interactions between genes and environments, and
mechanisms.

Need strong assumptions about how twins are reared, how genes and
environments interact.

• Recent advances in molecular genetics allow us to start studying
individual genetic markers.
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Genetics Background

• Human DNA is a sequence of approximately 3 billion nucleotide
molecules spread across 23 chromosomes.

• Each human has two copies of each chromosome: one from each
parent.
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Genetics Background

• If we zoom in further, we see that each chromosome contains
subsequences of genetic material that are referred to as genes.

• There are between 20,000-25,000 genes in the human genome.

• Genes provide instructions for synthesizing proteins that affect body
function.
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Genetics Background

• Each gene consists of a sequence of base pairs.

• Pairs can either be adenine-thymine (AT) pairs,or guanine-cytosine
(GC) pairs.

• So at each address in the human genome, we can either see (AT) or
(GC).
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Genetics Background

• At the vast majority of locations in the human genome, there is no
variation in the population.

• All individuals have the same nucleotide pair at such locations.
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Genetics Background

• A single nucleotide polymorphism (SNP) is a form of genetic
variation in which individuals differ in which base pair (e.g. AT or
GC) resides at a particular genetic address.

• We will refer to specific positions in the genetic code by names, such
as rs1051730

• Alleles:

• The major allele at a position is the more common allele in pop.

• The minor allele at a position is the less common allele.
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Genetics Background

• Suppose that there is variation at rs1051730, and that the major
allele is AT .

• Then individuals can differ in terms of how many copies of the minor
or major allele (AT ) they possess (0, 1, or 2 since there are two
copies of each chromosome).

• An individual’s genotype at a particular SNP is the number of copies
of the reference allele that they possess:

rs1051730i ∈ {0, 1, 2}
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Genetics Background

• Genome Wide Association Study (GWAS)

• Basic Procedure:

• Regress the outcome against individual SNPs, one at a time:

yi = µ+ βjxij + Z ′γ + ϵi

• Z includes controls - especially some number of principal components
of the genetic data.

• Collect the GWAS coefficients β̂j and the associated p-values.

• Associations with sufficiently small p-values are considered
genome-wide significant.

• Key to addressing multiple hypothesis testing: apply stringent p-value
thresholds (typically 5× 10−8).
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Genetics Background

PGS Construction

• Using the coefficients from a GWAS one can form a polygenic score
as follows:

PGSi =
∑
j

β̃jSNPij

• One issue: SNPs may be correlated. Two SNPs that are correlated
are said to be in linkage-disequilibrium

• If the SNPs are correlated, then unadjusted coefficients β̂j may over
or underestimate the influence of an individual SNP.

• The sum
∑

j β̂jSNPij could double-count certain SNPs.
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Genetics Background

PGS Construction

• Using the coefficients from a GWAS one can form a polygenic score
as follows:

PGSi =
∑
j

β̃jSNPij

• Various algorithms to adjust for correlated SNPs: incorporate
information about SNP covariances to adjust for correlation (LDPred)

• Other choices here - how many SNPs? P-value thresholds?
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Genetics Background

Educational Attainment

A series of GWAS have studied educational attainment (EA)

First GWAS of educational attainment Rietveld et al (2013):

Overall discovery sample of size N=126,559

Identified three SNPs with association sizes reaching genome-wide
significance: rs9320913, rs11584700, and rs4851266

Subsequent EA GWAS:

Okbay et al (2016): Discovery sample of N 300,000

Lee et al (2018): Discovery sample of N 1.1 million

Okbay et al (2022): Discovery sample of N 3 million
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Genetics Background

GWAS results are often depicted graphically using a Manhattan plot.

Each position on the X-axis represents a loci or position on genome
(arranged by chromosomes). The associated p-values are plotted.

35 
 

Figure S5. Manhattan plots of SNPs for EduYears in single genomic control meta-analysis. SNPs are plotted on 
the x-axis according to their position on each chromosome against association with EduYears on the y-axis 
(shown as log10 p-value). The solid line indicates the threshold for genome-wide significance (p < 5×10-8) and 
the dashed line the threshold for suggestive hits (p < 1×10-6). 
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Genetics Background

2 6  M A Y  2 0 1 6  |  V O L  5 3 3  |  N A T U R E  |  5 3 9

LETTER
doi:10.1038/nature17671

Genome-wide association study identifies 74 loci 
associated with educational attainment
A list of authors and their affiliations appears in the online version of the paper.

Educational attainment is strongly influenced by social and 
other environmental factors, but genetic factors are estimated to 
account for at least 20% of the variation across individuals1. Here 
we report the results of a genome-wide association study (GWAS) 
for educational attainment that extends our earlier discovery 
sample1,2 of 101,069 individuals to 293,723 individuals, and a 
replication study in an independent sample of 111,349 individuals 
from the UK Biobank. We identify 74 genome-wide significant loci 
associated with the number of years of schooling completed. Single-
nucleotide polymorphisms associated with educational attainment 
are disproportionately found in genomic regions regulating gene 
expression in the fetal brain. Candidate genes are preferentially 
expressed in neural tissue, especially during the prenatal period, and 
enriched for biological pathways involved in neural development. 
Our findings demonstrate that, even for a behavioural phenotype 
that is mostly environmentally determined, a well-powered GWAS 
identifies replicable associated genetic variants that suggest 
biologically relevant pathways. Because educational attainment 
is measured in large numbers of individuals, it will continue 
to be useful as a proxy phenotype in efforts to characterize the 
genetic influences of related phenotypes, including cognition and 
neuropsychiatric diseases.

Educational attainment is measured in all main analyses as the 
number of years of schooling completed (EduYears, n = 293,723, 
mean = 14.3, s.d. = 3.6; Supplementary Information sections 1.1–1.2). 
All GWAS were performed at the cohort level in samples restricted to 
individuals of European descent whose educational attainment was 
assessed at or above age 30. A uniform set of quality-control proce-
dures was applied to the cohort-level summary statistics. In our GWAS 
meta-analysis of ~9.3 million SNPs from the 1000 Genomes Project, 
we used sample-size weighting and applied a single round of genomic 
control at the cohort level.

Our meta-analysis identified 74 approximately independent genome-
wide significant loci. For each locus, we define the ‘lead SNP’ as the SNP 
in the genomic region that has the smallest P value (Supplementary 
Information section 1.6.1). Figure 1 shows a Manhattan plot with 
the lead SNPs highlighted. This includes the three SNPs that reached 
genome-wide significance in the discovery stage of our previous GWAS 
meta-analysis of educational attainment1. The quantile–quantile (Q–Q) 
plot of the meta-analysis (Extended Data Fig. 1) exhibits inflation 
(λGC = 1.28), as expected under polygenicity3.

Extended Data Fig. 2 shows the estimated effect sizes of the lead 
SNPs. The estimates range from 0.014 to 0.048 standard deviations 
per allele (2.7 to 9.0 weeks of schooling), with incremental R2 in the 
range 0.01% to 0.035%.

To quantify the amount of population stratification in the GWAS 
estimates that remains even after the stringent controls used by the 
cohorts (Supplementary Information section 1.4), we used linkage- 
disequilibrium (LD) score regression4. The regression results indi-
cate that ~8% of the observed inflation in the mean χ2 is due to bias 
rather than polygenic signal (Extended Data Fig. 3a), suggesting that 
stratification effects are small in magnitude. We also found evidence 
for polygenic association signal in several within-family analyses, 
although these are not powered for individual SNP association testing 
(Supplementary Information section 2 and Extended Data Fig. 3b).

To further test the robustness of our findings, we examined the within- 
sample and out-of-sample replicability of SNPs reaching genome-
wide significance (Supplementary Information sections 1.7–1.8). We 
found that SNPs identified in the previous educational attainment 
meta-analysis replicated in the new cohorts included here, and con-
versely, that SNPs reaching genome-wide significance in the new 
cohorts replicated in the old cohorts. For the out-of-sample replica-
tion analyses of our 74 lead SNPs, we used the interim release of the 
UK Biobank5 (UKB) (n = 111,349). As shown in Extended Data Fig. 4,  
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Figure 1 | Manhattan plot for EduYears associations (n = 293,723). 
The x axis is chromosomal position, and the y axis is the significance on 
a −log10 scale (two-tailed test). The black dashed line shows the genome-

wide significance level (5 × 10−8). The red crosses are the 74 approximately 
independent genome-wide significant associations (lead SNPs). The black 
dots labelled with rs numbers are the three SNPs identified in ref. 1.
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Genetics Background

ARTICLESNATURE GENETICS

perform within-family association analyses that probe the robust-
ness of our results. Our biological annotation analyses, which focus 
on the results from the autosomal GWAS, reinforce the main find-
ings from earlier GWAS in smaller samples, such as the role of many 
of the prioritized genes in brain development. However, the newly 
identified SNPs also lead to several new findings. For example, they 
strongly implicate genes involved in almost all aspects of neuron-to-
neuron communication.

We found that a polygenic score derived from our results 
explains around 11% of the variance in educational attainment. We 
also report additional GWAS of three phenotypes that are highly 
genetically correlated with educational attainment: cognitive (test) 
performance (n =  257,841), self-reported math ability (n =  564,698) 
and hardest math class completed (n =  430,445). We identify 225, 
618 and 365 lead SNPs, respectively. When we jointly analyze all 
four phenotypes using a recently developed method11, we found that 
the explanatory power of polygenic scores based on the resulting 
summary statistics increases, to 12% for educational attainment and 
7–10% for cognitive performance.

Results
Primary GWAS of educational attainment. In our primary GWAS, 
we study educational attainment, which is measured as the num-
ber of years of schooling that individuals completed (EduYears). 
All association analyses were performed at the cohort level in 
samples restricted to European-descent individuals. We applied a 
uniform set of quality-control procedures to all cohort-level results. 
Our final sample-size-weighted meta-analysis produced associa-
tion statistics for around 10 million SNPs from phase 3 of the 1000 
Genomes Project12.

The quantile–quantile plot of the meta-analysis (Supplementary 
Fig. 1) exhibits substantial inflation (λGC =  2.04). According to our 
linkage disequilibrium (LD) score regression13 estimates, only a 
small share (approximately 5%) of this inflation is attributable to 
bias (Supplementary Fig. 2 and Supplementary Table 1). We used 
the estimated LD score intercept (1.11) to generate inflation-
adjusted test statistics.

Figure 1 shows the Manhattan plot of the resulting P values. We 
identified 1,271 approximately independent (pairwise r2 <  0.1) SNPs 
at genome-wide significance (P <  5 ×  10−8), 995 of which remain if 
we adopt the stricter significance threshold (P <  1 ×  10−8) proposed 
in a recent study14 (Supplementary Table 2, see Methods for a 
description of the clumping algorithm). The results from a condi-
tional-joint analysis15 are reported in the Supplementary Note and 
Supplementary Table 3.

We used a Bayesian statistical framework to calculate winner’s-
curse-adjusted posterior distributions of the effect sizes of the lead 
SNPs (Methods). We found that the median effect size of the lead 
SNPs corresponds to 1.7 weeks of schooling per allele; at the 5th and 
95th percentiles, 1.1 and 2.6 weeks, respectively. We also examined 
the replicability of the 162 single-SNP associations (P <  5 ×  10−8) 
that were reported in the combined discovery and replication sam-
ple (n =  405,073) of the largest previous study10. In the subsample 
of our data (n =  726,808) that did not contribute to the analyses of 
the previous study, the SNPs replicate at a rate that closely matches 
theoretical projections derived from our Bayesian framework 
(Supplementary Fig. 3).

Within-family association analyses. We conducted within-family 
association analyses in four sibling cohorts (22,135 sibling pairs) 
and compared the resulting estimates to those from a meta-analysis 
that excluded the siblings (n =  1,070,751). The latter association sta-
tistics were adjusted for stratification bias using the LD score inter-
cept. Figure 2 shows the observed sign concordance for three sets 
of approximately independent SNPs, selected using P value cutoffs 
of 5 ×  10−3, 5 ×  10−5 and 5 ×  10−8. The concordance is substantially 

greater than expected by chance but weaker than predicted by our 
Bayesian framework, even after we extend the framework to account 
for inflation in GWAS coefficients owing to assortative mating. In 
a second analysis based on all SNPs, we estimate that within-family 
effect sizes are roughly 40% smaller than GWAS effect sizes and 
that our assortative-mating adjustment explains at most one third 
of this deflation. (For comparison, when we apply the same method 
to height, we found that the assortative-mating adjustment fully 
explains the deflation of the within-family effects.)

The Supplementary Note contains analyses and discussion 
of the possible causes of the remaining deflation we observe for 
EduYears. Although the evidence is not conclusive, it suggests 
that the GWAS effect-size estimates may be biased upward by  
correlation between educational attainment and a rearing envi-
ronment conducive to educational attainment. Consistent with 
this hypothesis, a recent paper16 reports that a polygenic score 
for EduYears based entirely on the non-transmitted alleles of the  
parents is approximately 30% as predictive as a polygenic score 
based on transmitted alleles. (For height, the analogous estimate 
is only 6%.) The non-transmitted alleles affect the educational 
attainment of the parents but can only influence the educational 
attainment of the child indirectly. If greater parental educational 
attainment positively influences the rearing environment, then 
GWAS that control imperfectly for rearing environment will yield 
inflated estimates. The LD score regression intercept does not cap-
ture this bias because the bias scales with the LD score in the same 
way as a direct genetic effect.

Heterogeneous effect sizes. Because educational institutions vary 
across places and time, the effects of specific SNPs may vary across 
environments. Consistent with such heterogeneity, for the lead 
SNPs, we reject the joint null hypothesis of homogeneous cohort-
level effects (P =  9.7 ×  10−12; Supplementary Fig. 4). Moreover, we 
found that the inverse-variance-weighted mean genetic correlation 
of EduYears across pairs of cohorts in our sample is 0.72 (s.e. =  0.14), 
which is statistically distinguishable from one (P =  0.03).

Our finding of an imperfect genetic correlation replicates earlier 
results from smaller samples17,18. This imperfect genetic correlation 
is an important factor to consider in power calculations and study 
design. In the Supplementary Note, we report exploratory analyses 
that aim to identify specific sources of measurement heterogeneity 
or gene–environment interactions that may explain the imperfect 
genetic correlation. Unfortunately, the estimates are noisy, and the 
only robust finding was that SNP heritability was smaller in cohorts 
for which the measurement of EduYears was derived from questions 
with fewer response categories.
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Fig. 1 | Manhattan Plot for GWAS of EduYears. The P value and mean 
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Lee et al (2018)

Sample size of N 1.1 million

1,271 genome-wide significant associations
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Genetics Background

ARTICLESNATURE GENETICS

sex, year of birth, their interaction and genetic PCs, and applied 
a uniform set of quality-control procedures (Supplementary Note 
contains a comprehensive description). The final meta-analysis 
contains association results for ~10 million SNPs. The quantile–
quantile plot in Extended Data Fig. 1 shows that the P values deviate 
strongly from the uniform distribution. According to the linkage 
disequilibrium (LD) score regression8 intercept (1.66), confound-
ing accounts for 7% of the inflation, similar to previous GWAS of 
EA (ref. 2) (Extended Data Fig. 2 shows the LD score plot). The 
Manhattan plot in Fig. 1 and many of our subsequent analyses are 
based on test statistics adjusted for the LD score intercept.

We identify 3,952 lead SNPs, defined as approximately uncorre-
lated (pairwise r2 < 0.1) variants with an association P value below 
5 × 10−8. At the stricter threshold9 of P < 1 × 10−8, the number declines 
to 3,277 (Supplementary Table 1; Supplementary Note contains a 
description of the clumping algorithm). To assess the sensitivity of our 
conclusions about the number of independent SNPs, we conducted a 
conditional and joint (COJO) multiple-SNP analysis10. This analysis 
identified 2,925 SNPs (Supplementary Table 2); 41 of these are in LD 
(r2 > 0.1) with other COJO lead SNPs and may represent secondary 
associations within a locus. Adjusted for the winner’s curse, we find 
that the effects of our lead SNPs are consistently quite small. On aver-
age, an additional copy of the reference allele of the median SNP is 
associated with 1.4 weeks more schooling: the effects at the 5th and 
95th percentiles (in absolute value) are 0.9 and 3.5 weeks, respectively 
(Supplementary Note contains details on these calculations). We also 
examined the out-of-sample replicability of the lead SNPs identi-
fied in the most recent previous meta-analysis2. In the independent 
23andMe data, the replication record is broadly in line with theo-
retical predictions derived from an empirical Bayesian framework 
described in the Supplementary Note (Extended Data Fig. 3).

Biological annotation. To compare results from biological anno-
tation of our meta-analysis to that of the most recent previous 
meta-analysis, we applied stratified LD score regression11 to both 
sets of summary statistics using a recent set of SNP annotations12. 
The results are very similar across the two meta-analyses, but 
standard errors are smaller when using the current meta-analysis 

results, as expected given the larger sample size (Supplementary  
Fig. 1a–d). Notably, we replicate the unexpected result of relatively 
weak enrichment of genes highly expressed in glial cells (astrocytes 
and oligodendrocytes) relative to neurons.

X-chromosome GWAS results. To update the previous 
X-chromosome analysis, we conducted a sample-size-weighted 
meta-analysis of mixed-sex association results from UKB and 
23andMe (N = 2,713,033) for ~200,000 SNPs on the X chromosome 
(Extended Data Fig. 4). We identified 57 lead SNPs with estimated 
effects in the range 1 to 3 weeks of schooling. Our findings are fully 
consistent with earlier conclusions: SNP heritability due to the X 
chromosome of 0.4% and (using sex-stratified association analyses 
in the UKB) a male–female genetic correlation on the X chromo-
some close to unity ( = = ).

Dominance GWAS. We conducted a GWAS of dominance 
deviations from the additive model (Supplementary Note) by 
meta-analyzing summary statistics from association analyses con-
ducted in 23andMe and UKB (N = 2,574,253). Theory and evidence 
from the quantitative genetics literature, including findings from 
two recent papers13,14 that estimated dominance SNP heritability 
across dozens of phenotypes (but not EA), suggest that dominance 
effects explain at most a very small share of the variance in poly-
genic phenotypes15. Nevertheless, in the behavior genetics litera-
ture, when the phenotypic correlation between monozygotic twins 
is more than twice as large as the phenotypic correlation between 
dizygotic twins, it remains common practice to attribute the viola-
tion of the additive model to dominance variance.

The Manhattan plot from our dominance GWAS is shown in red 
in the bottom panel of Fig. 1. There are no genome-wide-significant 
SNPs. Power calculations indicate that, at genome-wide signifi-
cance, we had 80% power to detect dominance effects with an R2 
of 0.0015% (Supplementary Note). Such effect sizes would be over 
an order of magnitude smaller than the largest additive effects  
(R2 ≅ 0.04%). Therefore, the absence of genome-wide-significant 
SNPs suggests that dominance effects of common SNPs, taken indi-
vidually, are negligibly small.
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Fig. 1 | Manhattan plots for the additive and dominance GWASs. The top graph (green) shows the additive GWAS (N�=�3,037,499 individuals), and the 

bottom graph (red) shows the dominance GWAS (N�=�2,574,253 individuals). The P value and mean χ2 values are based on inflation-adjusted two-sided 

Z tests. The x axis is chromosomal position, and the y axis is the significance on a −log10 scale. The dashed line marks the threshold for genome-wide 

significance (P = 5�×�10−8).
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Okbay et al (2022)

Sample size of N 3 million

3,952 genome-wide significant associations
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power that is due to direct effects5,6, or causal effects of an individu-
al’s genetic material on that individual. When controls for both par-
ents’ PGIs are included, we refer to the coefficient from a regression 
of an individual’s phenotype on the individual’s PGI as the direct 
effect of the PGI; when those controls are omitted, we refer to it 
as the population effect. (The regression controlling for parental 

PGIs gives an equivalent estimate of the direct effect of the PGI as a 
regression on PGIs constructed from transmitted and nontransmit-
ted parental alleles5; Supplementary Note.) The population effect 
captures the sum of the direct effect, indirect effects from relatives 
(e.g., genetic influences on parents’ education, socioeconomic status 
and behavior), other gene–environment correlation (i.e., correlation  
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power that is due to direct effects5,6, or causal effects of an individu-
al’s genetic material on that individual. When controls for both par-
ents’ PGIs are included, we refer to the coefficient from a regression 
of an individual’s phenotype on the individual’s PGI as the direct 
effect of the PGI; when those controls are omitted, we refer to it 
as the population effect. (The regression controlling for parental 

PGIs gives an equivalent estimate of the direct effect of the PGI as a 
regression on PGIs constructed from transmitted and nontransmit-
ted parental alleles5; Supplementary Note.) The population effect 
captures the sum of the direct effect, indirect effects from relatives 
(e.g., genetic influences on parents’ education, socioeconomic status 
and behavior), other gene–environment correlation (i.e., correlation  
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Genetics Background

Interpreting GWAS Associations

What do these associations reflect? Are these causal? And what do
we even mean by causal here?

An enormous set of questions.

Before thinking about more satisfactory methods (e.g. within-family
analyses), let’s look at some features of GWAS that might alleviate
concerns.

Controlling for Principal Components

Examining biological annotation
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Genetics Background

Controlling for Principal Components

Recall - principal components of the SNP-level data are added as
essential controls in GWAS

May be concerned that variation in markers reflect population
stratification: different markers could be associated with an outcome
because of correlation with an ancestral history.

Genetic ancestry groups share big blocks of genetic material -
principal components of the SNP data do a good job of capturing
variation due to ancestral clustering.
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Genetics Background

From Rietveld et al (2014)

Here rs3769005, which affects lactose metabolism, has a significant
association with educational attainment, but not after controlling for
first two PCs.
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Genetics Background

Biological Annotation

One exercise that can be performed after a GWAS is biological
annotation

Biologists have some information on pathways of genes:

In what kinds of tissues these genes are expressed - that is, where they
are being used to code for proteins or perform regulatory functions.

Also know when these genes are expressed.

Can ask - are the SNPs that are more heavily weighted in the GWAS
found in genes that are expressed more in a particular tissue or at a
particular time?
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constructed with less stringent thresholds (Supplementary Fig. 10). 
The sample-size-weighted mean incremental R2 increases from 3.2% 
at P <  5 ×  10−8 to 9.4% at P ≤  1. Our fifth score was generated from 
HapMap3 SNPs using the software LDpred26. Rather than removing 
SNPs that are in LD with each other, LDpred is a Bayesian method that 
weights each SNP by (an approximation to) the posterior mean of its 
conditional effect, given other SNPs. This score was the most predic-
tive in both cohorts, with an incremental R2 of 12.7% in AddHealth 
and 10.6% in HRS (and a sample-size weighted mean of 11.4%).

To put the predictive power of this score in perspective, Fig. 4a 
shows the mean college completion rate by polygenic-score quin-
tile. The difference between the bottom and top quintiles in Add 
Health and HRS is, respectively, 45 and 36 percentage points (see 
Supplementary Fig. 11 for analogous analyses of high school com-
pletion and grade retention). Figure 4b compares the incremental R2 
of the score to that of standard demographic variables. The score is 
a better predictor of EduYears than household income and a worse 
predictor than the educational attainment of the mother or father. 
Controlling for all the demographic variables jointly, the score’s 
incremental R2 is 4.6% (Supplementary Fig. 12).

We also found that the score has substantial predictive power for 
a variety of other cognitive phenotypes measured in the prediction 
cohorts (Supplementary Fig. 13). For example, it explains 9.2% of 
the variance in overall grade point average in Add Health.

Because the discovery sample used to construct the score con-
sisted of individuals of European ancestry, we would not expect 
the predictive power of our score to be as high in other ancestry 
groups7,27,28. Indeed, when our score was used to predict EduYears in 
a sample of African-Americans from the HRS (n =  1,519), the score 
only has an incremental R2 of 1.6%, implying an attenuation of 85%. 
The Supplementary Note shows that this amount of attenuation is 
typical of what has been reported in previous studies.

Related cognitive phenotypes and multi-trait analysis of 
GWAS. We performed GWAS on three complementary pheno-
types: cognitive performance (n =  257,841), self-reported math 

ability (n =  564,698), and highest math class taken (highest math, 
n =  430,445). For cognitive performance, we meta-analyzed pub-
lished results from the COGENT consortium29 with results based 
on new analyses of the UK Biobank (UKB), as did another study30. 
For the two math phenotypes, we studied new genome-wide 
analyses using samples of research participants from 23andMe. 
We identified 225, 618 and 365 genome-wide significant SNPs for 
cognitive performance, math ability and highest math, respectively 
(Supplementary Figs. 14–16 and Supplementary Tables 11–13).

We conducted a multi-trait analysis of EduYears and our sup-
plementary phenotypes to improve polygenic prediction accuracy. 
These phenotypes are well suited to joint analysis because their 
pairwise genetic correlations are high, in all cases exceeding 0.5 
(Supplementary Table 14). We applied a recently developed method, 
multi-trait analysis of GWAS (MTAG)11 to summary statistics for 
the four phenotypes from meta-analyses that exclude the prediction 
cohorts. For all four phenotypes, MTAG increases the number of 
lead SNPs identified at genome-wide significance (Supplementary 
Figs. 17–20 and Supplementary Table 15). Figure 4c shows the 
incremental R2 for the polygenic scores based on GWAS and MTAG 
association statistics (but otherwise constructed using identical 
methods) when the target phenotype is either EduYears (left panel) 
or cognitive performance (right panel).

In Add Health, in which our measure of cognitive performance 
is the respondent’s score on a test of verbal cognition, the incremen-
tal R2 values of the GWAS and MTAG scores are 5.1% and 6.9%, 
respectively. To obtain a better measure of prediction accuracy for 
cognitive performance, we used an additional validation cohort, the 
Wisconsin Longitudinal Study (WLS), which administered a cogni-
tive test with excellent retest reliability and psychometric properties 
that were similar to those used in our discovery GWAS of cogni-
tive performance. In the WLS, the MTAG score predicts 9.7% of the 
variance in cognitive performance, a substantial improvement over 
the 7.0% predicted by the GWAS score and approximately double 
the prediction accuracy reported in three recent GWAS analyses of 
cognitive performance30–32.
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Fig. 3 | Tissue-specific expression of genes in DEPICT-defined loci. a, We took microarray measurements from the Gene Expression Omnibus20 and 

determined whether the genes overlapping EduYears-associated loci (as defined by DEPICT) are significantly overexpressed (relative to genes in random 

sets of loci) in each of 180 tissues or cell types. These types are grouped by first-level terms according to the medical subject headings (MeSH). The 

y axis is the one-sided P value from DEPICT on a –log10 scale. The 28 dark bars correspond to tissues or cell types in which the genes are significantly 

overexpressed (FDR�< �0.01), including all 22 classified as part of the central nervous system (see Supplementary Table 6 for identifiers of all tissues and 

cell types). b, Whereas genes prioritized by DEPICT in a previous analysis based on a smaller sample10 tend to be more strongly expressed in the brain 

prenatally (red curve), the 1,703 newly prioritized genes show a flat trajectory of expression across development (blue curve). Both groups of DEPICT-

prioritized genes show elevated levels of expression relative to protein-coding genes that are not prioritized (gray curve). Analyses were based on  

RNA-sequencing data from the BrainSpan Developmental Transcriptome35. These results are based on the full GWAS sample of 1,131,881 individuals.  

Error bars represents 95% confidence intervals. RPKM, reads per kilobase of transcript per million reads mapped.
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Genes associated with genome wide significant SNPs largely linked to
expression in central nervous system.
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constructed with less stringent thresholds (Supplementary Fig. 10). 
The sample-size-weighted mean incremental R2 increases from 3.2% 
at P <  5 ×  10−8 to 9.4% at P ≤  1. Our fifth score was generated from 
HapMap3 SNPs using the software LDpred26. Rather than removing 
SNPs that are in LD with each other, LDpred is a Bayesian method that 
weights each SNP by (an approximation to) the posterior mean of its 
conditional effect, given other SNPs. This score was the most predic-
tive in both cohorts, with an incremental R2 of 12.7% in AddHealth 
and 10.6% in HRS (and a sample-size weighted mean of 11.4%).

To put the predictive power of this score in perspective, Fig. 4a 
shows the mean college completion rate by polygenic-score quin-
tile. The difference between the bottom and top quintiles in Add 
Health and HRS is, respectively, 45 and 36 percentage points (see 
Supplementary Fig. 11 for analogous analyses of high school com-
pletion and grade retention). Figure 4b compares the incremental R2 
of the score to that of standard demographic variables. The score is 
a better predictor of EduYears than household income and a worse 
predictor than the educational attainment of the mother or father. 
Controlling for all the demographic variables jointly, the score’s 
incremental R2 is 4.6% (Supplementary Fig. 12).

We also found that the score has substantial predictive power for 
a variety of other cognitive phenotypes measured in the prediction 
cohorts (Supplementary Fig. 13). For example, it explains 9.2% of 
the variance in overall grade point average in Add Health.

Because the discovery sample used to construct the score con-
sisted of individuals of European ancestry, we would not expect 
the predictive power of our score to be as high in other ancestry 
groups7,27,28. Indeed, when our score was used to predict EduYears in 
a sample of African-Americans from the HRS (n =  1,519), the score 
only has an incremental R2 of 1.6%, implying an attenuation of 85%. 
The Supplementary Note shows that this amount of attenuation is 
typical of what has been reported in previous studies.

Related cognitive phenotypes and multi-trait analysis of 
GWAS. We performed GWAS on three complementary pheno-
types: cognitive performance (n =  257,841), self-reported math 

ability (n =  564,698), and highest math class taken (highest math, 
n =  430,445). For cognitive performance, we meta-analyzed pub-
lished results from the COGENT consortium29 with results based 
on new analyses of the UK Biobank (UKB), as did another study30. 
For the two math phenotypes, we studied new genome-wide 
analyses using samples of research participants from 23andMe. 
We identified 225, 618 and 365 genome-wide significant SNPs for 
cognitive performance, math ability and highest math, respectively 
(Supplementary Figs. 14–16 and Supplementary Tables 11–13).

We conducted a multi-trait analysis of EduYears and our sup-
plementary phenotypes to improve polygenic prediction accuracy. 
These phenotypes are well suited to joint analysis because their 
pairwise genetic correlations are high, in all cases exceeding 0.5 
(Supplementary Table 14). We applied a recently developed method, 
multi-trait analysis of GWAS (MTAG)11 to summary statistics for 
the four phenotypes from meta-analyses that exclude the prediction 
cohorts. For all four phenotypes, MTAG increases the number of 
lead SNPs identified at genome-wide significance (Supplementary 
Figs. 17–20 and Supplementary Table 15). Figure 4c shows the 
incremental R2 for the polygenic scores based on GWAS and MTAG 
association statistics (but otherwise constructed using identical 
methods) when the target phenotype is either EduYears (left panel) 
or cognitive performance (right panel).

In Add Health, in which our measure of cognitive performance 
is the respondent’s score on a test of verbal cognition, the incremen-
tal R2 values of the GWAS and MTAG scores are 5.1% and 6.9%, 
respectively. To obtain a better measure of prediction accuracy for 
cognitive performance, we used an additional validation cohort, the 
Wisconsin Longitudinal Study (WLS), which administered a cogni-
tive test with excellent retest reliability and psychometric properties 
that were similar to those used in our discovery GWAS of cogni-
tive performance. In the WLS, the MTAG score predicts 9.7% of the 
variance in cognitive performance, a substantial improvement over 
the 7.0% predicted by the GWAS score and approximately double 
the prediction accuracy reported in three recent GWAS analyses of 
cognitive performance30–32.
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Fig. 3 | Tissue-specific expression of genes in DEPICT-defined loci. a, We took microarray measurements from the Gene Expression Omnibus20 and 

determined whether the genes overlapping EduYears-associated loci (as defined by DEPICT) are significantly overexpressed (relative to genes in random 

sets of loci) in each of 180 tissues or cell types. These types are grouped by first-level terms according to the medical subject headings (MeSH). The 

y axis is the one-sided P value from DEPICT on a –log10 scale. The 28 dark bars correspond to tissues or cell types in which the genes are significantly 

overexpressed (FDR�< �0.01), including all 22 classified as part of the central nervous system (see Supplementary Table 6 for identifiers of all tissues and 

cell types). b, Whereas genes prioritized by DEPICT in a previous analysis based on a smaller sample10 tend to be more strongly expressed in the brain 

prenatally (red curve), the 1,703 newly prioritized genes show a flat trajectory of expression across development (blue curve). Both groups of DEPICT-

prioritized genes show elevated levels of expression relative to protein-coding genes that are not prioritized (gray curve). Analyses were based on  

RNA-sequencing data from the BrainSpan Developmental Transcriptome35. These results are based on the full GWAS sample of 1,131,881 individuals.  

Error bars represents 95% confidence intervals. RPKM, reads per kilobase of transcript per million reads mapped.
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Newly identified SNPs show expression both prenatally and during
adulthood.

Glial cells not implicated (but just as numerous as neurons)
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Genetics Background

Polygenic Variation Across Ancestry Groups

An important caveat - current GWAS are overwhelmingly performed
on samples of European ancestry.

A limitation here is that these results (and PGS constructed from
them) cannot be used to learn about differences between population
ancestry groups (or different associations between PGS across
ancestry groups).

Martin et al (2017) discusses the issue in detail

Allele frequencies differ across ancestry groups, and patterns of
linkage-disequilibrium may be different as well.

For example - using a PGS for height constructed from a European
ancestry GWAS predicts that individuals of African ancestry should
have average heights that are several standard deviations lower than
the European average - this is clearly erroneous.
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Genetics Background

From Martin et al (2017)

We find that the correlation between true and inferred

polygenic risk is generally low (Figures 5C and S13), con-

sistent with limited variance explained by polygenic

risk scores from GWASs of these cohort sizes for height

(e.g., ~10% of variance explained for a cohort of size

183,72763) and schizophrenia (e.g., ~7% variance ex-

plained for a cohort of size 36,989 case subjects and

113,075 control subjects11). Low correlations in our simu-

lations are most likely because common tag variants are a

poor proxy for rare causal variants. As expected, correla-

tions between true and inferred risk within populations

are typically highest in the European population (i.e., the

population in which variants were discovered, Figures 5A

and S13). To quantify the differential prediction accuracy

of polygenic risk scores across populations, we also eval-

uate the log odds ratio of being a case subject compared

to a control subject across deciles of inferred polygenic

risk in each population. We identify greater power to

discern between case and control subjects in the EUR dis-

covery population relative to the AFR and EAS populations

(i.e., more heritable variation explained, as evidenced by a

steeper slope) (Figure S14B). Across all populations, the

mean Spearman correlations between true and inferred

polygenic risk increase with increasing heritability while

the standard deviations of these correlations significantly

decrease (p ¼ 0.05); however, there is considerable

within-population heterogeneity resulting in high varia-

tion in scores across all populations. We find that in these

A B

C D

Figure 4. Biased Genetic Discoveries In-
fluence Disease Risk Inferences
Inferred and standardized polygenic risk
scores across all individuals and colored
by population for (A) height based on sum-
mary statistics from Wood et al.,10 (B)
schizophrenia based on summary statistics
from the Schizophrenia Working Group of
the Psychiatric Genomics Consortium,11

(C) type II diabetes summary statistics
derived from a European cohort from
Gaulton et al.,86 and (D) type II diabetes
summary statistics derived from a multi-
ethnic cohort from Mahajan et al.87

neutral simulations, a polygenic risk

score bias in essentially any direction

is possible even when choosing the

exact same causal variants and herita-

bility and varying only fixed effect

size (i.e., inferred polygenic risk in

Europeans can be higher, lower, or in-

termediate compared to true risk rela-

tive to East Asians or Africans, Figures

S12 and 5B).

Discussion

To date, GWASs have been per-

formed opportunistically in primar-

ily single-ancestry European cohorts, and an open ques-

tion remains about their biomedical relevance for

disease associations in other ancestries. As studies gain

power by increasing sample sizes, effect size estimates

become more precise and novel associations at lower fre-

quencies are feasible. However, rare variants are largely

population-private, and their effects are unlikely to trans-

fer to new populations. Because linkage disequilibrium

and allele frequencies vary across ancestries, effect size

estimates from diverse cohorts are typically more precise

than from single-ancestry cohorts (and often tempered),5

and the resolution of causal variant fine-mapping is

considerably improved.87 Across a range of genetic archi-

tectures, diverse cohorts provide the opportunity to

reduce false positives. At the Mendelian end of the spec-

trum, for example, disentangling risk variants with

incomplete penetrance from benign false positives and

localizing functional effects in genes is much more

feasible with large diverse population cohorts than with

single-ancestry analyses.94 Multiple false positive reports

of pathogenic variants causing hypertrophic cardiomy-

opathy, a disease with relatively simple genomic architec-

ture, have been returned to individuals of African descent

or unspecified ancestry that would have been prevented

if even a small number of African American samples

were included in control cohorts.9 At the highly complex

end of the polygenicity spectrum, we and others have

shown that the utility of polygenic risk inferences and
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Genetics Background

Within-Family Variation

Perhaps the most convincing approach to addressing causality in
genetic associations - within-family variation.

Conditional on having the same parents, variation in the genotypes of
two siblings is purely random.

Family fixed-effects designs can identify causal effects of variation in
genetic measures, under some assumptions

Bottom Line: Within family estimates of polygenic associations tend
to shrink cross-sectional estimates by about 50%. Controlling for
parental education / background can account for much of this.
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Genetics Background

From Belskey et al. (2018), cross-sectional v.s. within-family estimtes
of correlation between EA PGS and various outcomes

Replication in the WLS. We next tested the replication of polygenic
score associations with social mobility in a cohort of 1957 high-
school graduates and their siblings, the WLS (n = 7,111 partici-
pants of European descent with genetic and attainment data)
(40). We measured occupational attainment in this cohort
through 2005, by which time most WLS members were in their
60s. We scored occupations using the same procedure as in the
Add Health Study (SI Appendix, 1.4). We computed social-origin
scores based on parents’ education, father’s occupation, and
household income in 1957, the year most WLS participants
graduated from high school (SI Appendix, 1.4). As in the Add
Health Study, WLS participants with higher polygenic scores
tended to achieve higher levels of occupational attainment (r =
0.16, P < 0.001). This association was explained mostly by dif-
ferences in education (adjusted r = 0.03, P = 0.014). We also
observed evidence of gene–environment correlation. Children
with higher polygenic scores tended to grow up with better social
origins (r = 0.12, P < 0.001). The test of social mobility showed
that, independent of their social origins, children with higher
polygenic scores tended to achieve upward social mobility
(social-origins adjusted r = 0.13, P < 0.001) (Figs. 2 and 4C).

Expressed in terms of social-position percentile-rank change,
WLS participants with polygenic scores one SD above the mean
showed an average improvement of four percentiles in the
ranking of attained social position relative to their parents. So-
cial mobility-transition matrices showing rank mobility within
low, middle, and high polygenic score groups are in SI Appendix,
Fig. S1.
Effect sizes for occupational attainment analysis are reported

in SI Appendix, Table S2. Effect sizes for social-origins analysis
are in SI Appendix, Table S4. Estimates for percentile-rank
mobility analysis are in SI Appendix, Table S5.
Sibling-difference analysis. As a final test, we conducted sibling-
difference analysis using family-level fixed-effects regression. We
denominated siblings’ polygenic scores and occupational attain-
ments in sample-wide SD units so that sibling-difference effect
sizes (b) could be compared with full-sample effect sizes (r). In
the Add Health Study (n = 352 Add Health pairs; correlation of
siblings’ polygenic scores r = 0.54; association of polygenic scores
with occupational attainment in the sibling sample r = 0.21, P <
0.001), the sibling with the higher polygenic score tended to
achieve higher occupational attainment compared with the sibling
with a lower polygenic score, but this association was not statisti-
cally significant (sibling-difference b = 0.07, P = 0.298). In WLS
(n = 1,779 WLS pairs; correlation of siblings’ polygenic scores r =
0.52; association of polygenic scores with occupational attainment
in the sibling sample r = 0.17, P < 0.001), the sibling with the
higher polygenic score tended to achieve higher occupational at-
tainment compared with the sibling with a lower polygenic score,
and the association was statistically significant (sibling-difference
b = 0.15, P < 0.001). Sibling-difference effect sizes are shown in
Fig. 3 and are reported in SI Appendix, Table S3.
Note: We did not analyze occupation in the E-Risk cohort be-

cause many of the 18-y-old participants had not yet entered the labor
market. We did not analyze occupation in the HRS cohort because
many of these participants had already exited the labor market.

Older Adults with Higher Polygenic Scores Were Upwardly Mobile in
Their Accumulation of Wealth. We analyzed mobility in terms of
wealth accumulation among older adults. Wealth data were mea-
sured from structured interviews in the WLS (n = 7,007 partici-
pants of European descent with genetic data) and the HRS (n =
8,533 participants of European descent with genetic data) (SI
Appendix, 1.4 and 1.5) (41, 42). WLS and HRS participants with
higher polygenic scores accumulated more wealth across their lives
(WLS r = 0.12, P < 0.001; HRS r = 0.22, P < 0.001). This was true
even after accounting for differences in their educational attainment
(adjusted WLS r = 0.06, P < 0.001; adjusted HRS r = 0.11,
P < 0.001).

WLS Analysis. We analyzed social mobility in terms of wealth in
the WLS using the social-origins measure described in the pre-
vious section. As described above, there was a gene–environment
correlation in which participants with higher polygenic scores
grew up with better social origins (r = 0.12, P < 0.001). Never-
theless, the test of social mobility showed that, independent of
their social origins, WLS participants with higher polygenic
scores were upwardly mobile in terms of wealth accumulation
(r = 0.10, P < 0.001) (Fig. 2). Expressed in terms of social-
position percentile-rank change, WLS participants with poly-
genic scores one SD above the mean showed an average im-
provement of four percentiles in the ranking of attained wealth
position relative to their social origins.

HRS Analysis. To develop measures for a test of social mobility in
the HRS, we computed social-origin scores for HRS participants
based on their parents’ education and occupation, an index of
household economic problems measured from retrospective
reports made by participants, and participant ratings of their

Fig. 3. Sibling-difference effect-size estimates for education polygenic
score associations with social attainment and mobility in three cohorts with
sibling data. The figure graphs effect-size estimates (comparable to the
Pearson’s r reported for full-sample analysis) for education polygenic score
associations with social attainment and mobility from analyses of siblings in
the E-Risk, Add Health, and WLS cohorts. Polygenic score associations with
attainment in the samples of siblings are graphed in navy blue. Polygenic
score associations estimated in sibling-difference models are graphed in light
blue. Error bars show 95% CIs for effect-size estimates. Sibling-difference
effect sizes were estimated from family fixed-effects regression models.
Model details are in SI Appendix, 1.7. Results details are in SI Appendix,
Table S3.
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Genetics Background

From Ronda et al (2020) - Sample of Danish Siblings

Table 3: Sibling Sample: EA PGS and Human Capital Formation

(1) (2) (3) (4)
Dep. Var. Y. Edu. Any P.S.E. Danish Math.

Panel A:

EA PGS 0.561 0.114 6.248 6.722
(0.053) (0.010) (0.469) (0.558)

Family Controls (N) (N) (N) (N)
Family F.E. (N) (N) (N) (N)

R2 0.123 0.123 0.179 0.103
Incr. R2 EA PGS 0.070 0.070 0.077 0.072

Panel B:

EA PGS 0.352 0.073 4.542 4.780
(0.055) (0.011) (0.491) (0.570)

Family Controls (Y) (Y) (Y) (Y)
Family F.E. (N) (N) (N) (N)

Panel C:

EA PGS 0.296 0.069 2.774 3.616
(0.094) (0.020) (0.842) (0.982)

Family Controls (N) (N) (N) (N)
Family F.E. (Y) (Y) (Y) (Y)

N 1,487 1,487 1,838 1,793

Notes: This table reports parameter estimates from regressions used to link the polygenic score
for educational attainment to human capital outcomes for individuals in the sibling sample. Panel
A reports between-family results with controls for birth year, gender, birth order and the first ten
principal components of the genetic matrix. Family controls in Panel B include the average log
disposable family income between ages 1 to 10, maternal and paternal years of education, maternal
and paternal mental health history and family structure between the ages 0 to 10. Panel C reports
within-family results, where we control for family fixed effects. The polygenic score was normalized
to have mean zero and standard deviation one in the full sample. Standard errors are reported in
parentheses.

4.2 Attenuation Effect of Family Disadvantage

In the previous section, we show that the EA PGS influences different educational outcomes.

In this section, we ask whether childhood disadvantage attenuates the effect of the EA PGS

on these outcomes. We do so by regressing the educational attainment polygenic score on

each outcome separately for individuals who experienced two or more dimensions of childhood

15
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Genetics Background

Applications

Suppose you are convinced that molecular genetic measures are
picking up something real. What do you do with this?

Suggest a few possible applications:

Mendelian Randomization (genes as IVs)

Gene-by-Environment Interactions

Understanding Structure of Heterogeneity (mechanisms in a structural
model)
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Genetics Background

Mendelian Randomization Studies

If genetic variation within families is truly random, then could use
within-family variation as an instrumental variable for various
outcomes.

Some major challenges here:

Very unlikely to satisfy exclusion restructions.

Pleiotropy - gene can affect multiple outcomes through one or multiple
mechanisms.
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Genetics Background

Educational Attainment, Polygenic Scores, and Labor Market Outcomes

Summarize four papers:
Houmark, Ronda, Rosholm (2020) “The Nurture of Nature and Nature
of Nurture”

Papageorge and Thom (2020) “Genes, Education, and Labor Market
Outcomes”

Barth, Papageorge, and Thom (2020), “Genetic Endowments and
Wealth Inequality”

Barth, Papageorge, Thom, and Velasquez-Giraldo (2020), “Genetic
Endowments, Income Dynamics, and Wealth Accumulation Over the
Lifecycle”

Broad goals:
Understand mechanisms through which genes seem to operate.

Understand how environments (which policy can affect) might interact
with endowments.

Important for building better structural models, especially models with
overlapping generations.
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Genetics Background

Incorporating Genes into Technology of Skill Formation (Houmark, Ronda,
Rosholm 2020).

Genetic measures can potentially have a large impact on study of skill
formation and child development.

Some basic questions:

Where do genetic factors show up in the skill production technology?

How do parental genes and child genes interact in the production
process?

Given role of genes and the dynamics of skill formation, how can policy
affect (genetic) inequality.
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Genetics Background

Incorporating Genes into Technology of Skill Formation (Houmark, Ronda,
Rosholm 2020).

Use data from the ALSPAC (Avon Longitudinal Study of Parents and
Children)

Features large number of genetic trios - family observations with
genetic data for a child and both parents.

Basic idea - incorporate genetic variation at both the child and parent
level into a model of skill formation (in spirit of Cunha and Heckman
(2007), Cunha, Heckman, and Schennach (2010).
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Genetics Background

Model evolution of skills, θit across six periods: ages 0-2 (t = 0), 2-3
(t = 1), 3-4 (t = 2), 4-5 (t = 3), 5-6 (t = 4) and 6-7 (t = 5)

Cobb-Douglas Production Technology

ln θit+1 = lnA+ δ1 ln θit + δ2 ln Iit + δ3pgsi + δ4pgs
p
i + ϵit (10)

Parental Investments are modelled as:

ln Iit = γ1 ln θit + γ2pgsi + γ3pgs
p
i + γxX

I
it + ηit (11)

Initial Skills:

ln θi0 = α1pgsi + α2pgs
p
i + αxX

θ0
i + ϵi0 (12)
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Genetics Background

Role for genetic endowments:

Direct effects: child’s own PGS can affect skills directly.

Nature of Nurture: Parental PGS may show up directly in investment
function

Nurture of Nature: Parents may be responding to higher PGS
children by investing more.
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Genetics Background

Table 1: EA PGS and Skills by Age

Ages: [0-2[ [2-3[ [3-4[ [4-5[ [5-6[ [6-7[ [Pooled]

Panel A:

Child’s PGS 0.047* 0.047* 0.097*** 0.158*** 0.169*** 0.101*** 0.103***
(0.029) (0.027) (0.028) (0.028) (0.028) (0.028) (0.021)

R2 0.002 0.003 0.009 0.027 0.028 0.010 0.012
N 1267 1267 1267 1267 1267 1267 7602

Panel B:

Child’s PGS 0.045 0.009 0.024 0.076* 0.099** 0.039 0.049
(0.044) (0.042) (0.042) (0.043) (0.043) (0.043) (0.032)

Parental PGS 0.003 0.051 0.097** 0.108** 0.092** 0.082* 0.072**
(0.043) (0.042) (0.042) (0.042) (0.043) (0.043) (0.031)

N 1267 1267 1267 1267 1267 1267 7602

Notes: This table reports parameter estimates from regressions used to link the polygenic score
for educational attainment to children’s skills across childhood. To test the effect of the EA PGS,
we regress at each age the skill measure on the polygenic score, controlling for gender and the first
15 principal components of the genetic matrix. In Panel B, we add the parental polygenic score to
the regressions. Skills have been standardized as described in the data section, with missing values
set equal to the median for that measure, allowing for a maximum of ten such imputations per
summary score. Standard errors are reported in parenthesis. In the pooled specification, standard
errors are clustered at the individual level.

Table 2: EA PGS and Investments by Age

Ages: [0-2[ [2-3[ [3-4[ [4-5[ [5-6[ [6-7[ [Pooled]

Panel A:

Child’s PGS 0.110*** 0.180*** 0.140*** 0.117*** 0.146*** 0.194*** 0.148***
(0.028) (0.028) (0.028) (0.028) (0.028) (0.028) (0.021)

R2 0.015 0.031 0.020 0.014 0.022 0.035 0.023
N 1267 1267 1267 1267 1267 1267 7602

Panel B:

Child’s PGS 0.034 0.052 0.035 -0.059 -0.008 0.073* 0.021
(0.043) (0.043) (0.043) (0.043) (0.042) (0.043) (0.033)

Parental PGS 0.101** 0.169*** 0.139*** 0.231*** 0.204*** 0.160*** 0.167***
(0.043) (0.043) (0.043) (0.042) (0.042) (0.043) (0.034)

N 1267 1267 1267 1267 1267 1267 7602

Notes: This table reports parameter estimates from regressions used to link the polygenic score for
educational attainment to family investments across childhood. To test the effect of the EA PGS,
we regress at each age the investments measure on the polygenic score, controlling for gender and
the first 15 principal components of the genetic matrix. In Panel B, we add the parental polygenic
score to the regressions. The investments outcomes have been standardized as described in the
data section, with missing values set equal to the median for that measure, allowing for a maximum
of ten such imputations per summary score. Standard errors are reported in parenthesis. In the
pooled specification, standard errors are clustered at the individual level.
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Genetics Background

Table 3: Main Parameter Estimates

ln θi0 ln θit+1 ln Iit
pgsi 0.022 0.016 0.013

[ 0.002 , 0.039 ] [ 0.005 , 0.032 ] [ -0.001 , 0.027 ]
pgspi -0.001 0.020 0.041

[ -0.018 , 0.018 ] [ 0.010 , 0.037 ] [ 0.023 , 0.056 ]
ln θit . 0.469 0.265

. [ 0.419 , 0.538 ] [ 0.180 , 0.303 ]
ln Iit . 0.205 .

. [ 0.120 , 0.293 ] .
Constant 1.463 1.151 3.076

[ 1.434 , 1.494 ] [ 0.672 , 1.567 ] [ 2.985 , 3.295 ]

Notes: The parameter estimates for the initial skill equation (Equation 15) are reported in the
first column, for the technology of skill formation (Equation 13) in the second column, and for the
investment policy function (Equation 14) in the third column. 90% bootstrap confidence intervals
in brackets.

Table 4: Skill Heritability by Age

Mechanism Ages 0-2 Ages 2-3 Ages 3-4 Ages 4-5 Ages 5-6 Ages 6-7

pgsi 1.55% 4.07% 5.65% 6.63% 7.11% 7.39%
pgspi -0.00% 1.49% 3.08% 4.15% 4.70% 4.96%
Xs 6.81% 1.79% 0.99% 0.71% 0.58% 0.51%
ε and η 91.64% 92.66% 90.29% 88.51% 87.61% 87.14%

Notes: This table presents the proportion of the variance of latent skills at different periods that
is explained by the model’s four main components: i) the child’s polygenic score for educational
attainment, ii) the parental polygenic score for educational attainment, iii) observed characteristics
of the child unrelated to genes (gender and birth order), and iv) unobserved factors unrelated to
genetics.

Table 5: Investment Heritability by Age

Mechanism Ages 0-2 Ages 2-3 Ages 3-4 Ages 4-5 Ages 5-6

pgsi 4.06% 5.01% 5.61% 5.87% 6.06%
pgspi 4.85% 6.30% 7.21% 7.61% 7.95%
Xs 6.97% 5.79% 5.26% 5.07% 4.93%
ε and η 84.12% 82.90% 81.92% 81.45% 81.06%

Notes: This table presents the proportion of the variance of latent parental investments at different
periods that is explained by the model’s four main components: i) the child’s EA PGS, ii) the
parental EA PGS, iii) observed characteristics of the child unrelated to genes (gender and birth
order), and iv) unobserved factors unrelated to genetics.
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Genetics Background

Table 6: Mechanisms Decomposition by Age

Ages 0-2 Ages 2-3 Ages 3-4 Ages 4-5 Ages 5-6 Ages 6-7

Panel A: Child’s Skills

Nurture of Nature 0.00% 5.91% 7.74% 9.12% 10.20% 10.90%
Nature of Nurture -3.75% 41.61% 47.34% 48.73% 49.29% 49.43%
Direct Effect 103.75% 52.48% 44.92% 42.15% 40.51% 39.67%

Panel B: Parental Investments

Nurture of Nature 33.99% 41.12% 44.18% 46.19% 46.74%
Nature of Nurture 66.01% 58.88% 55.82% 53.81% 53.26%

Notes: This table decomposes the association between the child’s polygenic score for educational
attainment and child’s skills (in Panel A) and parental investments (in Panel B) by the three
mechanisms for the different developmental periods.
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Figure 5: Equalising Investments: These figures compare baseline and simulated
skills and investments when investments are equalized at the 95th percentile. We demon-
strate graphically how a decrease in social inequality, via equalising parental investments,
leads to a decrease in genetic inequality.

Table 7: Equal Investments: Skill Heritability by Age

Mechanism Ages 0-2 Ages 2-3 Ages 3-4 Ages 4-5 Ages 5-6 Ages 6-7

pgsi 1.55% 2.93% 3.78% 4.26% 4.44% 4.54%
pgspi -0.00% 0.76% 1.54% 2.03% 2.24% 2.29%
Xs 6.81% 0.85% 0.18% 0.04% 0.01% 0.00%
ε and η 91.64% 95.46% 94.49% 93.68% 93.31% 93.18%

Notes: This table presents the proportion of the variance of latent skills at different periods that is
explained by the four main components of the model under the scenario where all investments are
equalized at the 95th percentile. The four components are i) the child’s EA PGS, ii) the parental
EA PGS, iii) observed characteristics of the child unrelated to genes (gender and birth order) and
iv) unobserved factors unrelated to genetics.
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HRS Data, the Polygenic Score, Earnings, and Wealth Sample Construction and Description

Genetic Data and the HRS.

Shift attention to Papageorge and Thom (2020), Barth, Papageorge
and Thom (2020), and Barth et al (2022).

Longitudinal sample of U.S. over age 50.

Surveys begin 1992; occur every two years.

Individuals genotyped in four waves (2006, 2008, 2010, 2012).

Score we use constructed for the first two waves.

Individuals had to survive until at least 2006 to be included.
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HRS Data, the Polygenic Score, Earnings, and Wealth Sample Construction and Description

Analytic Samples.

We restrict attention to:

Genetic Europeans.

Born before 1965.

For Income Sample: Men earnings at least $10,000 (2010 dollars) in a
person-year, ages 25-64

For Wealth Sample: Retired in 1996, 1998, 2002-2012, ages 65-75

Resulting sample sizes:

8,537 individuals (men and women) in cross-sectional sample.

3,140 men in the SSA Earnings Sample.

2,590 households and 5,701 household-year observations.
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HRS Data, the Polygenic Score, Earnings, and Wealth Sample Construction and Description
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HRS Data, the Polygenic Score, Earnings, and Wealth Results on Educational Attainment

Polygenic Score and Educational Attainment

(1) (2) (3) (4) (5)

EA Score 0.844*** 0.614*** 0.610*** 0.589*** 0.587***
(0.046) (0.043) (0.043) (0.045) (0.032)

Father Educ 0.147*** 0.144*** 0.107*** 0.109***
(0.013) (0.013) (0.016) (0.013)

Mother Educ 0.172*** 0.170*** 0.149*** 0.150***
(0.016) (0.016) (0.016) (0.015)

Child Health: Very Good -0.141 -0.100 -0.128*
(0.126) (0.116) (0.070)

Child Health: Good -0.259** -0.190 -0.422***
(0.127) (0.123) (0.090)

Child Health: Fair -0.197 -0.114 -0.407***
(0.168) (0.175) (0.145)

Child Health: Poor -0.651 -0.549 -0.853
(0.579) (0.572) (0.573)

Child Health: Missing 1.561*** 1.054 1.995
(0.415) (1.159) (1.243)

Obs. 8537 8537 8537 8537 8537
R2 0.253 0.361 0.363 0.380 0.515
Child SES Measures N N N Y Y
Child Region N N N N Y
Religion N N N N Y
Incr. R2, EA score 0.075 0.038 0.037 0.034 0.034
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HRS Data, the Polygenic Score, Earnings, and Wealth Results on Educational Attainment
30 Journal of the European Economic Association

FIGURE 8. Nonparametric (local polynomial) estimation relating the probability of completing a
college degree or more to EA score for high versus low SES for different measures of childhood
SES. In each panel, the outcome variable is the residual from OLS regression of an indicator for
completing a college degree or higher onto a set of controls and the regressor is EA score. Shaded
areas depict 95% confidence intervals.

more. According to Figure 7, a higher polygenic score predicts higher education for
both SES groups. However, the relationship is stronger for individuals who grew up in
low-SES households. In contrast, Figure 8 shows that for higher educational attainment
(college degree or more), the positive relationship is stronger for children who grew
up in households with more resources.

3.5. Interpretation and Discussion of Mechanisms

The patterns in Figures 6–8 are consistent with human capital production functions
that allow the roles of family resources and the EA score to be distinct for different
outcomes at different stages of child development. Specifically, early investments
in human capital (proxied by childhood family SES) may substitute for genetic
endowments in preventing very low levels of educational attainment. However, these
same investments could complement genetic endowments in generating higher levels
of educational attainment such as college completion. It is worth mentioning that
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Relationship between EA PGS and College Completion.

Offers an example of a Gene-by-Environment Interaction
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HRS Data, the Polygenic Score, Earnings, and Wealth Results on Earnings
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HRS Data, the Polygenic Score, Earnings, and Wealth Results on Earnings
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HRS Data, the Polygenic Score, Earnings, and Wealth Results on Earnings

Polygenic Score and Earnings

Panel A: Log Earnings
Basic Specifications (1) (2) (3) (4)
EA Score 0.079*** 0.032*** 0.025** 0.041***

(0.009) (0.009) (0.010) (0.011)
EA Score x College 0.016

(0.020)
Obs. 96721 96721 96510 57469
R2 0.143 0.189 0.192 0.150
Age Group 25-64 25-64 25-64 40-64
Period All Years All Years All Years All Years
Educ. Controls N Y Y Y
Parent Controls N Y Y Y
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HRS Data, the Polygenic Score, Earnings, and Wealth Results on Earnings

Polygenic Score and Earnings

Panel B: Log Earnings
By Time and Cohorts (1) (2) (3) (4) (5)
EA Score -0.010 0.009 0.018** 0.026*** 0.011

(0.007) (0.007) (0.008) (0.008) (0.008)
EA Score x Post 1980 0.077*** 0.039*** 0.043***

(0.013) (0.013) (0.010)
EA Score x BY > 1942 0.031* 0.009 -0.010

(0.019) (0.019) (0.019)
College x Post 1980 0.276*** 0.256***

(0.031) (0.024)
College x BY > 1942 0.152*** 0.041

(0.045) (0.044)
Obs. 96721 96510 96721 96510 96510
R2 0.194 0.204 0.192 0.196 0.206
Ed. Groups All All All All All
Period All Years All Years All Years All Years All Years
Educ. Controls Y Y Y Y Y
Parent Controls Y Y Y Y Y
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HRS Data, the Polygenic Score, Earnings, and Wealth Results on Wealth

Results on Wealth (Barth, Papageorge and Thom 2020).

Given the results with earnings, we expect a relationship between the
EA Score and household wealth

Question - are there other channels besides earnings that might link
the two?

Complication: wealth is a household-level outcome. We consider
household average of the EA score (renormalized to have mean 0,
variance 1)

We construct a measure of total household financial wealth, including
the present discounted value of annuity and defined benefit pension
flows.
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HRS Data, the Polygenic Score, Earnings, and Wealth Results on Wealth
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HRS Data, the Polygenic Score, Earnings, and Wealth Results on Wealth

Average Household EA Score and Household Wealth

Dep. Var:
Log Wealth [1] [2] [3] [4] [5] [6] [7]
EA Score 0.246*** 0.221*** 0.218*** 0.085*** 0.070*** 0.179*** 0.047**

(0.022) (0.020) (0.020) (0.021) (0.023) (0.020) (0.022)
Male Educ 0.061***

(0.009)
Female Educ 0.122***

(0.010)
Log Income 0.316*** 0.263***

(0.039) (0.038)
Obs. 5621 5621 5621 5621 5621 5308 5308
R2 0.054 0.251 0.279 0.368 0.435 0.349 0.479

Standard Controls X X X X X X
Principal Comp. X X X X X
Years of Educ. X
Full Educ. Controls X X
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HRS Data, the Polygenic Score, Earnings, and Wealth Results on Wealth

Average Household EA Score and Portfolio Decisions

Panel A Owns Owns Owns Owns Owns Owns
Dep. Var: House Business Stocks House Business Stocks

[1] [2] [3] [4] [5] [6]
EA Score 0.003 0.005 0.052*** -0.008 -0.001 0.040***

(0.008) (0.006) (0.011) (0.008) (0.006) (0.011)
Log Income 0.033*** -0.004 0.062*** 0.002 -0.021** 0.021

(0.008) (0.006) (0.011) (0.008) (0.008) (0.013)
Lagged Log Wealth 0.122*** 0.047*** 0.151***

(0.009) (0.007) (0.016)
Obs. 6460 6460 5450 4649 4649 4196
R2 0.304 0.160 0.348 0.399 0.217 0.435
Mean outcome 0.84 0.08 0.46 0.83 0.08 0.47

Standard Controls X X X X X X
Principal Comp. X X X X X X
Full Educ. Controls X X X X X X
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HRS Data, the Polygenic Score, Earnings, and Wealth Results on Wealth

Average Household EA Score and Portfolio Decisions

Panel B Dep. Var:
Log Wealth [1] [2] [3] [4] [5]
EA Score 0.049** 0.046** 0.046** 0.016 0.018

(0.023) (0.021) (0.022) (0.021) (0.019)
Owns Stocks 0.624*** 0.507***

(0.034) (0.029)
Has Business 0.594*** 0.530***

(0.049) (0.044)
Owns Home 0.887*** 0.741***

(0.054) (0.052)
Obs. 4912 4912 4912 4912 4912
R2 0.487 0.551 0.504 0.540 0.599

Standard Controls X X X X X
Principal Comp. X X X X X
Full Educ. Controls X X X X X
Log Income X X X X X

66 / 77



HRS Data, the Polygenic Score, Earnings, and Wealth Results on Wealth

Pensions and Household Wealth

Dep. Var: Has Pension Log Log
Pension Wealth Wealth Wealth

[1] [2] [3] [4]
EA Score 0.003 0.030 0.069*** 0.125***

(0.011) (0.035) (0.022) (0.035)
DB Pension 0.385*** 0.181***

(0.035) (0.051)
EA Score x DB Pension -0.096***

(0.036)
Obs. 5621 3226 5621 5621
R2 0.215 0.400 0.460 0.474
Mean outcome 0.57 $234,021
Standard Controls X X X X
Principal Comp. X X X X
Full Educ. Controls X X X X
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HRS Data, the Polygenic Score, Earnings, and Wealth Model

EA PGS in a Life-Cycle Model

Barth et al (2022): Incorporates genetic variation (from PGS for
Education) into a life-cycle model of income dynamics, savings,
portfolio choice, retirement.

Better understand mechanisms through which basic associations arise.

Perform theoreticallyinformed gene-by-environment analysis:

Ex-ante GxE

Get at GxE in welfare
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HRS Data, the Polygenic Score, Earnings, and Wealth Model

Model

Summary and timing of the household’s problem.

Period t− 1 ends
Period t starts

Period t ends
Period t+ 1 starts

⇁ If working, stochastic
wage Wt is realized and
taxed.

⇁ If retired, S.S. and
defined benefits are
deposited and taxed.

⇁ Start-of-period wealth At

is set.

⇁ Agent decides whether to
pay the fixed cost F.

⇁ Agent chooses his
consumption Ct.

⇁ Savings St are
determined.

⇁ If the agent paid the fixed
cost, he chooses the share
of savings in stocks φt.
Else φt = 0.

⇁ If not retired and in the
allowed age range, agent
chooses whether to retire,
Rt+1.

⇁ Risky return R̃t,t+1 is
realized.

⇁ Capital gains are taxed.

Recursive Representation Model Details
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HRS Data, the Polygenic Score, Earnings, and Wealth Model

Model

Where the EA score shows up.

⇁ Wages.

ln W̃i,t = f(Agei,t, EAi, Colli, SESi, DBi, Yeart, Unempt)+Zw
i +εwi,t

⇁ Fixed costs of stock market participation.

Fi = exp{f0 + fc × Colli + fg × EAi + ζfi}

⇁ Stock market returns.

ln R̃it = lnRSP500
t −μSP500×Logistic(r0 + rc × Colli + rg × EAi + ζri)︸ ︷︷ ︸

Inefficiencyi

⇁ Additive utility cost of labor.

di,t = d0+dColl×Colli+dEA×EAi+dAge×max{Agei,t−50, 0}
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HRS Data, the Polygenic Score, Earnings, and Wealth Model

Model

Estimation

Some estimates.

Participation cost
ln Fi = f0 + fColl × Colli + fEA × EAi + ζFi

f0 fColl fEA
−0.9867 0.0311 0.0066
(0.2092) (0.0369) (0.0143)

Risky asset returns

ln R̃i,t = lnRSP500
t − μSP500 × g(r0 + rColl × Colli + rEA × EAi + ζRi )

r0 rColl rEA
−0.0366 −1.1055 −0.6610
(0.0608) (0.2568) (0.1326)

Disutility from work
di,t = d0 + dColl × Colli + dEA × EAi + dAge ×max{Agei,t − 50, 0}

d0 dColl dEA dAge

0.3961 −0.0052 −0.0033 −0.0241
(0.0816) (0.0015) (0.0009) (0.0062)

Unobserved heterogeneity
�ζi = �z× SESi + �Zi

lnσ(ZF) lnσ(Zr) zF zR
1.1838 −4.0326 −0.0434 −0.7250
(0.5698) (1.3845) (0.0475) (0.1451)

Bequest motive
ϕ(Si,t) = θ(Si,t + κ)1−ω/(1−ω)

ln κ ln θ
7.0638 6.9423
(0.2474) (0.5353)

39 / 59

71 / 77



HRS Data, the Polygenic Score, Earnings, and Wealth Model

Results

Decompositions

Sources of inequality — wealth.

All Less Than College At Least College
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Baseline

No income effect

No return effect
No income or
return effect

⇁ Turn off the main estimated effects.

⇁ Returns have the greatest impact.
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HRS Data, the Polygenic Score, Earnings, and Wealth Counterfactuals

Two counterfactual policy experiments aimed at lowering costs arising
from an aging population.

• Raise retirement age.

• Reduce social security.
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HRS Data, the Polygenic Score, Earnings, and Wealth Counterfactuals

Counterfactual 1: Raise retirement age.

• Increase the earliest Social Security retirement age from 62 to 67, as
has been proposed.

• Shift whole scheme for benefits 5 years forward.

• Full retirement age rises from from 67 to 72.
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HRS Data, the Polygenic Score, Earnings, and Wealth Counterfactuals

Counterfactual 2: Cut social security payments.

• Restore the retirement age and benefit schedule.

• Cut benefit amounts.

• Find the reduction that makes revenue the same as in previous policy.

• Current estimate: ≈ 29% reduction.
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HRS Data, the Polygenic Score, Earnings, and Wealth Counterfactuals
Results

Counterfactuals

Impacts on wealth.
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HRS Data, the Polygenic Score, Earnings, and Wealth Counterfactuals

Results

Counterfactuals

Impacts on welfare.

Benefit Age−Shift Benefit Reduction
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Line: median. Inner shaded area: p25 - p75. Outer shaded area: p10 - p90.
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