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1. Introduction

• Good policy analysis is causal analysis.

• It analyzes the factors that produce outcomes and the role of
policies in doing so. It quantifies policy impacts.

• It elucidates the mechanisms producing outcomes in order to
understand how they operate, how they might be improved and
which, if any, alternative mechanisms might be used to
generate outcomes.

• It uses all available information to give good policy advice.
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1. Introduction

• It systematically explores possible counterfactual worlds.

• It is grounded in thought experiments – what might happen if
determinants of outcomes are changed.

• In this regard, good policy analysis is good science.

• Credible hypothetical worlds are developed, analyzed, tested in
real world data.
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1. Introduction

• Models and thought experiments are central to economic
analysis.

• Persons trained in economic theory or in the natural sciences
routinely use them.

• Statisticians and computer scientists have recently come to
grips with the causal questions that have long being
investigated by economists, such as Ragnar Frisch and Trygve
Haavelmo.

• As a result, private languages and procedures designed to
approximate econometric models have been developed without
any deep understanding of the corpus of econometric theory,
and sometimes reinventing portions of it.
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1. Introduction

• These private languages bear the marks of their recent birth:
concepts are often not precisely defined, and the
conceptually-distinct issues of definition of counterfactuals,
their identification, and their estimation are often tangled
together.

• In some fields heavily influenced by statistics, certain estimation
techniques are claimed to be central to the definition or
identification of counterfactuals when, in fact, they are at best
handmaidens.
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1. Introduction

• Many econometricians and applied economists now emulate
what they read in statistics or computer science journals. They
have forgotten or never learned their own field’s foundational
work to the detriment of rigorous causal policy analysis.
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1. Introduction

• We consider two causal approaches often advocated by
statisticians and computer scientists.

• The Neyman-Holland model (?; ?; ?; ?; ?), “NR”
henceforward.

• It uses some notions developed in rigorous econometrics but
goes only part way toward implementing the full set of tools in
the econometric approach to policy evaluation.

• Important limitations for posing or analyzing routine policy
problems outside a narrow “treatment-control” paradigm.
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1. Introduction

• We also consider an approach to counterfactuals developed in
computer science (“do-calculus,” ?), henceforth “DoC,” that
relies critically on directed acyclic graphs (DAGs–recursive
models) and statistical conditional independence relationships.

• Demonstrate its limited capacity to address many important
economic policy questions or to utilize many standard
econometric estimation and identification tools.
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1. Introduction

• Each of the approximating approaches has value for limited
classes of problems. However, they have severe limitations
when applied to the large array of problem economists routinely
confront.

• The danger is that sole reliance on these tools eliminates
serious consideration of important policy questions.

• The NR approach does not readily incorporate unobservables
and restrictions on empirical relationships produced by
economic theory that are important components of the
econometric toolkit.

• Social interactions, peer effects, and general equilibrium theory
fall outside its purview and are currently considered
frontier-topics.

• They are all standard problems addressed in structural
econometrics.
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1. Introduction

• The DoC approach also cannot deal with the functional
restrictions and covariance information routinely used in
econometrics.

• It cannot accommodate assumptions such as monotonicity and
the separability restrictions that are essential components of
the modern instrumental variable analysis.
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1. Introduction

• The prototypical Generalized Roy model cannot be identified
with do-calculus, although it, and more general models, can be
identified using standard econometric tools.

• Each approximating approach has important conceptual and
operational limitations compared to the econometric approach.

• We display the versatility and adaptability of the econometric
approach and the limitations of the approximations.
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1. Introduction

• This lecture is organized as following.

• Section 2 discusses the notion of causality and the tasks of
causal inference.

• Section 3 presents the econometric model.

• Section 4 shows its versatility and describes various
identification approaches in the Generalized Roy model.
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2. Causality as a Thought Experiment

• A formal definition of causality relies on a modification of the
same thought process used to define relationships mapping
inputs X , that may contain unobserved terms, to outcomes Y
using a stable map g :

g : X → Y over the domain of X
(
Dom(X )

)
. (1)

• A map is stable if changing its arguments over the domain of
X preserves the map.

• Another way to express this is Y = g(X ), where g may be a
multi-valued correspondence.
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2. Causality as a Thought Experiment

• An elementary version of (1) is:

Y = α + βX , (2)

• In this example, stability means that α and β don’t change
when X or a component of it is changed. This is what is meant
by invariance or autonomy of relationships (?).

• It is a cornerstone of causal analysis.1

• However, more than stability of maps is required. Directionality
is central. Inverting a map (when possible) may produce a
stable relationship, but it is, in general, not causal. Standard
examples of (1) and (2) in economics are production functions
or demand equations.

12 The do-calculus explicitly uses autonomous structural relationships (?).
J. Heckman & R. Pinto Causality and Econometrics PI



2. Causality as a Thought Experiment

• The range of Y is a set of potential outcomes associated
with X over its domain. g may be a function or a
correspondence.3 Potential outcomes associated with different
values of X are counterfactuals associated with X .

• The key idea in causality is the notion captured in Alfred
Marshall’s phrase, “ceteris paribus” –all other else is equal.4

Comparisons of Y for different values of X – all other factors
the same – are defined as causal effects. They are conceptual
thought experiments.

3Multiple equilibria are produced in many econometric models. See, e.g., ?.
4?
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2. Causality as a Thought Experiment

• This definition is used explicitly in the econometric approach
regardless of what is observed, the statistical properties of X
and Y , the specification of functional forms for g , or how X is
manipulated in any thought experiment.

• The Generalized Roy model (?) is an early example of a model
of two potential outcomes associated with the income the same
person would earn in different jobs.
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2. Causality as a Thought Experiment

• Issues of identification and estimation are important for making
the concept of causality empirically operational, but not for
defining it.

• However, these auxiliary issues are sometimes assumed to be
paramount in defining casuality in the recent approximating
literatures.

• For example, in an early version of the Neyman-Rubin model, ?
insists that causal effects are only defined for experimental
manipulations of X .

• Issues of definition and estimation are fruitfully distinguished
and are the hallmark of the econometric approach.

• To make our discussion more concrete, an example from the
standard toolkit of empirical economics is helpful.
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2. Causality as a Thought Experiment

2.1. Regression: Conditional Expectation or

Thought Experiment?

J. Heckman & R. Pinto Causality and Econometrics PI



2. Causality as a Thought Experiment

• Consider the standard workhorse of empirical economics.5

• Anticipating empirical applications, we add the distinction
between observed and unobserved variables that is strictly not
required for the definition of causal parameters.

• Consider the regression of Y on T where (Y ,T ) are observed
and U denotes an unobserved (by the analyst) variable:

Y = Tβ + U . (3)

5See ? for an early discussion of this distinction.
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2. Causality as a Thought Experiment

• In terms of (1), X = (T ,U). If X is a vector of all possible
causes of Y , (1) is an all causes model and accommodates
stochastic shocks.

• Coupled with stability, such a model is convenient for
transporting (1) to environments where different levels of T are
at play (forecasting) or in combining and summarizing evidence
from different studies where T varies (research synthesis).
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2. Causality as a Thought Experiment

• A major source of confusion about causal models is that (3) is
often defined by statisticians as a model for describing the
statistical relationship between Y and T (see e.g., ??).

• Doing so uses standard statistical tools to establish an
empirical relationship.

• Note that if conditional expectations exist,
E (Y | T = t) = tβ + E (U | T = t).
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2. Causality as a Thought Experiment

• In this approach, the statistical model could also be
equivalently defined as U = Y − Tβ.

• The empirical association between T and Y operates through
two channels: β and E (U | T = t) unless T is mean
independent of U .

• Notice too that this example introduces considerations about
the properties of random variables that are unnecessary for
defining causality.
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2. Causality as a Thought Experiment

2.2. Thought Experiments
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2. Causality as a Thought Experiment

• Another way to interpret Y = Tβ + U is to hypothetically vary
T and U : (T ,U) → Y via Y = Tβ + U .

• This is not a statistical operation and lies outside standard
statistics.6

6For an example of how confusing this concept is to statisticians, see ? and ?. Holland’s
confusion is significant given that he was the person who formalized the “Rubin model” (?).
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2. Causality as a Thought Experiment

• Economists (and other scientists) use hypothetical models
(thought experiments) to analyze phenomena and explore
possible relationships.

• These and other possible relationships are not defined by
statistical operations, although they are estimated using
statistical methods.

• To clarify these ideas, it is helpful to introduce ϵV , ϵT , ϵU
which are unobserved (by the analyst) and mutually statistically
independent random variables.

• They are external to the model (exogeneous) and are not
caused by T , U or Y .
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2. Causality as a Thought Experiment

Example 1
• Consider four different possible causal models – all thought
experiments:

Causal Model 1 Causal Model 2 Causal Model 3 Causal Model 4

T = fT (ϵT ) T = fT (ϵT , ϵV ) T = fT (ϵT ,U) T = fT (ϵT )

U = fU(ϵU) U = fU(ϵU , ϵV ) U = fU(ϵU) U = fU(ϵU ,T )

Y = Tβ + U Y = Tβ + U Y = Tβ + U Y = Tβ + U

• In the first causal model, T does not cause U , nor does U
cause T .

• Parameter β is the causal effect of varying T on Y for a fixed
value of U .

• Variables T and U are statistically independent and the
parameter β can be consistently estimated by OLS.

J. Heckman & R. Pinto Causality and Econometrics PI



2. Causality as a Thought Experiment

• In the second causal model, T does not cause U , nor does U
cause T .

• Parameter β is still the causal effect of T on Y . However, T
and U are not statistically independent because they share a
common confounding variable ϵV and the OLS estimator of β is
biased.

• This model is sometimes called a ‘common cause” model with
ϵV being a common cause of T and U .
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2. Causality as a Thought Experiment

• The third causal model differs from the second model because
U causes T .

• Nevertheless, the causal effect of T on Y remains β.

• The second and third models are statistically identical in the
sense that T and U are not statistically independent and the
OLS estimator is biased.
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2. Causality as a Thought Experiment

• The third model imposes a restriction on the variation in U .

• In the fourth model, T causes U and the OLS estimator of the
parameter β does not, in general, identify the causal effect of
T on Y because T also affects U .

• The OLS estimator of β captures both direct and indirect
effects of T on Y .

• Let Y (ϵ) = tβ + U be the counterfactual outcome Y when T
is external set to value t.7

7Y (t) ⊥⊥ T |U holds for the third model but not for the second model.
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2. Causality as a Thought Experiment

• Using the standard regression model as a starting point blurs
the logic of this thought process.

• Econometrics textbooks commonly introduce causality in the
context of the linear model (3).

• In this approach, the identification of causal effects is often
reduced to a statistical property of the econometric model,
namely, that causal effects can be assessed when variables T
and U are uncorrelated.

• It gives rise to the practice of defining causal effects as
conditional probability statements instead of statements about
fixing variables in a thought experiment.
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2. Causality as a Thought Experiment

• OLS is based on statistical assumptions that are void of any
causal interpretation.

• The OLS fitted value for the outcome Y conditioning on T = t
evaluates the conditional expectation E (Y | T = t) instead of
the counterfactual expectation E (Y (t) | T = t), where Y (t) is
the value of Y when T is externally set to a value t.

• The causal content of the OLS model arises only when we
invoke concepts such as fixing and counterfactuals.

• These concepts do not belong to the standard statistical toolkit.
Whether or not we can identify β in a sample is an entirely
separate question from defining the causal impact of T on Y .
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2. Causality as a Thought Experiment

• Frisch, the founding father of modern econometric causal policy
analysis, clearly understood that causality is an exercise of
abstract thought, and that “Causality is in the Mind”:

“. . . we think of a cause as something imperative which exists in the
exterior world. In my opinion this is fundamentally wrong. If we
strip the word cause of its animistic mystery, and leave only the part
that science can accept, nothing is left except a certain way of
thinking. [T]he scientific . . . problem of causality is essentially a
problem regarding our way of thinking, not a problem regarding
the nature of the exterior world.” — ?, p. 36
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2. Causality as a Thought Experiment

2.3. The Econometric Approach to Causality
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2. Causality as a Thought Experiment

• The econometric approach to causality develops explicit
hypothetical models where inputs that cause outcomes.

• A common context is the study of policy evaluations in which
economic agents choose treatments that affect economic
outcomes of interest.

• “Treatments” are inputs (the T ) which need not be restricted
to binary or discrete valued variables.

• The the mechanisms governing the choice of inputs is central
to study the causal effect of treatment on the outcome.

• Identification/estimation/interpretation of empirical
counterparts to the hypothetical counterfactuals require careful
accounting for unobserved (by the analyst) variables (U) that
cause both input choice and outcomes.

• Structural econometric models do just that.8

8Caricatures sometimes made in the approximating literatures that the choices of inputs T
involve highly stylized rational choice models or perfect information are false (see, e.g., ?).
Some hypothetical models might maintain those assumptions, but such assumptions are in no
way essential to the enterprise.
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2. Causality as a Thought Experiment

2.4. Four Distinct Policy Questions
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2. Causality as a Thought Experiment

• The econometric approach to causality distinguishes four distinct
classes of policy problems and addresses each of them, sometimes in
the same analysis.9

P1
Evaluating the impacts of implemented interventions on outcomes in a
given environment, including their impacts in terms of the well-being of
the treated and society at large. The simplest forms of this problem are
typically addressed in the approximation literatures: does a program in
place “work” in terms of policy impacts?

• The approximating literatures addressing P1 identify and estimate
treatment effects (most often average treatment effects) without
investigating how they arise or whether alternative programs might
be better or even what “better” means.

• In terms of our example, it seeks to know the sign and magnitude of
β. However, most policy analysts seek greater generality for their
findings. This leads to problem P2.

9See ?.
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2. Causality as a Thought Experiment

P2
Understanding the mechanisms producing treatment effects and
policy outcomes.

• This asks the analyst to investigate the causes of effects and is
a central task of economic theory and policy analysis.10

• It embeds (3) in a model that explains how T operates (i.e.,
which factors explain the Y − T relationship). It goes beyond
the coarse description of “treatment” T to explicate the factors
that produce Y .

• It links with P3 and P4 below to consider how alternative
mechanisms generate observed outcomes and can be used to
forecast policies going forward, or explain the findings of any
given study in a particular environment.

10? features the narrow goal of investigating the “effects of causes” in his definition of the
Neyman-Rubin model.
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2. Causality as a Thought Experiment

P3
Forecasting the impacts (constructing counterfactual states) of interventions
implemented under one environment when the intervention is applied to other
environments, including their impacts in terms of well-being.

• This goes beyond P2 to interpret why outputs vary among environments.

• It replaces crude meta-analysis of treatment effects with principled
explanations of mechanisms and their impacts and extrapolations of
different answers to P1.11

• A common structural model is a useful vehicle for summarizing evidence
from multiple studies.12 Forecasting in new environments is a traditional
problem in econometrics (see, e.g., ?; ?; ?). However, the truly ambitious
problem solved by policy analysts is P4.

11Recent work in computer science has begun to reinvent the logic of econometric
forecasting using its own colorful private language but without any fresh insights or
acknowledgement of a large body of econometric thought (see, e.g., ?).

12See, e.g., ? or ?.
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2. Causality as a Thought Experiment

P4
Forecasting the impacts of interventions (constructing
counterfactual states associated with interventions) never previously
implemented to various environments, including their impacts in
terms of well-being.

• This is a fundamental challenge addressed in econometric
policy analysis.

• This problem motivated the creation of econometric causal
models.13

13See ??? and ?.
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2. Causality as a Thought Experiment

• The original impetus for the econometric approach was to conduct
policy analysis for the post-World War II era using models fit on
pre-World War II, Depression-era data.

• Econometric policy analysis is the vehicle for framing and
addressing the likely impacts of new policies and new environments,
never previously experienced. ? provides an insightful discussion of
this task in the context of forecasting the impact of new economic
policies using data collected in environments where the policies were
not in place.14

• The famous “critique” of ? updates Marschak’s analysis to
stochastic environments. ? is a Nobel Prize winning example of how
a leading economist met this challenge in forecasting the demand
for a new transportation system in the San Francisco Bay area.

14? succinctly states the problem and its solution in his enigmatic remark, “the existence of
a problem of knowledge depends on the future being different from the past, while the
possibility of a solution of the problem depends on the future being like the past.” Knight
meant that analysts use ingredients estimated on historical data to construct forecasts of the
unknown. This is a task that involves judgements and insights beyond straight applications of
fitted statistical models.J. Heckman & R. Pinto Causality and Econometrics PI



2. Causality as a Thought Experiment

• The econometric approach distinguishes three tasks of
econometric causal policy analysis that are often conflated in
the approximating literatures:

Table 1: Three Distinct Tasks in Causal Policy Analysis

Task Description Requirements Types of
Analysis

1: Model Creation Defining the class of
hypotheticals or
counterfactuals by
thought experiments
(models)

A scientific theory: A
purely mental activity

Outside
Statistics;
Hypothetical
Worlds

2: Identification Identifying causal
parameters from
hypothetical
population

Mathematical analysis
of point or set
identification; this is a
purely mental activity

Probability
Theory

3: Estimation Estimating
parameters from real
data

Estimation and testing
theory

Statistical
Analysis
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2. Causality as a Thought Experiment

• Our regression example illustrates these distinctions. The
models for counterfactuals do not require any statistical
analysis.

• Identification is a separate issue required to recover β from
large samples where statistical variation is not an issue.

• Estimation considers how to recover it in practice.

• Trygve Haavelmo, a student of Frisch, developed an empirically
operational econometric framework for causal policy analysis
that distinguished these three tasks (??).

• We now state the econometric model formally using the
modern notation of graph theory.
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3. Econometric Causal Models

3. Econometric Causal Models
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3. Econometric Causal Models

Table 2: Problems Addressed by Econometrics

a Investigate the causes of effects, not just the effects of causes – the goal of the
treatment effect literature announced by ? in defining the “Rubin model;”

b Interpret empirical relationships within economic choice frameworks;

c Analyze data using a priori information from theory and/or previous studies going
beyond crude statistical meta-analyses;

d Account systematically for shocks, errors by agents, and measurement errors;

e Analyze dynamic models;

f Accommodate multiple approaches to identification beyond randomization
instrumental variables, and matching that exploit restrictions within and across
equations on causal relationships produced by economic theory;

g Exploit covariance restrictions across unobservables within and across equations to
identify causal parameters;

h Make forecasts in new environments;

i Synthesize evidence across studies using common conceptual frameworks;

j Make forecasts of new policies never previously implemented; and

k Analyze the interactions across agents within markets and also within social
settings (general equilibrium and peer effects).
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3. Econometric Causal Models

• The approximating approaches address subsets of these
problems using limited toolkits.

• The approximating approaches were developed to address
specialized classes of problems – usually those in problem class
P1.

• They may be very effective for analyzing the effects of causes
using a limited set of tools.

• These studies typically focus on identifying average treatment
effects or treatment on the treated.
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3. Econometric Causal Models

• They embody Marschak’s Maxim (?) that, for certain narrowly
focused problems, specialized versions of the econometric
approach may be highly effective.

• One need not necessarily implement more general models that
address a wider set of questions to address specific problems.

• However, they are by design, of limited value in addressing
those wider problems.

J. Heckman & R. Pinto Causality and Econometrics PI



3. Econometric Causal Models

3.1. Econometric Causal Framework
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3. Econometric Causal Models

• ? develop a causal framework that formalizes Frisch’s insight
that causality is in the mind and places Havelmo’s approach
(??) in the framework of more recent policy evaluation models.

• They distinguish an empirical model that generates the
observed data from a hypothetical model hypothetical model
that formalizes the thought experiments of manipulating inputs
that defining causality.

• The empirical model describes the data generating process,
which differs from the hypothetical model which is an abstract
model that characterizes Frish’s notion of causality.

• They place the definition and operationalization of causality in
a probabilistically consistent approach that does not require
special rules or procedures invented to characterize causality
used in portions of the approximating literature.
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3. Econometric Causal Models

• A causal model M is described as a system of structural
equations like (1) that characterizes the mapping
M : T → P(T ) between a set of variables T and its power set
P(T ).

• Elements in T are random variables or random vectors that
may be observed or unobserved by the analyst.

• Define the set E = {ϵK ;K ∈ T } which contains an error term
ϵK for each K ∈ T .

• Error term ϵK shares the same dimension as K .

• This term is defined even if there are additional unobserved
variables.

• Technical assumptions designed to avoid degenerate random
variables.
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3. Econometric Causal Models

• The structural equation for a variable K ∈ T is an autonomous
function denoted by fK : (M(K ), ϵK ) → R|K |.

• Variables in M(K ) are said to directly cause K .

• In recursive formulations, a variable cannot directly cause itself,
that is, K /∈M(K ) for all K ∈ T .

• We relax recursivity, where we discuss simultaneous equation
models where sets of variables are jointly determined.
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3. Econometric Causal Models

• Error terms are externally-specified (or exogenous).

• This means that error terms are not caused by any variable in
T . A variable T not caused by any variable, so M(T ) = ∅, is
called external.

• In this case, its structural function is given by T = fT (ϵT ). We
impose, without loss of generality, that error terms are mutually
statistically independent.15

• All variables are defined on a common probability space
(I,F ,P).

• We use Te , Ee , Me , Pe , Ee for the variable set, error terms,
causal model, probability, and expectation of the empirical
model.

• We use Th, Eh, Mh, Ph, Eh for their counterparts in the
hypothetical model.

15The independence among error terms comes without loss of generality as any dependence
structure could be modeled via other unobserved variables in T .
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3. Econometric Causal Models

The Generalized Roy Model

• We use the Generalized Roy model as our leading example of a
structural model.

• It is a cornerstone of the literature of policy evaluation.16

• The original Roy model of counterfactuals (?) analyzed earnings
inequality in two sectors of the economy. All persons have two
potential incomes: Y (0) in Sector 0 and Y (1) in Sector 1.

• Agents choose sectors based on their perceived net benefit I .

16See, e.g., ???.
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3. Econometric Causal Models

• In the simplest case, the benefit is the income gain
I = Y (1)− Y (0).

• More general models allow for costs, like tuition, migration
costs, and psychic costs of participation. Potential incomes
(Y (0),Y (1)) depend on observed variables X while benefit I
may depend on X and an externally specified variable Z , which
may be a policy variables that influences participation costs.

• The agent’s choice of sector is given by T = 1[I (X ,Z ) > 0].

• The model has been generalized to analyze multiple sectors and
dynamic discrete choices (see ???).
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3. Econometric Causal Models

• The individual level treatment effect is Y (1)− Y (0).

• The evaluation problem arises because for each person we
observe either Y (0) or Y (1), but not both.

• We observe Y (1) if T = 1 and Y (0) if T = 0, namely
Y = T · Y (1) + (1− T ) · Y (0).17

• The typical solution is to reformulate the problem at the
population level rather than at the individual level.

• A common parameter of interest is the average treatment effect
ATE = E (Y (1)− Y (0)) which is the mean treatment effect
across all agents.

• More generally, we seek to identify the probability distribution
of the counterfactual outcomes Y (t); t ∈ {0, 1}.

17This switching regression relationship was first used by ?. See also ?.
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3. Econometric Causal Models

• The early Generalized Roy model has been generalized and
extended in many ways.18

• The Generalized Roy model allows the agent’s decision to
depend on unobserved variables V that account for subjective
evaluation of the benefits of each choice (so it affects I ) and to
allow for multiple choices (see ???).

18For instance, ? investigate multiple variations of the original model, ? extend the model
for ordered choice models and ? and ? investigate the case of unordered multiple choice
models with multi-valued treatments. ? consider dynamic discrete choice models in this
framework.
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3. Econometric Causal Models

• The Generalized Roy model consists of four variables
Te = {Z ,V ,T ,Y }.

• Z is an external policy vector that causes the treatment T ,
which in turn causes an outcome Y .

• Z plays the role of an instrumental variable.

• It causes Y only through its effects on T .

• V is an external set of confounding variables that jointly cause
T and Y .
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3. Econometric Causal Models

• Variables Z , T , Y are observed by the analyst; V is not.

• V is a source of selection bias in treatment choice, which
makes evaluation of the causal effect of T on Y more difficult.

• The observed relationship between T and Y may be due to the
common effect of V on both T , Y instead of the causal effect
of T on Y .

• For now, we suppress the X variables for the sake of notational
simplicity.

• We reintroduce such variables when relevant to our discussion.
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3. Econometric Causal Models

• The Roy model can be represented by the mapping
M(Z ) =M(V ) = ∅, M(T ) = {V ,Z}, M(Y ) = {V ,T},
which imply the following structural equations:

V = fV (ϵV ), (4)

Z = fZ (ϵZ ), (5)

T = fT (Z ,V , ϵT ), (6)

Y = fY (T ,V , ϵY ). (7)
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3. Econometric Causal Models

• The independence of error terms ϵV , ϵZ , ϵT , ϵY implies that
Z ⊥⊥ V and Y ⊥⊥ Z | (T ,V ) hold where “⊥⊥” denotes
independence.

• This model is recursive.

• Consider fully simultaneous models in a later section.

• The theory of Bayesian Networks offers useful tools for
investigating the statistical properties of recursive causal
models.19

19See ?.
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3. Econometric Causal Models

• We now describe some basic concepts used in that literature that
underly the do-calculus and link Pearl’s approach and the theory of
Bayesian meta-analysis (?) to the structural economics literature.

• M(K ) are called parents of a variable K ∈ T .

• Parents of K ’s parents are M2(K ) = ∪W∈M(K)M(W ).

• Ancestors of K include all higher order parental variables that lead
to K , A(K ) = ∪N

n=1M
n(K ) for N such that MN(K ) contains only

external variables.

• The variables directly caused by K are called children of K ,
Ch(K ) = {W ∈ T such that K ∈M(W )}.
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3. Econometric Causal Models

• The second order of children of K are
Ch2(K ) = ∪W∈Ch(K)Ch(W ).

• Descendants of K include all the higher order children traced to
K , D(K ) = ∪N

n=1Ch
n(K ) for N such that

ChN+1(K ) ⊂ ∪N
n=1Ch

n(K ).

• In this notation, the Generalized Roy model is a recursive
(acyclic) model in which no variable is a descendant of itself,
namely K /∈ D(K ) for each K ∈ T .
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3. Econometric Causal Models

• A useful property of recursive models is the Local Markov
Condition (??).

• It states that a variable K is independent of its
non-descendants conditional on its parents.

• Additional independence relationships may be generated by the
Graphoid Axioms of ?.
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3. Econometric Causal Models

• These consist of five rules that apply for any disjoint sets of
variables X ,W ,Z ,Y ⊆ T :

(A) Symmetry: X ⊥⊥ Y | Z ⇒ Y ⊥⊥ X | Z .
(B) Decomposition: X ⊥⊥ (W ,Y ) | Z ⇒ X ⊥⊥ Y | Z .
(C) Weak Union: X ⊥⊥ (W ,Y ) | Z ⇒ X ⊥⊥ Y | (W ,Z ).

(D) Contraction: X ⊥⊥ W | (Y ,Z ) and X ⊥⊥ Y | Z ⇒ X ⊥⊥ (W ,Y ) | Z .
(E) Intersection: X ⊥⊥ W | (Y ,Z ) and X ⊥⊥ Y | (W ,Z ) ⇒ X ⊥⊥ (W ,Y ) | Z .

LMC: K ⊥⊥ {T \D(K )} |M(K ). (8)
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3. Econometric Causal Models

• For example, the outcome Y in the Generlized Roy
model (4)–(7) has no descendants and its parents are
Me(Y ) = {V ,T}.

• The LMC for Y is thus Y ⊥⊥ Z | (T ,V ).

• Z has no parents and its descendants are T , Y .

• Thus, its LMC is Z ⊥⊥ V .

• In the literature outside economics, these recursive features are
viewed by some as essential to the definition of causality when,
as we show, they are not.
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3. Econometric Causal Models

Formalizing Frisch’s Insight

• Frisch’s statement that “Causality is in the Mind” means that
the causal analysis of treatment T relies on a thought
experiment that exogenously assigns values to the treatment
variable.

• This hypothetical manipulation of T affects only the variables
caused by T . Specifically, changing T affects its descendant Y
but not its ancestors V , Z .

• Frisch’s thought experiment is conceptually simple. However, it
is a causal operation outside the scope of statistical theory. In
statistics, random variables are fully characterized by their joint
distributions.
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3. Econometric Causal Models

• This information by itself is insufficient for causal analysis as it
lacks directionality – a central feature of causal models.

• Frisch’s thought experiment uses additional information on
causal direction when it partitions the variables studied into
those caused by T and those that are not.

• In particular, assigning values to T differs from conditioning on
T because conditioning changes the distribution of Z , V ,
whereas fixing T does not.
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3. Econometric Causal Models

• Frisch’s thought experiment can be formalized and cast into a
rigorous probability framework by a hypothetical model that
adds an externally-specified hypothetical variable T̃ which
causes the children of T (instead of T itself).

• The hypothetical model Mh has the same equations and the
same distributions of error terms of the empirical model Me .

• It differs from the empirical model by appending a hypothetical
variable T̃ which replaces the T -input of variables directly
caused by T .
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3. Econometric Causal Models

Table 3: Generalized Roy Model: Empirical and Hypothetical Causal
Models

Empirical Model Hypothetical Model

V

T YZ

V

T YZ T̃

LMC LMC

V : V ⊥⊥ Z V ⊥⊥ (Z , T̃ )

Z : Z ⊥⊥ V Z ⊥⊥ (V ,Y , T̃ )

T : T ⊥⊥ ∅ | (Z ,V ) T ⊥⊥ (T̃ ,Y ) | (Z ,V )

Y : Y ⊥⊥ Z | (T ,V ) Y ⊥⊥ (Z ,T ) | (T̃ ,V )

T̃ : (not defined for the model) T̃ ⊥⊥ (T ,V ,Z )
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3. Econometric Causal Models

• Notationally, Th = Te ∪ {T̃} such that Mh(T̃ ) = ∅ and for

each K ∈ T we have that Mh(K ) = {T̃} ∪ {Me(K ) \ {T}} if
K ∈ Che(T ) and Mh(K ) =Me(K ) otherwise.

• Table 4 represents the empirical Generalized Roy model and its
hypothetical counterpart as DAGs (Directed acyclic graphs).

• Causal relationships are described by directed arrows, circles
denote unobserved (by the analyst) variables, and squares
denote observed variables.

• Below each DAG, we present the LMC for each variable of each
model.
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3. Econometric Causal Models

• The hypothetical variable T̃ is external.

• It has no parents.

• According to (8), the hypothetical variable T̃ is independent of

all its non-descendants, and, in particular, T̃ ⊥⊥ T always
holds.

• The hypothetical model is defined by a thought experiment,
whereas the empirical model is the data-generated process.

• The hypothetical model breaks the direct T → Y link and
replaces it with a T̃ → Y link.
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3. Econometric Causal Models

• Counterfactuals are generated by hypothetical (external)
manipulations of treatments.

• These are produced in the hypothetical model by conditioning
on the hypothetical variable T̃ .

• For instance, the distribution of the counterfactual outcome Y
when the treatment is externally set to a value t ∈ supp(T ) is

Ph(Y | T̃ = t) and the counterfactual outcome mean is given

by Eh(Y | T̃ = t).

• These are in contrast to the empirical counterparts
Pe(Y | T = t) and Ee(Y | T = t).
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3. Econometric Causal Models

• Treatment effects are often (but not inevitably) defined at the
population level by expected values of counterfactual
differences.

• To fix ideas, suppose that T is a binary variable that indicates
college graduation and Y denotes adulthood income.

• The average treatment effect of college on income is given by
ATE = Eh(Y | T̃ = 1)− Eh(Y | T̃ = 0).

• Treatment-on-the-treated (TOT ) is the average causal effect of
college on income by those who choose to go to college
(T = 1), which is given by

TOT = Eh(Y | T̃ = 1,T = 1)− Eh(Y | T̃ = 0,T = 1).
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3. Econometric Causal Models

Alternative Counterfactual Approaches

• Counterfactual analysis modifies the original empirical model to
characterise the causal operation of external manipulation.

• Such modification are often a source of confusion as they do
not follow from any standard statistical tool.

• This is why causal analysis can be so challenging for people
trained exclusively in statistics.

• Using the hypothetical model is just one of several approaches
that supplement statistical theory in an effort to assess
causality.

• We describe two additional approaches that can be used to
define counterfactuals: the fixing operator and the do-operator
of ?.

• Both fix and do operators formalize the notion of
counterfactuals by suppressing some aspect of the original
empirical model.
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3. Econometric Causal Models

• The fix operator is commonly used in economics (?). It is
implicit in Haavelmo’s pioneering paper (?).

• It defines counterfactuals by deleting the causal link between
treatment T and its children.

• In the empirical model of equations (4)–(7), the counterfactual
outcome Y (t) is obtained by fixing the T -argument of the
outcome equation (7) to a value t ∈ supp(T ), so that
Y (t) = fY (t,V , ϵY ).
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3. Econometric Causal Models

• There is no direct empirical counterpart to this concept without
further analysis.

• Fixing does not eliminate the structural equation for treatment
variable T .

• It only modifies the outcome equation by replacing the random
variable T by a fixed treatment value t ∈ supp(T ).

• Thus the variable T is still present in the causal model when
fixing is applied.
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3. Econometric Causal Models

• The do-operator of ?? resembles fixing in the sense that it
replaces all the T -inputs of the structural equations for all the
variables directly caused by T .

• The do-operator differs from fixing by deleting (“shutting
down”) the structural equation for treatment variable T (?).

• Neither fix nor the do operator are well-defined in statistics.

• They differ from statistical conditioning because conditioning
on T = t would, in general, change the distribution of all
model variables (i.e. V ,Y and Z ) in the empirical model while
fixing or doing T to a value t does not change the distribution
of its ancestors V , Z .
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3. Econometric Causal Models

• The following table compares the different approaches for
generating counterfactuals for the Generalized Roy model.

• The first column presents the original empirical model.

• The second and third columns present the models generated by
the fix and the do operators respectively.

• The last column presents the hypothetical model.
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3. Econometric Causal Models

Generalized Roy Model: Approaches to Generating Counterfactuals

e: empirical model; e∗: model when treatment fixed; e†: model when T is
“done”-do (T ); h: hypothetical model

Empirical Models Hypothetical Model

Original Model (e) Fixing T at t (e∗) do(t) (e†) Hypothetical Var. T̃ (h)

Structural Equations

V : V = fV (ϵV ) V = fV (ϵV ) V = fV (ϵV ) V = fV (ϵV )
Z : Z = fZ (ϵZ ) Z = fZ (ϵZ ) Z = fZ (ϵZ ) Z = fZ (ϵZ )
T : T = fT (Z ,V , ϵT ) T = fT (Z ,V , ϵT ) do(T = t) T = fT (Z ,V , ϵT )

Y : Y = fY (T ,V , ϵY ) Y (t) = fY (t,V , ϵY ) Y (t) = fY (t,V , ϵY ) Y = fY (T̃ ,V , ϵY )

T̃ : T̃ = fT̃ (ϵT̃ )

Directed Acyclic Graphs (DAGs)

V

T YZ

V

T Y (t)Z

V

do(t) Y (t)Z

V

T YZ T̃

Local Markov Conditions

V : V ⊥⊥ Z V ⊥⊥ Z V ⊥⊥ Z V ⊥⊥ (Z , T̃ )

Z : Z ⊥⊥ V Z ⊥⊥ (V ,Y (t)) Z ⊥⊥ (V ,Y (t)) Z ⊥⊥ (V ,Y , T̃ )

T : T ⊥⊥ ∅ | (Z ,V ) T ⊥⊥ Y (t) | (Z ,V ) (not defined for the model) T ⊥⊥ (T̃ ,Y ) | (Z ,V )

Y : Y ⊥⊥ Z | (T ,V ) Y (t) ⊥⊥ (Z ,T ) | V Y (t) ⊥⊥ Z | V Y ⊥⊥ (Z ,T ) | (T̃ ,V )

T̃ : (not defined for the model) (not defined for the model) (not defined for the model) T̃ ⊥⊥ (T ,V ,Z )

Factorial Decomposition of the Joint Probability Distributions

Pe(Y ,T ,V ,Z ) = Pe∗(Y (t),T ,V ,Z ) = Pe†(Y (t),V ,Z ) = Ph(Z ,V ,T , T̃ ,Y ) =

Pe(Y | T ,V )Pe(T | Z ,V )Pe(V )Pe(Z ) Pe∗(Y (t) | V )Pe∗(T | V ,Z )Pe∗(V )Pe∗(Z ) Pe†(Y (t) | V )Pe†(V )Pe†(Z ) Ph(Y | T̃ ,V )Ph(T | Z ,V )Ph(V )Ph(Z )Ph(T̃ )
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3. Econometric Causal Models

• The independence conditions depend on the variables in each
counterfactual model.

• The outcome LMC of fixing model generates the following
independence relationship:

Y (t) ⊥⊥ T | V . (9)
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3. Econometric Causal Models

• This is sometimes called a matching condition.

• It states that the counterfactual outcome Y (t) is independent
of the treatment variable T conditional on the confounding
variable V .

• The corresponding matching condition for the hypothetical
model is:

Y ⊥⊥ T | (T̃ ,V ). (10)

• Matching conditions (9) and (10) are equivalent.

• They play primary roles in devising methods to identify
treatment effects.
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3. Econometric Causal Models

• The do operator eliminates the treatment T from the set of
model variables.

• It does not generates a matching condition like that in (9) or
(10).

• Instead, ? develops a DAG criteria to check for analogs to
matching conditions in the empirical model.

• In the language of the do-calculus, matching
conditions (9)–(10) are described by the private language “V
d-separates Y and T .”

• The elimination of the treatment T from the analysis does not
permit researchers to investigate parameters such as the TOT
because the treatment effect is conditioned on the values of the
treatment.

• ? solve this problem by supplementing the counterfactual
model with additional special structure.
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3. Econometric Causal Models

• The last panel of the table presents the factorization of the
joint distribution of the model variables.

• We use Pe for the probability distribution of the empirical
model, Pe∗ for the model generated by the fix operator, Pe† for
the do operator and Ph for the hypothetical model.

• The factorizations differ according to the number of variables in
each counterfactual model.

• All models share the same distributions of error terms.

• Consequently, the joint distribution of the ancestors of T , that
is (V ,Z ), is the same across all models. The distribution of the
counterfactual outcome Y (t) depends only on V and ϵY .

• Therefore, the distribution of the counterfactual outcomes is
the same regardless of whether we use the fix or the do
operator.
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3. Econometric Causal Models

• One benefit of the hypothetical model is that is enables analysts to
use probability to converse with causality without introducing new
(and unnecessary) concepts.

• It translates the probabilistically ill-defined causal operations of
fixing or doing into standard statistical conditioning.

• Formally, for any set K of non-descendant variables of T̃ and any
variable Y that is a descendant of T̃ in the hypothetical model, we
have that: (

Y | T̃ = t,K
)
Mh

d
=
(
Y (t) | K

)
Me∗

and(
Y | T̃ = t,

{
K \ {T}

})
Mh

d
=
(
Y (t) |

{
K \ {T}

})
M

e†

(11)

where
(
Y | T̃ = t,K

)
Mh

denotes the variable Y conditional on K

and on the event T̃ = t in the hypothetical model,
(
Y (t) | K

)
Me∗

and
(
Y (t) | K

)
M

e†
denote the counterfactual outcome under fixing

and doing respectively.

• In particular, we have that(
Y | T̃ = t

)
Mh

d
=
(
Y (t)

)
Me∗

d
=
(
Y (t)

)
M

e†
.

• Even though all the models share many common concepts, they
differ greatly regarding the machinery used to identify causal effects.
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3. Econometric Causal Models

Identification of Counterfactual Outcomes

• Task 2 in Table 1.

• Counterfactuals are said to be identified if they can be expressed in
terms of the probability distributions of the observed data generated
by the empirical model.

• Thus identification requires the analyst to connect the probability
distribution of the hypothetical model with the probability
distributions of the empirical model.

• A connection between empirical and hypothetical models is made if
we can justify the following criteria: for any disjoint set of variables
Y ,W in T and any subsets A,A′ ⊂ supp(T ) we have that:20

Y⊥⊥ T̃ | (T ,W )⇒ Ph

(
Y | T̃ ∈A,T ∈A′,W

)
=

Ph(Y | T ∈A′,W )=Pe(Y | T ∈A′,W ).
(12)

Y⊥⊥T | (T̃ ,W ) ⇒ Ph

(
Y | T̃ ∈A,T ∈A′,W

)
=

Ph(Y | T̃ ∈A,W )=Pe(Y | T ∈ A,W ).
(13)

20See ? for a proof.
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3. Econometric Causal Models

• Equations (12)-(13) state that we can move from the
hypothetical model to the empirical model whenever the
independence relationships (12): Y ⊥⊥ T̃ | (T ,W ) or (13):

Y ⊥⊥ T | (T̃ ,W ) apply.

• The relationships are symmetric in the roles played by T and T̃ .

• While Y ⊥⊥ T̃ | (T ,W ) is an independence relationship

between some variable Y and T̃ conditioned on T , the
independence Y ⊥⊥ T̃ | (T ,W ) is an independence relationship

between Y and T conditioned on T̃ .

J. Heckman & R. Pinto Causality and Econometrics PI



3. Econometric Causal Models

• Equations (12)-(13) are useful for describing the intuitive
properties of the hypothetical model.

• Since the hypothetical variable T̃ is externally specified and
independent of all its non-descendants, which include the
treatment T , K ⊥⊥ T̃ | T holds for any variable K not caused

by T̃ .

• According to (13), we have that for
Ph(K | T ∈ A′) = Pe(K | T ∈ A′) and for A′ = supp(T ) we
have that Ph(K ) = Pe(K ).

• In other words, hypothetical variation of treatment does not
change the distribution of its non-descendants.
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3. Econometric Causal Models

• Consider the hypothetical Roy model of Table 4.

• The LMC of Y generates the independence relationship
Y ⊥⊥ T | (T̃ ,V ).

• Variable V is a matching variable. Conditioning on it generates
the useful relation:

Ph(Y | T̃ = t,V ) = Pe∗(Y (t) | V ) = Pe(Y | T = t,V ). (14)

• The first equality is justified by (11).

• It relates conditioning in the hypothetical model to fixing in the
empirical model.

• The second equality is justfied by (13).
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3. Econometric Causal Models

Table 4: Generalized Roy Model: Empirical and Hypothetical Causal
Models (Repeated)

Empirical Model Hypothetical Model

V

T YZ

V

T YZ T̃

LMC LMC

V : V ⊥⊥ Z V ⊥⊥ (Z , T̃ )

Z : Z ⊥⊥ V Z ⊥⊥ (V ,Y , T̃ )

T : T ⊥⊥ ∅ | (Z ,V ) T ⊥⊥ (T̃ ,Y ) | (Z ,V )

Y : Y ⊥⊥ Z | (T ,V ) Y ⊥⊥ (Z ,T ) | (T̃ ,V )

T̃ : (not defined for the model) T̃ ⊥⊥ (T ,V ,Z )
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3. Econometric Causal Models

• If Y ⊥⊥ T | (T̃ ,V ) holds, we can access the counterfactual
outcome by conditioning on V .

• Otherwise stated, if the confounding variable V were observed
and we could condition on it, we would be able to evaluate the
counterfactual outcome.

• Moreover, V is not a descendant of T̃ , which implies that
Ph(V ) = Pe(V ).

• Thus if V were observed, the probability distribution of the
counterfactual Ph(Y | T̃ = t) would be obtained by integrating
Pe(Y | T = t,V = v) over the values v in the support of V .

• The econometric literature provides an unusually rich menu of
strategies to eliminate the confounding effects of V not
available in the approximating literature.
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4. Identification of Counterfactuals in the Generalized Roy Model

4. Identification of Counterfactuals in the

Generalized Roy Model
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4. Identification of Counterfactuals in the Generalized Roy Model

• The Generalized Roy model is a laboratory for exploring the
large toolkit of the econometric approach to identifying
counterfactuals compared to what is possible in the
approximating paradigms.

• We describe several of these approaches here.

• Equation (14) states that the identification of causal effects in
the Generalized Roy model hinges on controlling for the
unobserved confounding variables V .

• A popular approach to doing so uses instrumental variables that
are independent of V .

• They control for V by shifting T without affecting the
distribution of V .

• However, the IV model described by equations (4)–(7) with Z
as an instrument does not identify interesting counterfactuals
without additional assumptions.
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4. Identification of Counterfactuals in the Generalized Roy Model

• The literature on policy evaluation in structural settings
provides a large array of additional tools that facilitate
identification of the causal effect of T on Y .

• For example, the simplest identifying assumption is linearity.

• If the treatment and the outcome functions are linear, so
T = α0 + α1V + ϵT , and Y = β0 + β1T + β2V + ϵY , where
α0, α1, β0, β1, β2 are scalar parameters, the causal effect of T
on Y is given by β1.
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4. Identification of Counterfactuals in the Generalized Roy Model

• It is identified by the covariance ratio cov(Y ,Z )/cov(T ,Z )
and can be estimated by the Two-Stage Least Squares (2SLS)
Regression.

• This tool has been available to economists since the 1950s.21

21See ?????. ? invented this method.
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4. Identification of Counterfactuals in the Generalized Roy Model

• The Generalized Roy model is not captured by this simple
two-equation system.

• The causal effect, Y (1)− Y (0) is, in general, a random
variable and not a constant so that treating β1 as a constant
does not capture the essential heterogeneity of treatment
effects across agents.

• The analogue to β1 is stochastically dependent on V .

• There are numerous approaches to identifying its distribution.

• We start with the use of instrumental variables in the presence
of heterogenous treatment effects and then consider alternative
approaches.
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4. Identification of Counterfactuals in the Generalized Roy Model

Instrumental Variables

• ?? address this problem assuming a separable choice equation.
Their approach enables analysts to control for V and, in turn,
identify counterfactual outcomes.

• Their local Instrumental Variable (LIV) Model considers a
binary treatment T ∈ {0, 1}.

• Their separability assumption arises from economic choice
theory and states that treatment is given by a latent
threshold-crossing equation that includes instrument Z and the
confounder V ; that is, T = 1[ζ(Z ) ≥ ϕ(V )].

• Separability enables them to rewrite the choice equation as:

T = 1
[
P(Z ) ≥ U

]
; P(Z ) = Pe

(
T = 1 | Z

)
, (15)

where P(Z ) = Pe(T = 1 | Z ) is the propensity score.
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4. Identification of Counterfactuals in the Generalized Roy Model

• The unobserved variable U is given by U = Fe,ϕ(V )(ϕ(V ))
where Fe,ϕ(V ) is the cdf of ϕ(V ), which is monotone increasing
by construction.

• Subscript “e” denotes computation with respect to the
empirical model.

• Variable U has a uniform distribution if ϕ(V ) is absolutely
continuous; that is, U ∼ unif ([0, 1]).

• The structural approach uses unobservables.

• The Neyman-Rubin approach does not.

• The do-calculus uses them, but in a limited way, and rules out
separability that is used to obtain (15).

• This approach to unobservables precludes the use of methods
that are fruitful in the econometric approach.
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4. Identification of Counterfactuals in the Generalized Roy Model

• The hypothetical and empirical models for the Generalized Roy
model that include the unobserved variable U are displayed in
Table 5.

• The LMC of T in the hypothetical Roy model of Table 5
implies that Y ⊥⊥ T | (Z , T̃ ,U).

• The LMC of Z implies Y ⊥⊥ Z | (U , T̃ ).

• These two independence relationships imply, by contraction
property D, that Y ⊥⊥ T | (T̃ ,U).

• Following the same analysis of V as (14), Y ⊥⊥ T | (T̃ ,U)
implies that:

Ph(Y | T̃ = t,U) = Pe∗(Y (t) | U) = Pe(Y | T = t,U). (16)
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4. Identification of Counterfactuals in the Generalized Roy Model

• Otherwise stated, controlling for U enables analysts to identify
counterfactual outcomes in the same fashion that controlling
for V does.

• Variable U is called a balancing score for V .

• This means that U is a surjective function of V that preserves
the independence relationship
Y ⊥⊥ T | (T̃ ,V ) ⇒ Y ⊥⊥ T | (T̃ ,U).22

22The balancing score was introduced by ?.
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4. Identification of Counterfactuals in the Generalized Roy Model

Table 5: Binary Choice Roy Model: Empirical and Hypothetical Causal
Models

Empirical Model Hypothetical Model

VU

T YZ

VU

T YZ T̃

LMC LMC

V : V ⊥⊥ Z V ⊥⊥ (Z , T̃ )

Z : Z ⊥⊥ (U,V ) Z ⊥⊥ (V ,U,Y , T̃ )

U : U ⊥⊥ Z | V U ⊥⊥ (Y ,Z , T̃ ) | V
T : T ⊥⊥ V | (Z ,U) T ⊥⊥ (T̃ ,V ,Y ) | (Z ,U)

Y : Y ⊥⊥ (Z ,U) | (T ,V ) Y ⊥⊥ (Z ,U,T ) | (T̃ ,V )

T̃ : (not defined for the model) T̃ ⊥⊥ (T ,V ,U,Z)
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4. Identification of Counterfactuals in the Generalized Roy Model

The Matching Assumption

• A popular method for identifying treatment effects assumes
that a set of observed pre-treatment variables suffice to control
for the confounding variable V .

• Otherwise stated, it assumes that the observed variable X is a
balancing score for the confounding variable V .

• This assumption is called Matching.23

• Another (structural) way to state this is that X spans the space
of V .

23? investigate several estimation methods that invoke the matching assumption.
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4. Identification of Counterfactuals in the Generalized Roy Model

• Table 6 presents the empirical and the hypothetical models that
justify the matching assumption.

• The LMC of T in the hypothetical model implies that
Y ⊥⊥ T | (T̃ ,X ).

• According to (13), we have that

Ph(Y | T̃ = t,X ) = Pe∗(Y (t) | X ) = Pe(Y | T = t,X ) which
means that the counterfactual outcome is identified by
conditioning on X .

• Matching variables X are assumed not to be a descendant of
the hypothetical variable T̃ , thus Ph(X ) = Pe(X ) and the
probability distribution of the counterfactual outcome is given
by Pe∗(Y (t)) =

∫
(Pe(Y | T = t,X = x)dFe,X (x).
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4. Identification of Counterfactuals in the Generalized Roy Model

Table 6: Matching Model: Empirical and Hypothetical Causal Models

Empirical Model Hypothetical Model

VX

T Y

VX

T Y T̃
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4. Identification of Counterfactuals in the Generalized Roy Model

• The average causal effect of a binary treatment T ∈ {0, 1} is
evaluated by the weighted average of mean difference between the
treated and not-treated participants that match on X , namely,

ATE =

∫ (
Ee(Y | T = 1,X = x)− Ee(Y | T = 0,X = x)

)
dFe,X (x).

24

24? incorporated additive separability between observable and unobservable variables as well
as exogeneity conditions that isolate outcomes and treatment participation into the matching
framework. Additionally, they compare various types of estimation methods to show that
kernel-based matching and propensity score matching have similar treatment of the variance
of the resulting estimator.
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4. Identification of Counterfactuals in the Generalized Roy Model

• The matching assumption replaces the unobserved variable U
of the Generalized Roy model in Table 5 by the observed
variable X .

• In practice, it assumes that potential bias generated by
confounding variables can be ignored when controlling for
observed pre-treatment variables.

• Under matching, the identification of treatment effects does
not require an instrumental variable nor additional assumptions
such as separability.

• This assumption enables us to solve the problem of selection
bias induced by unobserved variables V via conditioning on the
observed variables X .
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4. Identification of Counterfactuals in the Generalized Roy Model

• The matching assumption is justified in the case of randomized
controlled trials (RCTs).

• In this case, the matching variables X denote the pre-treatment
variables used in the randomization protocol.

• In observational studies, a matching assumption is often rather
strong.

• It assumes that the analyst observes enough information to
make all the agent’s unobserved variables irrelevant (see ?).
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4. Identification of Counterfactuals in the Generalized Roy Model

• Otherwise stated, matching assumes a symmetry in information
between the economic agent and the econometrician.

• There are several identification approaches that acknowledge
the possibility of information asymmetries between the agent
being studied and the econometrician: control function
approaches, replacement functions or proxy variables.

• These methods often differ considerably in terms of
assumptions and methodology.

• However, they all share the same identification principle: they
use observed data to evaluate a proxy variable that plays the
role of a matching variable.
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4. Identification of Counterfactuals in the Generalized Roy Model

Matching on Proxied Unobservables

• Matching on proxied unobservables is a version of matching
that uses observed data to control for the confounding effects
of V . Consider the modification of the Generalized Roy model
in Table 7.

• The unobserved variable Q is a balancing score for the
unobserved confounder V .

• The matching conditions of hypothetical model,
Y ⊥⊥ T | (T̃ ,Q), and its respective counterpart in the
empirical model, Y (t) ⊥⊥ T | Q, hold. Variable Q has two
additional properties: (1) it may cause outcome Y ; and (2) it
may be measured with error by the observed variable M .
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4. Identification of Counterfactuals in the Generalized Roy Model

• A common setup where Q arises is in the evaluation of college
returns where T denotes college graduation, Y denotes
earnings, and Q denotes unobserved abilities such as cognition
or conscientiousness.

• These abilities are not directly observed but measured with
error by an observed vector of variables M , such as
psychological surveys or test scores.

• Formally, we write M = fM(Q, ϵM).

• The identification strategy is to explore the structural function
M = fM(Q, ϵM) to evaluate Q, which, in turn, allows us to
control for V and identify causal effects.
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4. Identification of Counterfactuals in the Generalized Roy Model

• Matching on proxied unobservables has long been used in the
economics of education (see, e.g., the essays in ? and ?).

• The method is called the latent variable approach by ?.

• This literature offers several possibilities for estimating Q
(????).

• ? apply this method.

• A common parametric approach extracts factors from
psychological measurements to extract Q as a latent factor.
Nonparametric factor analysis is developed in ??.

• It is also possible to condition nonparametrically on Q without
knowing the functional form of fM .
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4. Identification of Counterfactuals in the Generalized Roy Model

Table 7: Matching on Proxied Unobservables: Empirical and
Hypothetical Causal Models

Empirical Model Hypothetical Model

VQM

T Y

VQM

T Y T̃
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4. Identification of Counterfactuals in the Generalized Roy Model

Control Function

• The control function principle specifies the dependence of the
relationship between observables and unobservables in a
nontrivial fashion.

• The principle was introduced in ? building on earlier work by ?
and later popularized by ?.

• It was also applied in ? and ?. Heckman’s sample selection
correction (?) is a control function.
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4. Identification of Counterfactuals in the Generalized Roy Model

• We illustrate the control function principle using a version of
the Generalized Roy model where V is a scalar random variable
and the binary choice T is given by the separable equation
T = 1[µ(Z ) ≥ V ].

• Let K = fK (T ,V , ϵK ) represents unobserved skills caused by
the treatment T and the unobserved confounding variable V .

• In addition, let the outcome equation be additive in K , that is
to say that the outcome Y can be written as
Y = fY (T , ϵY ) + ψ(K ),

• The model is displayed as a DAG in Table 8.

• The LMC of Y in the hypothetical model implies that
Y ⊥⊥ T | (T̃ ,K ).

• This means that K is a matching variable.

• The control function approach seeks to control for variable V
by estimating the function ψ(K ) of the outcome equation.
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4. Identification of Counterfactuals in the Generalized Roy Model

• ?? use the assumption of separability of observables and
unobservables in the choice equation and the outcome
assumption of additivity to evaluate ψ(K ) as a function of the
propensity score P(Z ).

• Similar to the LIV Model, we can use the CDF transformation
to write the choice equation as T = 1[P(Z ) ≥ FV (V )], where
FV (V ) ∼ unif ([0, 1]).

• Note that the expected value of the outcome conditional on
T = 1 gives the conditional counterfactual mean:

Ee(Y | Z , T = 1) = Ee∗h
(
Y (1) | Z , T = 1

)
=

Eh(Y | T̃ = 1, Z ,T = 1),

where the first term is observed, the second term uses fixing
and the last one uses the hypothetical model.
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4. Identification of Counterfactuals in the Generalized Roy Model

• Under separability and outcome additivity, we can express
Eh(Y (1) | T̃ = 1,Z ,T = 1) as:

Eh

(
Y | T̃ =1,Z=z ,T =1

)
=Eh

(
fY (T̃ , ϵY ) | T̃ =1

)
+Eh

(
ψ(K ) | T̃ =1,Z=z ,T =1

)
,

=Eh

(
fY (1, ϵY )

)
+Eh

(
ψ
(
fK (1,V , ϵK )

)
|Z=z ,T =1

)
,(

setting Eh(fY (1, ϵY )) = α1

)
= α1 + Eh

(
ψ
(
fK (1,V , ϵK )

)
| P(z) > FV (V )

)
,

= α1 + Ee

(
ψ
(
fK (1,V , ϵK )

)
| P(z) > FV (V )

)
,

∴ Eh

(
Y | T̃ =1,Z ,T =1

)
= α1 + f1(P(Z ))︸ ︷︷ ︸

control function

,

where
f1
(
P(Z )

)
= Eh

(
ψ
(
fK (1,V , ϵK )

)
| Z ,T = 1

)
where the first equality uses the additivity assumption, the second uses the
fact the T̃ is an external variable, the third uses the separability
assumption, the fourth switches the hypothetical model into the empirical
model as V , ϵK , Z are non-descendants of T̃ .
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4. Identification of Counterfactuals in the Generalized Roy Model

• The last equation gives the expectation
Eh(Y | T̃ = 1,Z ,T = 1) as a function of the propensity score
P(Z ).

• Control function f1(P(Z )) can be estimated from observed data
and the expected value of the counterfactual outcome can be
evaluated as

Eh(Y (1)) =

∫ 1

0

α1 + f1(p)dFP(Z)(p).
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4. Identification of Counterfactuals in the Generalized Roy Model

Table 8: Control Function: Empirical and Hypothetical Causal Models

Empirical Model Hypothetical Model

V

TZ

K

Y

V

TZ

K

Y T̃
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4. Identification of Counterfactuals in the Generalized Roy Model

Panel data Analysis and Other Approaches

• A commonly used panel data method is
difference-in-differences as discussed in ?, ?, ?, and ?.

• All of the estimators previously discussed can be adapted to a
panel data setting.

• ? introduce difference-in-differences matching estimators to
eliminate the bias in estimating treatment effects.

• ? extends this work.
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4. Identification of Counterfactuals in the Generalized Roy Model

Panel data Analysis and Other Approaches

• Separability between errors and observables is a common
feature of the panel data approach in its standard application.

• ? and (?) present analyses of nonseparable panel data
methods.

• Regression discontinuity estimators, which are versions of IV
estimators, are discussed by ?.
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4. Identification of Counterfactuals in the Generalized Roy Model

• Table 9 summarizes some of the main identification approaches
for the Generalized Roy model discussed here. The table barely
scratches the surface, but gives a sense of the broad menu in
the econometric approach.

• The essays in the Handbooks of Econometrics (???) give a
range of other estimation approaches.
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4. Identification of Counterfactuals in the Generalized Roy Model

Table 9: Some Alternative Approaches that Identify Treatment Effects by
Controlling for V

Y ⊥⊥ T | (T̃ , X , V ), T ∈ {0, 1} Eh(Y | T̃ = t, X = x) =
∫
Ee (Y | T = t, X = x, V = v)dFe,V |X=x (v)

Method Assumes Need Instrument (Z)? Identify Distribution of V ?

Matchinga V , X known No Yes (V observed)

Control
Functionsb

V estimated, X , Z known (contin-
uous T ); Bounds on quantiles of V
estimated (discrete case)

Yes Yes (over support)

Factor
Methodc

Distribution of V estimated from
additional measurements of V (M)

No
Yes (with auxiliary measurements over sup-
port)

IV: LATE,
LIVd Z , X known Yes

Estimate intervals of quantiles of V (??)
and conditions on them; LIV shrinks inter-
val of quantiles of V to a point using con-
tinuous instruments and conditions on them

Stratificatione Z , X known
Instruments give

restrictions on strata
(balancing scores for V )

Identify distribution of strata which places
interval bounds on V and conditions on
them

Longitudinal

Data Methodsf
Variety of assumptions Covariance restrictions Yes and in long panels can identify V

Mixing
Distributionsg

V ⊥⊥ X No (intervals of V ) Yes (Mixtures)

a??; b???; dSee review in ?; e??; f??; g???
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