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Abstract

This paper examines the econometric causal model for policy analysis developed
by the seminal ideas of Ragnar Frisch and Trygve Haavelmo. We compare the
econometric causal model with two popular causal frameworks:
Neyman-Holland causal model and the do-calculus. The Neyman-Holland causal
model is based on the language of potential outcomes and was largely developed
by statisticians. The do-calculus, developed by Judea Pearl and co-authors,
relies on Directed Acyclic Graphs (DAGs) and is a popular causal framework in
computer science. We make the case that economists who uncritically use these
approximating frameworks often discard the substantial benefits of the
econometric causal model to the detriment of more informative economic policy
analyses. We illustrate the versatility and capabilities of the econometric
framework using causal models that are frequently studied by economists.

Key words: Policy Analysis, econometric models, Causality, Identification,
Causal Calculus, Directed Acyclic Graphs, Simultaneous Treatment Effects
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1. Introduction

® Good policy analysis is causal analysis. It analyzes the factors
that produce outcomes and the role of policies in doing so. It
quantifies policy impacts. It elucidates the mechanisms
producing outcomes in order to understand how they operate,
how they might be improved and which, if any, alternative
mechanisms might be used to generate outcomes. It uses all
available information to give good policy advice.

® |t systematically explores possible counterfactual worlds. It is
grounded in thought experiments — what might happen if
determinants of outcomes are changed. In this regard, good
policy analysis is good science. Credible hypothetical worlds are
developed, analyzed, tested in real world data.
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1. Introduction

® Models and thought experiments are central to economic
analysis.

® Persons trained in economic theory or in the natural sciences
routinely use them.

e Statisticians and computer scientists have recently come to
grips with the causal questions that have long being
investigated by economists, such as Ragnar Frisch and Trygve
Haavelmo.

® As a result, private languages and procedures designed to
approximate econometric models have been developed without
any deep understanding of the corpus of econometric theory,
and sometimes reinventing portions of it.
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1. Introduction

® These private languages bear the marks of their recent birth:
concepts are often not precisely defined, and the
conceptually-distinct issues of definition of counterfactuals,
their identification, and their estimation are often tangled
together.

® In some fields heavily influenced by statistics, certain estimation
techniques are claimed to be central to the definition or
identification of counterfactuals when, in fact, they are at best
handmaidens.
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1. Introduction

® The current state of affairs would be of little concern if applied
economists continued to draw on and extend the standard
econometric model of policy evaluation. Sadly, this is not the
case.

® Many econometricians and applied economists now emulate
what they read in statistics or computer science journals. They
have forgotten or never learned their own field's foundational
work to the detriment of rigorous causal policy analysis.

® This paper discusses econometric policy analysis and recently
developed approximations to it.

® Qur goal is to improve the theory and practice of economic
policy analysis by acquainting economists with their own rich

econometric legacy and placing the recent approximations in
the context of the econometric model.
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1. Introduction

® The topic is broad and our paper is necessarily brief. We
discuss some main points and illustrate them with analyses of a
few prototypical economic models for addressing policy
problems. It is impossible to convey here all of the insights of
rigorous econometrics developed in the past 90 years.

® This paper unfolds in the following way. We first define
causality within a model.

® The concept is simple, but requires thought processes outside
statistics that are, nonetheless, quite intuitive.

® We discuss four distinct classes of policy problems that are
addressed in econometric analyses.

® Some of them are either ignored or only partly addressed in the
approximating literatures.

® \We demonstrate the conceptual clarity of the econometric
approach and contrast it with that of rival approaches.
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1. Introduction

® In particular, we consider two causal approaches often
advocated by statisticians and computer scientists.

® The first is the Neyman-Holland model (?; ?; 2; 7, ?7), "NR"
henceforward.

® |t uses some notions developed in rigorous econometrics but
goes only part way toward implementing the full set of tools in
the econometric approach to policy evaluation. It has
important limitations for posing or analyzing routine policy
problems outside a narrow “treatment-control” paradigm. We
also consider an approach to counterfactuals developed in
computer science ( “do-calculus,” ?), henceforth "DoC,” that
relies critically on directed acyclic graphs (DAGs—recursive
models) and statistical conditional independence relationships.
We demonstrate its limited capacity to address many important
economic policy questions or to utilize many standard
econometric estimation and identification tools.

J. Heckman & R. Pinto Causality and Econometrics
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Each of the approximating approaches has value for limited
classes of problems. However, they have severe limitations
when applied to the large array of problem economists routinely
confront.

The danger is that sole reliance on these tools eliminates
serious consideration of important policy questions.

The NR approach does not readily incorporate unobservables
and restrictions on empirical relationships produced by
economic theory that are important components of the
econometric toolkit.

Social interactions, peer effects, and general equilibrium theory
fall outside its purview and are currently considered
frontier-topics.

They are all standard problems addressed in structural
econometrics.
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1. Introduction

® The DoC approach also cannot deal with the functional
restrictions and covariance information routinely used in
econometrics.

® |t cannot accommodate assumptions such as monotonicity and
the separability restrictions that are essential components of
the modern instrumental variable analysis. The prototypical
Generalized Roy model cannot be identified with do-calculus,
although it, and more general models, can be identified using
standard econometric tools.

e Each approximating approach has important conceptual and
operational limitations compared to the econometric approach.

® We display the versatility and adaptability of the econometric
approach and the limitations of the approximations.
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1. Introduction

® This paper is organized as following.

® Section 2 discusses the notion of causality and the tasks of
causal inference.

® Section 3 presents the econometric model.

® Section 4 shows its versatility and describes various
identification approaches in the Generalized Roy model.

® Section 5 examines how the Neyman-Rubin causal model
approximates the econometric model.

® Section 6 investigates how the do-calculus of ? approximates
the econometric model.

® Section 7 examines non-recursive models.

® Section 8 summarizes the paper.
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2. Causality as a Thought Experiment

® A formal definition of causality relies on a modification of the
same thought process used to define relationships mapping
inputs X, that may contain unobserved terms, to outcomes Y
using a stable map g:

g : X = Y over the domain of X (Dom(X)). (1)

® A map is stable if changing its arguments over the domain of
X preserves the map.

® Another way to express this is Y = g(X), where g may be a
multi-valued correspondence.
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2. Causality as a Thought Experiment

® An elementary version of (1) is:
Y =a+ X, (2)

¢ In this example, stability means that « and § don't change
when X or a component of it is changed. This is what is meant
by invariance or autonomy of relationships (?).

® It is a cornerstone of causal analysis.!

® However, more than stability of maps is required. Directionality
is central. Inverting a map (when possible) may produce a
stable relationship, but it is, in general, not causal. Standard
examples of (1) and (2) in economics are production functions
or demand equations.

12 The do-calculus explicitly uses autonomous structural relationships (?).
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2. Causality as a Thought Experiment

® The range of Y is a set of potential outcomes associated
with X over its domain. g may be a function or a
correspondence.® Potential outcomes associated with different
values of X are counterfactuals associated with X.

® The key idea in causality is the notion captured in Alfred
Marshall's phrase, “ceteris paribus" —all other else is equal.*
Comparisons of Y for different values of X — all other factors
the same — are defined as causal effects. They are conceptual
thought experiments.

3Multiple equilibria are produced in many econometric models. See, e.g.; 2.
47
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2. Causality as a Thought Experiment

® This definition is used explicitly in the econometric approach
regardless of what is observed, the statistical properties of X
and Y, the specification of functional forms for g, or how X is
manipulated in any thought experiment.

® The Generalized Roy model (?) is an early example of a model
of two potential outcomes associated with the income the same
person would earn in different jobs.
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2. Causality as a Thought Experiment

® Issues of identification and estimation are important for making
the concept of causality empirically operational, but not for
defining it.

® However, these auxiliary issues are sometimes assumed to be
paramount in defining casuality in the recent approximating
literatures. For example, in an early version of the
Neyman-Rubin model, ? insists that causal effects are only
defined for experimental manipulations of X.

® |ssues of definition and estimation are fruitfully distinguished
and are the hallmark of the econometric approach. To make
our discussion more concrete, an example from the standard
toolkit of empirical economics is helpful.
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2. Causality as a Thought Experiment

2.1. Regression: Conditional Expectation or

Thought Experiment?
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2. Causality as a Thought Experiment

e Consider the standard workhorse of empirical economics.>

® Anticipating empirical applications, we add the distinction
between observed and unobserved variables that is strictly not
required for the definition of causal parameters.

¢ Consider the regression of Y on T where (Y, T) are observed
and U denotes an unobserved (by the analyst) variable:

Y=TB+U. (3)

5See ? for an early discussion of this distinction.
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2. Causality as a Thought Experiment

® In terms of (1), X = (T, U). If X is a vector of all possible
causes of Y, (1) is an all causes model and accommodates
stochastic shocks.

¢ Coupled with stability, such a model is convenient for
transporting (1) to environments where different levels of T are
at play (forecasting) or in combining and summarizing evidence
from different studies where T varies (research synthesis).
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2. Causality as a Thought Experiment

® A major source of confusion about causal models is that (3) is
often defined by statisticians as a model for describing the
statistical relationship between Y and T (see e.g., 77).

® Doing so uses standard statistical tools to establish an
empirical relationship. Note that if conditional expectations
exist, E(Y | T=t)=t8+ E(U| T =t). In this approach,
the statistical model could also be equivalently defined as
u=Y-T¢5.

® The empirical association between T and Y operates through
two channels: §and E(U | T = t) unless T is mean
independent of U. Notice too that this example introduces
considerations about the properties of random variables that
are unnecessary for defining causality.
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2.2. Thought Experiments
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2. Causality as a Thought Experiment

® Another way to interpret Y = T + U is to hypothetically vary
Tand U: (T,U) > YviaY=TF+U.

® This is not a statistical operation and lies outside standard
statistics.®

e Economists (and other scientists) use hypothetical models
(thought experiments) to analyze phenomena and explore
possible relationships.

® These and other possible relationships are not defined by
statistical operations, although they are estimated using
statistical methods.

® To clarify these ideas, it is helpful to introduce €y, €1, €y
which are unobserved (by the analyst) and mutually statistically
independent random variables. They are external to the model
(exogeneous) and are not caused by T, U or Y.

5For an example of how confusing this concept is to statisticians, see ? and ?. Holland's
confusion is significant given that he was the person who formalized the “Rubin model” (?).
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e Consider four different possible causal models — all thought
experiments:

Causal Model 1 Causal Model 2 Causal Model 3 Causal Model
T = fr(eT) T =fr(er,ey) T=fr(er,U) T ="fr(er)

U = fy(ev) U= fyleu,ev) U= fy(eu) U=fyley, T)
Y=Ts5+U Y=T5+U Y=Tp5+U Y=T5+U

® |n the first causal model, T does not cause U, nor does U
cause T.

® Parameter (3 is the causal effect of varying T on Y for a fixed
value of U.

® Variables T and U are statistically independent and the
parameter (3 can be consistently estimated by OLS.
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2. Causality as a Thought Experiment

® |n the second causal model, T does not cause U, nor does U cause
T.

® Parameter § is still the causal effect of T on Y. However, T and U
are not statistically independent because they share a common
confounding variable €y and the OLS estimator of /3 is biased. This
model is sometimes called a ‘common cause” model with €y, being
a common cause of T and U.

® The third causal model differs from the second model because U
causes T.

® Nevertheless, the causal effect of T on Y remains .

® The second and third models are statistically identical in the sense
that T and U are not statistically independent and the OLS
estimator is biased.
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2. Causality as a Thought Experiment

® The third model imposes a restriction on the variation in U.

® |n the fourth model, T causes U and the OLS estimator of the
parameter 8 does not, in general, identify the causal effect of T on
Y because T also affects U.

® The OLS estimator of /3 captures both direct and indirect effects of
TonY.

¢ Let Y(€) = tB + U be the counterfactual outcome Y when T is
external set to value t.”

7Y(t) 1L T|U holds for the third model but not for the second model.
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2. Causality as a Thought Experiment

¢ Using the standard regression model as a starting point blurs
the logic of this thought process.

® Econometrics textbooks commonly introduce causality in the
context of the linear model (3).

® In this approach, the identification of causal effects is often
reduced to a statistical property of the econometric model,
namely, that causal effects can be assessed when variables T
and U are uncorrelated. It gives rise to the practice of defining
causal effects as conditional probability statements instead of
statements about fixing variables in a thought experiment.
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2. Causality as a Thought Experiment

® In fact, OLS is based on statistical assumptions that are void of
any causal interpretation.

® The OLS fitted value for the outcome Y conditioningon T =t
evaluates the conditional expectation E(Y | T = t) instead of
the counterfactual expectation E(Y(t) | T = t), where Y(t) is
the value of Y when T is externally set to a value t.

® The causal content of the OLS model arises only when we
invoke concepts such as fixing and counterfactuals.

® These concepts do not belong to the standard statistical toolkit.
Whether or not we can identify 3 in a sample is an entirely
separate question from defining the causal impact of T on Y.
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2. Causality as a Thought Experiment

® Frisch, the founding father of modern econometric causal policy
analysis, clearly understood that causality is an exercise of
abstract thought, and that “Causality is in the Mind":

“...we think of a cause as something imperative which exists in the
exterior world. /n my opinion this is fundamentally wrong. If we
strip the word cause of its animistic mystery, and leave only the part
that science can accept, nothing is left except a certain way of
thinking. [T]he scientific ... problem of causality is essentially a
problem regarding our way of thinking, not a problem regarding
the nature of the exterior world.” — 7, p. 36
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2.3. The Econometric Approach to Causality

J. Heckman & R. Pinto Causality and Econometrics



2. Causality as a Thought Experiment

The econometric approach to causality develops explicit
hypothetical models where inputs that cause outcomes.

A common context is the study of policy evaluations in which
economic agents choose treatments that affect economic
outcomes of interest.

“Treatments” are inputs (the T) which need not be restricted
to binary or discrete valued variables.

The the mechanisms governing the choice of inputs is central
to study the causal effect of treatment on the outcome.
|dentification /estimation /interpretation of empirical
counterparts to the hypothetical counterfactuals require careful
accounting for unobserved (by the analyst) variables (U) that
cause both input choice and outcomes.

Structural econometric models do just that.®

8Caricatures sometimes made in the approximating literatures that the choices of inputs T
involve highly stylized rational choice models or perfect information are false (see, e.g., 7).
Some hypothetical models might maintain those assumptions, but such assumptions are in no
way essential to the enterprise.
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2.4. Four Distinct Policy Questions
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2. Causality as a Thought Experiment

® The econometric approach to causality distinguishes four distinct

classes of policy problems and addresses each of them, sometimes in
the same analysis.?

Evaluating the impacts of implemented interventions on outcomes in a
given environment, including their impacts in terms of the well-being of
the treated and society at large. The simplest forms of this problem are
typically addressed in the approximation literatures: does a program in
place “work” in terms of policy impacts?

® The approximating literatures addressing P1 identify and estimate
treatment effects (most often average treatment effects) without
investigating how they arise or whether alternative programs might
be better or even what “better” means.

® In terms of our example, it seeks to know the sign and magnitude of
5. However, most policy analysts seek greater generality for their

findings. This leads to problem P2.



2. Causality as a Thought Experiment

Understanding the mechanisms producing treatment effects and
policy outcomes.

® This asks the analyst to investigate the causes of effects and is
a central task of economic theory and policy analysis.!°

® |t embeds (3) in a model that explains how T operates (i.e.,
which factors explain the Y — T relationship). It goes beyond
the coarse description of “treatment” T to explicate the factors
that produce Y.

¢ [t links with P3 and P4 below to consider how alternative
mechanisms generate observed outcomes and can be used to
forecast policies going forward, or explain the findings of any
given study in a particular environment.

10? features the narrow goal of investigating the “effects of causes” in his definition of the
Neyman-Rubin model.
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2. Causality as a Thought Experiment

Forecasting the impacts (constructing counterfactual states) of interventions
implemented under one environment when the intervention is applied to other
environments, including their impacts in terms of well-being.

® This goes beyond P2 to interpret why outputs vary among environments.

® It replaces crude meta-analysis of treatment effects with principled
explanations of mechanisms and their impacts and extrapolations of
different answers to P1.1!

® A common structural model is a useful vehicle for summarizing evidence
from multiple studies.!? Forecasting in new environments is a traditional
problem in econometrics (see, e.g., ?; ?; 7). However, the truly ambitious
problem solved by policy analysts is P4.

11Recent work in computer science has begun to reinvent the logic of econometric
forecasting using its own colorful private language but without any fresh insights or
acknowledgement of a large body of econometric thought (see, e.g., ?).

12Gee, e.g., ? or 7.

J. Heckman & R. Pinto Causality and Econometrics



2. Causality as a Thought Experiment

Forecasting the impacts of interventions (constructing
counterfactual states associated with interventions) never previously
implemented to various environments, including their impacts in
terms of well-being.

® This is a fundamental challenge addressed in econometric
policy analysis.

® This problem motivated the creation of econometric causal
models.3

13See 7?7 and ?.
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2. Causality as a Thought Experiment

® The original impetus for the econometric approach was to conduct
policy analysis for the post-World War |l era using models fit on
pre-World War Il, Depression-era data.

® Econometric policy analysis is the vehicle for framing and
addressing the likely impacts of new policies and new environments,
never previously experienced. ? provides an insightful discussion of
this task in the context of forecasting the impact of new economic
policies using data collected in environments where the policies were
not in place.l*

® The famous ‘critique” of ? updates Marschak’'s analysis to
stochastic environments. ? is a Nobel Prize winning example of how
a leading economist met this challenge in forecasting the demand
for a new transportation system in the San Francisco Bay area.

142 succinctly states the problem and its solution in his enigmatic remark, “the existence of
a problem of knowledge depends on the future being different from the past, while the
possibility of a solution of the problem depends on the future being like the past.” Knight
meant that analysts use ingredients estimated on historical data to construct forecasts of the




2. Causality as a Thought Experiment

® The econometric approach distinguishes three tasks of
econometric causal policy analysis that are often conflated in

the approximating literatures:

Table 1: Three Distinct Tasks in Causal Policy Analysis

Task

Description

Requirements

Types of
Analysis

1: Model Creation

Defining the class of
hypotheticals or
counterfactuals by
thought experiments
(models)

A scientific theory: A
purely mental activity

Outside
Statistics;
Hypothetical
Worlds

2: ldentification

Identifying causal
parameters from
hypothetical
population

Mathematical analysis
of point or set

identification; this is a
purely mental activity

Probability
Theory

3: Estimation

Estimating
parameters from real
data

Estimation and testing
theory

Statistical
Analysis
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2. Causality as a Thought Experiment

® QOur regression example illustrates these distinctions. The
models for counterfactuals do not require any statistical
analysis.

¢ |dentification is a separate issue required to recover 3 from
large samples where statistical variation is not an issue.
Estimation considers how to recover it in practice.

® Trygve Haavelmo, a student of Frisch, developed an empirically
operational econometric framework for causal policy analysis
that distinguished these three tasks (?7?).

® We now state the econometric model formally using the
modern notation of graph theory.
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3. Econometric Causal Models

® Econometric causal models are flexible frameworks that can be
used to address a variety economic policy problems that cannot
be naturally squeezed into “treatment-control” frameworks.

® They go well beyond the narrow treatment effect literature to
address the following topics listed in Table 2:
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3. Econometric Causal Models

Table 2: Problems Addressed by Econometrics

00 06 o

@

=X XX

Investigate the causes of effects, not just the effects of causes — the goal of the
treatment effect literature announced by ? in defining the “Rubin model;”

Interpret empirical relationships within economic choice frameworks;

Analyze data using a priori information from theory and/or previous studies going
beyond crude statistical meta-analyses;

Account systematically for shocks, errors by agents, and measurement errors;
Analyze dynamic models;

Accommodate multiple approaches to identification beyond randomization
instrumental variables, and matching that exploit restrictions within and across
equations on causal relationships produced by economic theory;

Exploit covariance restrictions across unobservables within and across equations to
identify causal parameters;

Make forecasts in new environments;
Synthesize evidence across studies using common conceptual frameworks;
Make forecasts of new policies never previously implemented; and

Analyze the interactions across agents within markets and also within social
settings (general equilibrium and peer effects).
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3. Econometric Causal Models

® The approximating approaches address subsets of these
problems using limited toolkits.

® The approximating approaches were developed to address
specialized classes of problems — usually those in problem class
P1. They may be very effective for analyzing the effects of
causes using a limited set of tools.

® These studies typically focus on identifying average treatment
effects or treatment on the treated. They embody Marschak’s
Maxim (?) that, for certain narrowly focused problems,
specialized versions of the econometric approach may be highly
effective.

® One need not necessarily implement more general models that
address a wider set of questions to address specific problems.
However, they are by design, of limited value in addressing
those wider problems. We now exposit the econometric causal
model in depth.
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3.1. Econometric Causal Framework
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3. Econometric Causal Models

® ? develop a causal framework that formalizes Frisch's insight
that causality is in the mind and places Havelmo's approach
(??) in the framework of more recent policy evaluation models.

® They distinguish an empirical model that generates the
observed data from a hypothetical model hypothetical model
that formalizes the thought experiments of manipulating inputs
that defining causality.

® The empirical model describes the data generating process,
which differs from the hypothetical model which is an abstract
model that characterizes Frish's notion of causality.

® They place the definition and operationalization of causality in
a probabilistically consistent approach that does not require
special rules or procedures invented to characterize causality
used in portions of the approximating literature. Some notation
is useful in describing the framework.
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3. Econometric Causal Models

A causal model IM is described as a system of structural

equations like (1) that characterizes the mapping

M : T — P(7) between a set of variables 7 and its power set

P(T).

® Elements in 7 are random variables or random vectors that
may be observed or unobserved by the analyst.

® It is convenient to define the set £ = {ek; K € T} which
contains an error term ex for each K € T.

® Error term ek shares the same dimension as K. This term is

defined even if there are additional unobserved variables. They

are technical assumptions designed to avoid degenerate random
variables.
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3. Econometric Causal Models

® The structural equation for a variable K € T is an autonomous
function denoted by fx : (M(K), ex) — RIKI.

® Variables in IM(K) are said to directly cause K.

® In recursive formulations, a variable cannot directly cause itself,
that is, K ¢ M(K) for all K € T.

® We relax recursivity in a later section, where we discuss
simultaneous equation models where sets of variables are jointly
determined.
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3. Econometric Causal Models

e Error terms are externally-specified (or exogenous).

® This means that error terms are not caused by any variable in
T. A variable T not caused by any variable, so M(T) = &, is
called external.

® In this case, its structural function is given by T = fr(er). We
impose, without loss of generality, that error terms are mutually
statistically independent.!®

e All variables are defined on a common probability space
(Z,F,P).

® We use T, ., M., P., E. for the variable set, error terms,
causal model, probability, and expectation of the empirical
model.

e We use T, &,, My, Py, Ej, for their counterparts in the
hypothetical model.

15The independence among error terms comes without loss of generality as any dependence
structure could be modeled via other unobserved variables in 7.
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3. Econometric Causal Models

The Generalized Roy Model

® We use the Generalized Roy model as our leading example of a
structural model.

* |t is a cornerstone of the literature of policy evaluation.1®

® The original Roy model of counterfactuals (?) analyzed earnings
inequality in two sectors of the economy. All persons have two
potential incomes: Y(0) in Sector 0 and Y'(1) in Sector 1.

® Agents choose sectors based on their perceived net benefit /.

16Gee, e.g., ?77.
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3. Econometric Causal Models

® In the simplest case, the benefit is the income gain
I =Y(1) — Y(0).

® More general models allow for costs, like tuition, migration
costs, and psychic costs of participation. Potential incomes
(Y(0), Y(1)) depend on observed variables X while benefit /
may depend on X and an externally specified variable Z, which
may be a policy variables that influences participation costs.
The agent’s choice of sector is given by T = 1[/(X, Z) > 0].
The model has been generalized to analyze multiple sectors and
dynamic discrete choices (see 7?7).
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3. Econometric Causal Models

® The individual level treatment effect is Y (1) — Y(0).

® The evaluation problem arises because for each person we
observe either Y(0) or Y(1), but not both.

® We observe Y(1) if T =1 and Y(0) if T =0, namely
Y=T-Y1)+(1-T)-Y(0).7

® The typical solution is to reformulate the problem at the
population level rather than at the individual level.

® A common parameter of interest is the average treatment effect
ATE = E(Y(1) — Y(0)) which is the mean treatment effect
across all agents.

® More generally, we seek to identify the probability distribution
of the counterfactual outcomes Y'(t); t € {0,1}.

7 This switching regression relationship was first used by ?. See also ?.
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® The early Generalized Roy model has been generalized and
extended in many ways.!8

® The model is systematically ignored in the approximating
literatures, despite its intellectual priority and relevance.®

® The Generalized Roy model allows the agent’s decision to
depend on unobserved variables V' that account for subjective
evaluation of the benefits of each choice (so it affects /) and to
allow for multiple choices (see 777?).

18For instance, ? investigate multiple variations of the original model, ? extend the model
for ordered choice models and ? and ? investigate the case of unordered multiple choice
models with multi-valued treatments. ? consider dynamic discrete choice models in this
framework.
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The Generalized Roy model consists of four variables
Te={Z,V, T, Y}

® / is an external policy vector that causes the treatment T,
which in turn causes an outcome Y.

Z plays the role of an instrumental variable.

It causes Y only through its effects on T.

e V is an external set of confounding variables that jointly cause
Tand Y.
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e Variables Z, T, Y are observed by the analyst; V is not.

® V is a source of selection bias in treatment choice, which
makes evaluation of the causal effect of T on Y more difficult.

® The observed relationship between T and Y may be due to the
common effect of V on both T, Y instead of the causal effect
of TonY.

® For now, we suppress the X variables for the sake of notational
simplicity.

® We reintroduce such variables when relevant to our discussion.

J. Heckman & R. Pinto Causality and Econometrics



3. Econometric Causal Models

® The Roy model can be represented by the mapping
M(Z)=M(V)=9, M(T)=4{V,Z}, M(Y)={V, T},
which imply the following structural equations:

V = fy(ev), (4)
Z = fz(ez2), (5)
T=1f(Z,V,er), (6)
Y = (T, V, ey). (7)
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® The independence of error terms €y, €7, €1, €y implies that
Z 1 VandY 1L Z|(T,V) hold where “1L" denotes
independence.

® This model is recursive. We consider fully simultaneous models
in a later section.

® The theory of Bayesian Networks offers useful tools for
investigating the statistical properties of recursive causal
models.2°

20See ?.
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® We now describe some basic concepts used in that literature that
underly the do-calculus and link Pearl’s approach and the theory of
Bayesian meta-analysis (?) to the structural economics literature.
M(K) are called parents of a variable K € T.

* Parents of K's parents are M?(K) = Upyepxy) M(W).

® Ancestors of K include all higher order parental variables that lead
to K, A(K) = UM_ M"(K) for N such that MV(K) contains only
external variables.

® The variables directly caused by K are called children of K,
Ch(K) = {W & T such that K € M(W)}.
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® The second order of children of K are
Ch*(K) = Uweenk)Ch(W).

® Descendants of K include all the higher order children traced to
K, D(K) = UN_,Ch"(K) for N such that
Ch"(K) c UM, Ch"(K).

¢ In this notation, the Generalized Roy model is a recursive
(acyclic) model in which no variable is a descendant of itself,
namely K ¢ D(K) for each K € 7. As we show below,
causality does not require recursivity.
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e A useful property of recursive models is the Local Markov Condition

(77).

® |t states that a variable K is independent of its non-descendants
conditional on its parents:?!

LMC: K L {7\ D(K)} | M(K). (8)

21 Additional independence relationships may be generated by the Graphoid Axioms of ?.
These consist of five rules that apply for any disjoint sets of variables X, W, Z,Y C T:

(A) Symmetry: XULY|Z=Y 1l X]|Z
(B) Decomposition: XL (W, Y)|Z=X1Y|Z
(C) Weak Union: XU (W,Y)|Z=X1 Y |(W,2).
(D) Contraction: XL W|(Y,Z)and X LLY | Z= X 1 (W,Y)]|Z.
(E) Intersection: XU WI|(Y,Z)and X LLY | (W,Z)= X 1L (W,Y)|Z
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® For example, the outcome Y in the Generlized Roy
model (4)—(7) has no descendants and its parents are
]Me(Y) = {V7 T}'

® The LMC for Yisthus Y 1L Z | (T, V).

® Z has no parents and its descendants are T, Y.

® Thus, its LMC is Z 1L V.

® |n the literature outside economics, these recursive features are
viewed by some as essential to the definition of causality when,
as we show, they are not.
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Formalizing Frisch’s Insight

® Frisch’'s statement that “Causality is in the Mind” means that
the causal analysis of treatment T relies on a thought
experiment that exogenously assigns values to the treatment
variable.

® This hypothetical manipulation of T affects only the variables
caused by T. Specifically, changing T affects its descendant Y
but not its ancestors V/, Z.

® Frisch's thought experiment is conceptually simple. However, it
is a causal operation outside the scope of statistical theory. In
statistics, random variables are fully characterized by their joint
distributions.
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® This information by itself is insufficient for causal analysis as it
lacks directionality — a central feature of causal models.

® Frisch’s thought experiment uses additional information on
causal direction when it partitions the variables studied into
those caused by T and those that are not.

® In particular, assigning values to T differs from conditioning on
T because conditioning changes the distribution of Z, V/,
whereas fixing T does not.
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® Frisch’s thought experiment can be formalized and cast into a
rigorous probability framework by a hypothetical model that
adds an externally-specified hypothetical variable T which
causes the children of T (instead of T itself).

® The hypothetical model M, has the same equations and the
same distributions of error terms of the empirical model IM..

* It differs from the empirical model by appending a hypothetical
variable T which replaces the T-input of variables directly
caused by T.
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o Notationally, we have that T, = 7. U {T} such that
M(T) = @ and for each K € T we have that
My(K) = {T} U {M(K)\ {T}} if K € Che(T) and
Mp(K) = M(K) otherwise.

® Table 3 represents the empirical Generalized Roy model and its
hypothetical counterpart as DAGs (Directed acyclic graphs).

e Causal relationships are described by directed arrows, circles
denote unobserved (by the analyst) variables, and squares
denote observed variables.

¢ Below each DAG, we present the LMC for each variable of each
model.
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Table 3: Generalized Roy Model: Empirical and Hypothetical Causal
Models

Empirical Model Hypothetical Model

LMC LMC

V: Viz V1 (Z,7)
Z: Z1V Z 1 (V,Y,T)
T: T 1 @|(Z,V) T U (T,Y)[(Z,V)
Y Y 1L Z|(T,V) YJ_L(ZT)](T,V)
T:  (not defined for the model) T 1 (T,V,2)
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® The hypothetical variable T is external.

® Therefore it has no parents.

® According to (8), the hypothetical variable ~7~' is independent of
all its non-descendants, and, in particular, T 1L T always
holds.

® The hypothetical model is defined by a thought experiment,
whereas the empirical model is the data-generated process. The
hypothetical model breaks the direct T — Y link and replaces
it witha T — Y link.
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e Counterfactuals are generated by hypothetical (external)
manipulations of treatments.

® These are produced in the hypothetical model by conditioning
on the hypothetical variable T.

® For instance, the distribution of the counterfactual outcome Y
when the treatment is externally set to a value t € supp(T) is
P,(Y | T = t) and the counterfactual outcome mean is given
by Eo(Y | T =1t).

® These are in contrast to the empirical counterparts
P (Y| T=t)and E.(Y | T =1t).
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® Treatment effects are often (but not inevitably) defined at the
population level by expected values of counterfactual
differences.

® To fix ideas, suppose that T is a binary variable that indicates
college graduation and Y denotes adulthood income.

® The average treatment effect of college on income is given by
ATE = En(Y | T = 1) — Ex(Y | T_O)

® Treatment-on-the-treated (TOT) is the average causal effect of
college on income by those who choose to go to college
(T =1), which is given by
TOT =E(Y | T=1,T=1)—E(Y|T=0,T=1).
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® The hypothetical model describes an external manipulation that
entails several causal parameters.

® In the example, of the Generalized Roy model, we focus on an
external variation of the treatment variable T that causes a
single variable, the outcome Y.

® The model is suitable for investigating counterfactual
distributions and forming ATE, TT, and several other causal
parameters.

® The hypothetical variable can also be used in empirical models
where the treatment directly causes multiple variables.

® The hypothetical model can be used to investigate all causal
links of a treatment variable or a subset of these links
conditioned on various populations.
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Alternative Counterfactual Approaches

¢ Counterfactual analysis modifies the original empirical model to
characterise the causal operation of external manipulation.

® Such modification are often a source of confusion as they do
not follow from any standard statistical tool. This is why causal
analysis can be so challenging for people trained exclusively in
statistics.

e Using the hypothetical model is just one of several approaches
that supplement statistical theory in an effort to assess
causality.

® We describe two additional approaches that can be used to
define counterfactuals: the fixing operator and the do-operator
of 7.

® Both fix and do operators formalize the notion of
counterfactuals by suppressing some aspect of the original
empirical model.
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The fix operator is commonly used in economics (?). It is
implicit in Haavelmo's pioneering paper (?).

It defines counterfactuals by deleting the causal link between
treatment T and its children.

In the empirical model of equations (4)—(7), the counterfactual
outcome Y(t) is obtained by fixing the T-argument of the
outcome equation (7) to a value t € supp(T), so that

Y(t) = fy(t, V,Ey).

There is no direct empirical counterpart to this concept without
further analysis. Fixing does not eliminate the structural
equation for treatment variable T.

It only modifies the outcome equation by replacing the random
variable T by a fixed treatment value t € supp(T).

Thus the variable T is still present in the causal model when
fixing is applied.
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® The do-operator of ?? resembles fixing in the sense that it
replaces all the T-inputs of the structural equations for all the
variables directly caused by T.

® The do-operator differs from fixing by deleting (“shutting
down") the structural equation for treatment variable T (?).

e Neither fix nor the do operator are well-defined in statistics.

® They differ from statistical conditioning because conditioning
on T = t would, in general, change the distribution of all
model variables (i.e. V.Y and Z) in the empirical model while

fixing or doing T to a value t does not change the distribution
of its ancestors V, Z.
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The following table compares the different approaches for
generating counterfactuals for the Generalized Roy model.

The first column presents the original empirical model.

The second and third columns present the models generated by
the fix and the do operators respectively.

The last column presents the hypothetical model.
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Generalized Roy Model: Approaches to Generating Counterfactuals

e: empirical model; e

*.

“done”-do (T); h: hypothetical model

model when treatment fixed; ef: model when T is

Empirical Models

Hypothetical Model

Original Model (e) Fixing T at ¢ (e*) do(t) (e) Hypothetical Var. T (h)
Structural Equations
v V = filev) V = filev) V= filev) V = fu(ev)
Z: Z = fz(ez) Z = fz(ez) Z = fz(ez) Z = fz(ez)
T: T =f(Z,V,er) T =fr(Z,V,er) do(T =t) T=fr(Z,V,er)
y: Y = (T, V, ev) Y(t) = fr(t. V,ey) Y(t) = fy(t, V,ey) Y = (T V,ey)
T T = fi(e7)
Directed Acyclic Graphs (DAGs)
2 & [l )
Local Markov Conditions
v vuz viz vz V(Z,T)
Z: zuv Z 1L (V,Y(t) Z 1L (V,Y(t) ZU(V.Y,T)
T: TUa|(Z,V) T Y()|(Z,V) (not defined for the model) TU(T,Y)[(Z,V)
Y: Y 1 Z[(T,V) Y(t) L (Z.T) |V Y(t)LZ|V YU (Z,T)[(T.V)
T: (not defined for the model) (not defined for the model) (not defined for the model) TU(T,V,2)

Factorial Decomposition of the Joint Probability Distributions

Pe(Y,T.V.Z)=

Pe(Y | T, V)Pe(T | Z, V)P(V)P(Z)

P (Y(t), T,V,2) = Pa(Y(2),V,2) =
Per(Y(£) | V)Per (T | V. 2)Per (V)P (Z)  Par(Y(t) | V)Per(V)Pr(2)

PuZ. V. T.T,Y) =

Po(Y | T, VIPW(T | Z,V)P(V)Py(Z2)Ph(T)
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® The first panel of the table displays the structural equations for
each model.

® The empirical model is our benchmark. The fix and do
operators can be understood as sub-models that remove some
elements of the empirical model. The fix operator replaces the
T-input of the outcome equation by a value t € supp(T).

® |t has the same number of variables as the empirical model, but
(counterfactually) evaluates them for a fixed value of T. The
do-operator suppresses ( “shuts down™) the treatment equations
altogether.

® It eliminates the treatment variable. The hypothetical model
adds the hypothetical variable T, which replaces the T-input of
the outcome equation.
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The second panel displays the DAGs for each model.

The first column displays the DAG for the empirical model.
The DAG for the fix operator (second column) removes the
arrow that arises from T into Y.

Otherwise stated, the fix operator breaks the causal link of the
treatment variable but maintains all of the variables of the
empirical model.

The do operator excludes the variable T. lts DAG suppresses all
arrows arriving into or out of T. This is why the commonplace
concept of “treatment on the treated” is so challenging for the
do-calculus and requires special manipulations.??

The DAG of the hypothetical model is similar to the DAG for
the fix operator.

It also breaks the causal link arising from T by replacing the
treatment T by the hypothetical variable T.

22See 7.
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® The third panel presents the LMC of each of the model
variables.

® The independence conditions depend on the variables in each
counterfactual model.

® The outcome LMC of fixing model generates the following
independence relationship:

Y(t) L T| V. (9)
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® This is sometimes called a matching condition.

e |t states that the counterfactual outcome Y(t) is independent
of the treatment variable T conditional on the confounding
variable V.

® The corresponding matching condition for the hypothetical
model is:

Y I T|(T,V). (10)

® Matching conditions (9) and (10) are equivalent.

® They play primary roles in devising methods to identify
treatment effects.
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® The do operator eliminates the treatment T from the set of
model variables.

* |t does not generates a matching condition like that in (9) or
(10).

® Instead, ? develops a DAG criteria to check for analogs to
matching conditions in the empirical model.

® In the language of the do-calculus, matching
conditions (9)—(10) are described by the private language “V
d-separates Y and T."

® The elimination of the treatment T from the analysis does not
permit researchers to investigate parameters such as the TOT
because the treatment effect is conditioned on the values of the
treatment. ? solve this problem by supplementing the
counterfactual model with additional special structure.
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® The last panel of the table presents the factorization of the
joint distribution of the model variables.

® We use P, for the probability distribution of the empirical
model, P, for the model generated by the fix operator, P.: for
the do operator and P}, for the hypothetical model.

® The factorizations differ according to the number of variables in
each counterfactual model.

® All models share the same distributions of error terms.

¢ Consequently, the joint distribution of the ancestors of T, that

is (V, Z), is the same across all models. The distribution of the
counterfactual outcome Y(t) depends only on V and ey .

® Therefore, the distribution of the counterfactual outcomes is
the same regardless of whether we use the fix or the do
operator.
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One benefit of the hypothetical model is that is enables analysts to
use probability to converse with causality without introducing new
(and unnecessary) concepts.

It translates the probabilistically ill-defined causal operations of
fixing or doing into standard statistical conditioning.

Formally, for any set K of non-descendant variables of T and any
variable Y that is a descendant of T in the hypothetical model, we
have that:

(Y| T=t K)]Mhi(v(t) | K)}M* and
¢ 11
(v ?:t,{K\{T}})Mhi(Y(t)\{K\{T}})MeT -

where (Y | T =t, K)y, denotes the variable Y conditional on K
and on the event T = t in the hypothetical model, (Y(t) | K)yy .

and (Y(t) | K)p . denote the counterfactual outcome under fixing
and doing respecteively.
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Identification of Counterfactual Outcomes

® \We now move to Task 2 in Table 1.

e Counterfactuals are said to be identified if they can be expressed in
terms of the probability distributions of the observed data generated
by the empirical model.

® Thus identification requires the analyst to connect the probability
distribution of the hypothetical model with the probability
distributions of the empirical model.

® A connection between empirical and hypothetical models is made if
we can justify the following criteria: for any disjoint set of variables
Y, W in T and any subsets A, A’ C supp(T) we have that:?3

YT | (T,W)= Ph(Y| TeA TeA, W):

(12)
Po(Y | TEA , W)=P(Y | TEA,W).
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® Equations (12)-(13) state that we can move from the
hypothetical model to the empirical model whenever the
independence relationships (12): Y LL T | (T, W) or (13):
Y ILT|(T,W) apply.

® The relationships are symmetric in the roles played by T and T.

e While Y 1L T | (T, W) is an independence relationship

between some variable Y and T conditioned on T, the
independence Y 1L T | (T, W) is an independence relationship
between Y and T conditioned on T.
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¢ Equations (12)-(13) are useful for describing the intuitive
properties of the hypothetical model.

® Since the hypothetical variable T is externally specified and
independent of all its non-descendants, which include the
treatment T, K 1L T | T holds for any variable K not caused
by T.

® According to (13), we have that for
P(K|TeA)=P(K|TecA)and for A’ = supp(T) we
have that Py(K) = P.(K).

® In other words, hypothetical variation of treatment does not
change the distribution of its non-descendants.
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e Consider the hypothetical Roy model of Table 3.

® The LMC of Y generates the independence relationship
Y L TI|(T,V).

® Variable V is a matching variable. Conditioning on it generates
the useful relation:

PY | T=tV)=Pu(Y(t)|V)=P(Y | T =tV). (14)

® The first equality is justified by (11).
® It relates conditioning in the hypothetical model to fixing in the
empirical model.

® The second equality is justfied by (13).
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o If Y 1L T | (T, V) holds, we can access the counterfactual
outcome by conditioning on V.

® Otherwise stated, if the confounding variable V' were observed
and we could condition on it, we would be able to evaluate the
counterfactual outcome.

® Moreover, V' is not a descendant of 7', which implies that
Pp(V) = Pe(V).

® Thus if V were observed, the probability distribution of the
counterfactual Pp(Y | T = t) would be obtained by integrating
P.(Y | T =t,V = v) over the values v in the support of V.

® The econometric literature provides an unusually rich menu of
strategies to eliminate the confounding effects of V' not
available in the approximating literature. We discuss some of
this menu in the next section.
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4. ldentification of Counterfactuals in the

Generalized Roy Model
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® The Generalized Roy model is a laboratory for exploring the
large toolkit of the econometric approach to identifying
counterfactuals compared to what is possible in the
approximating paradigms.

® We describe several of these approaches here.

e Equation (14) states that the identification of causal effects in
the Generalized Roy model hinges on controlling for the
unobserved confounding variables V.

¢ A popular approach to doing so uses instrumental variables that
are independent of V.

® They control for V by shifting T without affecting the
distribution of V.

® However, the IV model described by equations (4)—(7) with Z

as an instrument does not identify interesting counterfactuals
without additional assumptions.
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® The literature on policy evaluation in structural settings
provides a large array of additional tools that facilitate
identification of the causal effect of T on Y.

® For example, the simplest identifying assumption is linearity.

® |f the treatment and the outcome functions are linear, so
T = Qp +O[1V+€T, and Y = ﬂo-I-/B]_T-f—BZV-FEy, where
o, a1, Po, P1, o are scalar parameters, the causal effect of T
on Y is given by [3;.

* |t is identified by the covariance ratio cov(Y,Z)/cov(T, Z)
and can be estimated by the Two-Stage Least Squares (2SLS)

Regression. This tool has been available to economists since
the 1950s.2*

24See 77777 ? invented this method.
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® The Generalized Roy model is not captured by this simple
two-equation system.

® The causal effect, Y(1) — Y(0) is, in general, a random
variable and not a constant so that treating [3; as a constant
does not capture the essential heterogeneity of treatment
effects across agents.

® The analogue to (3; is stochastically dependent on V.
® There are numerous approaches to identifying its distribution.

® We start with the use of instrumental variables in the presence
of heterogenous treatment effects and then consider alternative
approaches.
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Instrumental Variables

® 77 address this problem assuming a separable choice equation.
Their approach enables analysts to control for V and, in turn,
identify counterfactual outcomes.

® Their local Instrumental Variable (LIV) Model considers a
binary treatment T € {0, 1}.

® Their separability assumption arises from economic choice
theory and states that treatment is given by a latent
threshold-crossing equation that includes instrument Z and the
confounder V; thatis, T = 1[{(Z) > ¢(V)].

® Separability enables them to rewrite the choice equation as:
T=1[P(Z)>U]; P(Z)=P(T=1|2Z),  (15)

where P(Z) = P.(T = 1| Z) is the propensity score.



4. |dentification of Counterfactuals in the Generalized Roy Model

® The unobserved variable U is given by U = F, 4vy(¢(V))
where F, 4(v) is the cdf of ¢(V'), which is monotone increasing
by construction.

® Subscript “e" denotes computation with respect to the
empirical model.

¢ Variable U has a uniform distribution if ¢(V) is absolutely
continuous; that is, U ~ unif ([0, 1]).

® The structural approach uses unobservables. The
Neyman-Rubin approach does not. The do-calculus uses them,
but in a limited way, and rules out separability that is used to
obtain (15).

® This approach to unobservables precludes the use of methods
that are fruitful in the econometric approach.
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® The hypothetical and empirical models for the Generalized Roy
model that include the unobserved variable U are displayed in
Table 4.

® The LMC of T in the hypothetical Roy model of Table 4
implies that Y LL T | (Z, T, U).

 The LMC of Z implies Y L Z | (U, T).

® These two independence relationships imply, by contraction
property D, that Y 1L T | (T, U).

* Following the same analysis of V as (14), Y 1L T | (7~', U)
implies that:

Po(Y | T=1tU)=P(Y(t)|U)=P(Y | T =t U). (16)
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¢ Otherwise stated, controlling for U enables analysts to identify

counterfactual outcomes in the same fashion that controlling
for V does.

® Variable U is called a balancing score for V. This means that
U is a surjective function of V' that preserves the independence
relationship Y LL T | (T,V)=Y WL T |(T,U).®

?5The balancing score was introduced by ?.
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Table 4: Binary Choice Roy Model: Empirical and Hypothetical Causal
Models

Empirical Model Hypothetical Model

LMC

V: vz V1 (Z,T)

Z: Z 1 (U,V) Z U (V,U,Y,T)
U: Uuluz|v UL (Y,Z,T)|V
T: T 1LV |(Z,U) T 1L (T,V,Y)|(Z,U)
Y : Y 1 (Z,U)|(T,V) Y 1L (Z,U, T)|(T,V)
T:  (not defined for the model) T 1. (T,V,U,2)
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® The Local Instrumental Variable (LIV) model of ? can be used
to identify probability distributions of counterfactual outcomes
conditioned on U by taking the derivative of the observed
outcome with respect to the propensity score.

® More generally, the counterfactual expectation
E.-(g(Y(t)) | U= u) for any real-valued function g : R — R
is identified if there is sufficient variation of propensity score
P(Z) around the value u € (0,1).
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o Identification of E,(g(Y | T = t, U = u) comes from the
derivative of the expectation (—1)"tE.(g(Y)1[T = t] | P(2))
with respect to the propensity score at the value P(Z) = u. In
particular, it can be shown that:

Ef(Y | T=1U=u)—E(Y|T=0U=u)

E.(Y(1)=Y(0) | U=u) = aEe((;;lZi(Z)) oy (17)

where e* refers to the distribution generated by fixing and e
refers to the sample distribution. Identification requires
sufficient variation of the propensity score P(Z) around
u € [0,1].

e If P(Z) has full support, the average treatment effect can be
evaluated by ATE= Eo(Y | T=1)— E,(Y | T =0) =
S (E(Y | T=1,U=u)—E(Y | T =0,U= u))du.
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Stratification

® A recurrent theme in this section is that identification of
counterfactual outcomes hinges on controlling for the
confounding variable V.

® The solution of the LIV model invokes separability
assumption (15) which generates a balancing score U for V.

® According to (18), the nonparametric point-identification of the
counterfactual outcomes conditioned on U = u is obtained by
differentiating the outcome with respect to the propensity score
P(Z) at value u € (0,1).
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® Equation (17) assumes that the sample propensity score has
enough variation around the value v € (0, 1).

¢ Consequently, the equation is not directly applicable to discrete
instruments.

® One approach to overcome this limitation is to use the discrete
counterpart of equation (17).

® ? show that for any two values z,z" € supp(Z) such that
P(Zz') = v > u = P(z) we have that:
E(Y|Z=2)—E(Y|Z=2) B
P(T=1(Z=2)-P(T=1|Z2=2)
[ E. (Y(l) —Y(0) | U= u) du (18)

u—u

= E(Y(1)=Y(0) |u<U<V).

J. Heckman & R. Pinto Causality and Econometrics



4. |dentification of Counterfactuals in the Generalized Roy Model

® Equation (18) states that difference of mean outcomes
conditional on two instrumental values z, Z’ identifies the
counterfactual outcome over an interval of U defined by the
propensity scores P(z) and P(Z’).

® The equation evaluates a causal effect that depends on the
values of the instrument.

® These effects are called Local Average Treatment Effects
(LATE) by ?.

e | ATE-type effects differ from causal effects such as ATE or
TT, which do not depend on the IV values.?®

26?7 develop the relationship between LIV and LATE in depth.
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® A consequence of (18) is that ATE can be identified if there
are two instrumental variable values zj, z; such that z induces
full treatment nonparticipation (P(z) = 0), and z induces full
treatment participation (P(z;) = 1):
E(Y|Z=2)—-E(Y|Z=2)=
Ee*<Y(1) —Y(0)|o<U< 1)
—E(Y | T=1)—E(Y|T=0)=ATE.

® This setup is equivalent to a randomized control trial with full
compliance.

® 7 use functional form assumptions to extrapolate the
estimations over intervals of U to point estimates.

J. Heckman & R. Pinto Causality and Econometrics



4. |dentification of Counterfactuals in the Generalized Roy Model

® Another approach to controlling for V' exploits the discrete
nature of the IV to generate an alternative balancing score.

® Let instrument Z take values in the discrete set
supp(Z) = {z1,...,zn} such that P(z) < --- < P(zy).*"

e Let T(z) = 1[¢{(z) > ¢(V)] be the counterfactual choice that
would occur if Z were fixed at value z € {z,..., zn}.

® The response vector S = [T(z1),..., T(zy)]’ is the random
vector of potential choices across all Z-values.

2"The increasing ordering of propensity scores is assumed without loss of generality.
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® Response vector S shares the same causal relationships of
unobserved variable U in Table 4.

By this we mean that S is a function of V' and that the choice
T can be written as function of Z and S:

T— [I[Z:zl],...,l[Z:zN]] 'S

Similar to U, the response vector S is a balancing score for V.

The independence relationship Y LL T | (T, S) holds, which
implies that Po(Y | T =1,8)=P(Y | T =1t,5).

? show that the response vector S controls for V by generating
a special partition of its support that spans the support of V
and renders choice T statistically independent of V' within each
cell of the partition. Each column of S is just a list of
responses to treatments for a person of a given V.
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® The values of S are called response-types or strata.?®

® The separability assumption eliminates some of potential
response-types.

¢ An influential example is due to ?, who investigate the case of
a binary instrument and a binary treatment.

® There are four possible response-types termed always-takers,
compliers, never-takers and deniers.

¢ They invoke a monotonicity condition that is equivalent to the
separability assumption.

® The assumption eliminates the defiers and enables the
identification of treatment effects for the compliers.

® See ? and ? for general identification results.

28The concept was developed by ? and ?.
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The Matching Assumption

A popular method for identifying treatment effects assumes
that a set of observed pre-treatment variables suffice to control
for the confounding variable V.

e Otherwise stated, it assumes that the observed variable X is a
balancing score for the confounding variable V.

® This assumption is called Matching.?

® Another (structural) way to state this is that X spans the space
of V.

297 investigate several estimation methods that invoke the matching assumption.
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® Table 5 presents the empirical and the hypothetical models that
justify the matching assumption.

® The LMC of T in the hypothetical model implies that
Y ILT|(T,X).

® According to (13), we have that
Po(Y | T=1tX)=Pa(Y(t)| X)=P(Y | T =t,X) which
means that the counterfactual outcome is identified by
conditioning on X.

® Matching variables X are assumed not to be a descendant of
the hypothetical variable T, thus P,(X) = P.(X) and the
probability distribution of the counterfactual outcome is given
by Pex(Y(t)) = [(Pe(Y | T = t, X = x)dFe x(x).
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® The average causal effect of a binary treatment T € {0,1} is
evaluated by the weighted average of mean difference between the
treated and not-treated participants that match on X, namely,

ATE:/(Ee(Y] T=1X=x)—E(Y| T:O,X:x))dFe,X(x).:“O

307 incorporated additive separability between observable and unobservable variables as well
as exogeneity conditions that isolate outcomes and treatment participation into the matching
framework. Additionally, they compare various types of estimation methods to show that
kernel-based matching and propensity score matching have similar treatment of the variance
of the resulting estimator.
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Table 5: Matching Model: Empirical and Hypothetical Causal Models

Empirical Model Hypothetical Model
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® The matching assumption replaces the unobserved variable U
of the Generalized Roy model in Table 4 by the observed
variable X.

® In practice, it assumes that potential bias generated by
confounding variables can be ignored when controlling for
observed pre-treatment variables.

® Under matching, the identification of treatment effects does
not require an instrumental variable nor additional assumptions
such as separability.

® This assumption enables us to solve the problem of selection
bias induced by unobserved variables V' via conditioning on the
observed variables X.
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® The matching assumption is justified in the case of randomized
controlled trials (RCTs).

® In this case, the matching variables X denote the pre-treatment
variables used in the randomization protocol.

¢ In observational studies, a matching assumption is often rather
strong.

® It assumes that the analyst observes enough information to
make all the agent’s unobserved variables irrelevant (see ?).
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¢ Otherwise stated, matching assumes a symmetry in information
between the economic agent and the econometrician.

® There are several identification approaches that acknowledge
the possibility of information asymmetries between the agent
being studied and the econometrician: control function
approaches, replacement functions or proxy variables.

® These methods often differ considerably in terms of
assumptions and methodology.

® However, they all share the same identification principle: they
use observed data to evaluate a proxy variable that plays the
role of a matching variable.
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Matching on Proxied Unobservables

® Matching on proxied unobservables is a version of matching
that uses observed data to control for the confounding effects
of V. Consider the modification of the Generalized Roy model
in Table 6.

® The unobserved variable @ is a balancing score for the
unobserved confounder V.

® The matching conditions of hypothetical model,
Y 1L T | (T, Q), and its respective counterpart in the
empirical model, Y(t) LL T | Q, hold. Variable Q has two
additional properties: (1) it may cause outcome Y; and (2) it
may be measured with error by the observed variable M.
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® A common setup where @ arises is in the evaluation of college
returns where T denotes college graduation, Y denotes
earnings, and @ denotes unobserved abilities such as cognition
or conscientiousness.

® These abilities are not directly observed but measured with
error by an observed vector of variables M, such as
psychological surveys or test scores.

® Formally, we write M = fi(Q, ep).

® The identification strategy is to explore the structural function
M = fu(Q, en) to evaluate @, which, in turn, allows us to
control for V' and identify causal effects.
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® Matching on proxied unobservables has long been used in the
economics of education (see, e.g., the essays in ? and 7).

® The method is called the latent variable approach by ?.

® This literature offers several possibilities for estimating @
(2277).

® ? apply this method.

® A common parametric approach extracts factors from
psychological measurements to extract @ as a latent factor.
Nonparametric factor analysis is developed in ?7?.

® |t is also possible to condition nonparametrically on @ without
knowing the functional form of fy,.
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Table 6: Matching on Proxied Unobservables: Empirical and
Hypothetical Causal Models

Empirical Model Hypothetical Model
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Control Function

® The control function principle specifies the dependence of the
relationship between observables and unobservables in a
nontrivial fashion.

® The principle was introduced in ? building on earlier work by ?
and later popularized by ?.

® It was also applied in ? and ?. Heckman's sample selection
correction (?) is a control function.
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We illustrate the control function principle using a version of
the Generalized Roy model where V' is a scalar random variable
and the binary choice T is given by the separable equation

T =1u(2) = V].

Let K = (T, V,ex) represents unobserved skills caused by
the treatment T and the unobserved confounding variable V.
In addition, let the outcome equation be additive in K, that is
to say that the outcome Y can be written as

Y =f/(T,ey) +¢(K),

The model is displayed as a DAG in Table 7.

The LMC of Y in the hypothetical model implies that

Y ILT|(T,K).

This means that K is a matching variable.

The control function approach seeks to control for variable V
by estimating the function ¢(K) of the outcome equation.
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® 77 use the assumption of separability of observables and
unobservables in the choice equation and the outcome
assumption of additivity to evaluate 1(K) as a function of the
propensity score P(Z).

® Similar to the LIV Model, we can use the CDF transformation
to write the choice equation as T = 1[P(Z) > Fy(V)], where
Fv(V) ~ unif([0,1]).

® Note that the expected value of the outcome conditional on
T =1 gives the conditional counterfactual mean:

E(Y|Z, T=1)=E-h(Y)|Z, T=1)=
Ef(Y|T=1,2T=1),

where the first term is observed, the second term uses fixing
and the last one uses the hypothetical model.
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® Under separability and outcome additivity, we can express
En(Y()| T=1,2ZT=1)as:
En(Y|T=1,Z=2,T=1)=E4(f(T.ey)| T=1)+Es(v(K)| T=1,Z=2,T
=En(fr(Ll,ev))+En(v(fk(1,V,ek)) | Z=2, T=1)
(setting En(fy(l,ey)) = al)
= a1+ B (0 (1, V. ex)) | P(2) > Fu(V),

— o +E. (z/)(fK(l, V,ex)) | P(z) > FV(V)),
LE(Y|T=1,Z,T=1)=m+ A(P(Z)) ,
———
control function
where
A(P(2)) = E(4 (fuc(1, Vo)) | 2, T =1)

where the first equality uses the additivity assumption, the second uses the
fact the T is an external variable, the third uses the separability

assumption, the fourth switches the hypothetical model into the empirical
model as V/, ek, Z are non-descendants of T.
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® The last equation gives the expectation

E(Y| T=1,Z,T =1) as a function of the propensity score
P(Z).

e Control function f;(P(Z)) can be estimated from observed data
and the expected value of the counterfactual outcome can be
evaluated as

Ei(Y(1)) = / a1 + (p)dFp2)(p).
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Table 7: Control Function: Empirical and Hypothetical Causal Models

Empirical Model Hypothetical Model

J. Heckman & R. Pinto Causality and Econometrics



4. |dentification of Counterfactuals in the Generalized Roy Model

Panel data Analysis and Other Approaches

A commonly used panel data method is
difference-in-differences as discussed in ?, ?, ?, and ?.

All of the estimators previously discussed can be adapted to a
panel data setting.

? introduce difference-in-differences matching estimators to
eliminate the bias in estimating treatment effects.

? extends this work.
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Panel data Analysis and Other Approaches

e Separability between errors and observables is a common
feature of the panel data approach in its standard application.

® ? and (?) present analyses of nonseparable panel data
methods.

® Regression discontinuity estimators, which are versions of IV
estimators, are discussed by ?.
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¢ Table 8 summarizes some of the main identification approaches
for the Generalized Roy model discussed here. The table barely
scratches the surface, but gives a sense of the broad menu in
the econometric approach.

® The essays in the Handbooks of Econometrics (777) give a
range of other estimation approaches.
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Table 8: Some Alternative Approaches that Identify Treatment Effects by
Controlling for V

YU TI(T,X,V), TE{0,1} E(Y|T=t,X=x)=[E(Y|T=tX=xV=v)dF, yjx_(v)

Method Assumes Need Instrument (Z)?  Identify Distribution of V?

Matching® V, X known No Yes (V observed)

V estimated, X, Z known (contin-

Control .
ontro uous T); Bounds on quantiles of V Yes Yes (over support)
Functions’ X :
estimated (discrete case)
Factor Distribution of V estimated from No Yes (with auxiliary measurements over sup-
Method® additional measurements of V (M) port)
Estimate intervals of quantiles of V (?7)
IV: LATE, and conditions on them; LIV shrinks inter-
d Z, X known Yes . . .
LIV val of quantiles of V to a point using con-
tinuous instruments and conditions on them
Instruments give Identify distribution of strata which places
Stratification®  Z, X known restrictions on strata  interval bounds on V and conditions on
(balancing scores for V) them
Longitudinal . . . - . . .
& ¢ Variety of assumptions Covariance restrictions  Yes and in long panels can identify V
Data Methods'
Mixing VX No (intervals of V) Yes (Mixtures)
Distributions®

277; 777, 9See review in ?; 77; f77; 8777
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5. The Neyman-Rubin (NR) Causal Model
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® The Neyman-Rubin causal approach uses the language and
framework of experimental design developed by ?, 7, and ? and
popularized by ?.

® |t ignores essential aspects of the econometric approach to
causality and conflates distinct concepts (e.g., SUTVA).3!

31(?7) explains that SUTVA - Stable Unit Treatment Value Assumption - is a mixture of two
two distinct concepts regarding function autonomy and no interaction among agents.
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¢ It does not define hypothetical models nor does it employ
structural equations to characterize causal models.
® |t focuses on units of analysis instead of system of equations.

® Causal models are characterized by statistical independence
relationships among counterfactual counterparts of observed
variables, never precisely defined.

® The NR approach lacks the clarity of interpretation offered by
causal models described by structural equations.

e |t is very often difficult to map the independence relationships
of a NR model into the actual causal relationships produced by
economic theory.

® In particular, NR makes it difficult to assess the credibility of
assumptions that ensure the identification of causal effects.
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® Another drawback is that the NR framework lacks fundamental
tools of econometric causal analysis.

¢ It does not explicitly model unobserved variables in structural
models.

® This feature substantially limits the use of the tools exposited
in Section 4.

® It rules out (or makes cumbersome) several fruitful econometric
strategies such as balancing bias within models using
compensating variations of arguments of structural functions to
keep agents at the same levels of well being,3? and
cross-equation restrictions on both observable and unobservable
model components, or functional form restrictions.

32G5ece e.g., 27.
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® In practice, the set of tractable identification strategies that
employ the NR framework is limited to a few possibilities:
randomized trials, IV and its many surrogates and
differences-in-differences (see ?). This section illustrates
drawbacks of NR in analyzing core policy questions.
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The Generalized Roy Model under NR

® The NR framework focuses on the unit of analysis i € Z which
usually represents an economic agent or entity.

® The framework describes part of the Generalized Roy
model (4)—(7) using two counterfactuals: T;(z) is the potential
treatment when the instrument Z is set to value z € supp(Z);
and Y;(t, z) is the potential outcome of agent i when Z is set
to value z € supp(Z) and choice T is set to t € supp(T).

® |t does not explicitly characterize the choice equation.

® |t prides itself on being nonparametric, although some
proponents claim that assuming linearity is an assumption, even
when models are fundamentally nonlinear.33

337 ? show that nonlinearity is intrinsic to hedonic models and that linearizing it produces
identification problems.
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® The NR framework characterises the Generalized Roy
model (4)—(7) by three assumptions:
® An exclusion restriction states that Y;(t,z) = Y;(t,Z2’) for all
z,z' € supp(Z) and for all i € Z.
® |V relevance: Z is not statistically independent of T, that is
Z U T
©® Exogeneity condition Z 1L (Y(t), T(z)).
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The exclusion restriction means that Z does not directly cause
Y. Thus, we can express the counterfactual outcome as Y;(t)
instead of Y;(t, z).

IV relevance means that T is caused by Z.

The exogeneity condition of the NR framework can be traced
back to the independence relationship between Z and V of the
Generalized Roy model (4)—(7).

In the NR framework, the exogeneity condition is an
assumption.

In the Generalized Roy model, the exogeneity condition is a
consequence of the causal relation among model variables.
Namely, that the Z and V' are external variables.

The LMC (8) implies that Z 1L V/, which, in turn, generates
the exogeneity condition.
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The identification of counterfactual outcomes requires
additional assumptions.

A popular assumption securing identification is the
monotonicity condition (19) of ?.

It states that a change in an instrument induces agents to
change their treatment choice towards the same direction.
Notationally, for any z, z’ € supp(Z), we have that:

Ti(2)>T(Z)YVieZI o Ti(2)<T(Z)VieZ (19)

? shows that the monotonicity condition (19) is equivalent to
the separability assumption T = 1[((Z) > ¢(V)].

Otherwise stated, the NR counterpart for the Generalized Roy
model separability assumption is the monotonicity condition.
Each condition enables the identification of causal effects of T
on Y in its respective framework.

At this level, the IV models in the two frameworks are
equivalent.
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® Model equivalence does not, however, imply that they offer the
same analytical capacities.

® In particular, the Generalized Roy model (4)—(7) explicitly displays
the unobserved confounding variable V, while NR does not.

® This feature enables analysts to further investigate the model and
use other approaches for controlling for it.

® Section 4 shows that the identification of counterfactual outcomes
hinges on the analysts’s ability to control for the unobserved
confounding variable V.
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® 7?7 use the fact that U is a balancing score for V' to define and
identify a new parameter called the marginal treatment effect
(MTE):

MTE(w)=E(Y | T=1,U=u)—E(Y|T=0,U=u) =
E(Y(1) = Y(0) | U =u).

® The MTE plays a primary role in generating a range of causal
effects commonly sought in policy evaluations.

e A few of these causal parameters are presented in Table 9.
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Table 9: Some Causal Parameters as Weighted Average the MTE

Weights

MTE Representation

= / MTEWE(p)do WATE(p) = 1
0

1 - Fr(p)

Causal Parameters

ATE = E(Y(1) — Y(0))

TT—EY@-vO T=1) = [ MTEGW (G W) -
f (1= Fp(t))dt
TUT = E(Y(1) — Y(0) | T = t) _ /1 AMTE(YWTUT (p)dp WV (p) = : Fp(p)
0 f (1= Fp(t))dt
: I (£ = E(P))dFe(t)
TSLS = % :/MTE(p)WTSLS(p)dp WS (p) = *1’—
’ 0 {( ) de(t)
E(Y | Zoz)— E(Y | Z=2) [V 1
_ =4)— =2) _ LATE LATE, \ _
LATE= o) P _P(ZU) MTE(p)W™""" (p)dp W™"""(p) = @) = Pz)

Source: 7.
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® The power of analysis generated by switching from the NR
framework to a structural equation framework is substantial.

® The use of structural equations facilitates a richer analysis and
a deeper investigation of the properties of the Generalized Roy
model.

® Such analyses cannot be achieved in the NR framework because
it does not include unobserved variables, nor does it employ
structural equations.

e This analytical deficiency of the NR framework limits the
researcher’s ability to extend causal analysis of the Generalized
Roy model and other economic models.
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® The parsimonious machinery of the NR framework is often
misunderstood as endowing the Generalized Roy model with a
greater level of generality.

® This impression is misleading as the IV model featured in the
NR framework is equivalent to the Generalized Roy model
described by equations (4)—(7) and its monotonicity criteria is
equivalent to a separability condition. Its apparent simplicity is
due to its lack of explicit statement of its assumptions.
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The Matching Model in the NR

® A common identification approach in NR is a matching
assumption on observed variabes.

® |t states that the treatment choice T is independent of
counterfactual outcomes Y'(t) when conditioning on observed
pre-treatment variables X, that is, Y(t) 1L T | X.3*

® Intuitively, the assumption states that pre-treatment variables
X are sufficiently rich to account for all the unobserved
variables that jointly influence treatment choice T and outcome
Y. The assumption can be easily criticized as often being
overly optimistic for the case of observational studies (7).

34In the language of ?, X d-separates Y and T.
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® |t is natural to infer that increasing the number of matching
variables may only decrease the potential bias generated by
unobserved confounders.

o This statement is known to be false.35

® However it is rather difficult to investigate the truth of this claim
using the NR framework. The causal model of Table 10 clarifies this
point.

35See, for instance, ?77.
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Table 10: Hypothetical Matching Model

Causal Model DAG Independence
elationships

V = fy(ev)
J = fy(ey)
W = fw(ew)
V = fy(ey) Y(t) 1L T | K
T=f(V,W,er) Y(t) L. T | X
K =1k(T,V, ex) Y(t) L T|(X,K)
U=fy(K,eu
X = fK(W7 J7€X)
Y = fY(T7 Ka U7 J7€Y)
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® The causal model Table 10 comprises four observed variables: the
treatment T, the outcome Y, a pre-treatment variable X and a
post-treatment variable K.

® The model also contains four unobserved variables V, U, W, J.
The causal relationship among observed and unobserved variables
renders Y(t) LL T | K even though Y(t) . T | X.

® The independence relationship that characterises the matching
assumption holds for post-treatment variables, but not for the
pre-treatment variable. Moreover, adding the pre-program variable
X to the conditioning set of Y(t) LL T | K prevents identification
because Y(t) U T | (X, K).
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® The causal model of Table 10 exemplifies the difficulty of
performing causal investigation within the NR framework. The
unusual properties of the model stem from the particular causal
relationships among its observed and unobserved variables.
This model is not easily analyzed within the NR framework
because it lacks unobserved variables and suppresses the
structural equations that clearly describe the causal
relationships among variables.
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Mediation Models under NR: An example

® Mediation models originate in the path analysis and simultaneous
equations literatures.3® They trace the impacts of interventions on
outcomes through their multiple channels of operation.

® |dentifying the causal models generated by NR assumptions is often a
daunting task and the economic content of these assumptions is often far
from clear.
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® \We examine several mediation models to illustrate this fact and
show the power of the econometric approach compared to an
approach based on NR principles.

® Table 11 uses the econometric approach to present a general
mediation model in which a treatment T causes a mediator M
and an outcome Y that is caused by both T and M. V
denotes a random vector that plays the role of the unobserved
confounder causing T, M and Y. The counterfactual mediator
when the treatment if fixed at t € supp(T) is
M(t) = fm(t, V, EM).

® The counterfactual outcome when the treatment is fixed at t
and the mediator is fixed at m € {0,1} is

Y(t,m) = fy(t,m, V ey). The counterfactual outcome when we
fixoonly T at tis Y(t) = fy(t, M(t), V,ey).
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Table 11: Mediation Model with Confounding Variable

Causal Model

V = fy(ey)
T=1f(V,er)

M = fI\/I(T7 V7EM)
Y =f(T,M,V, ey)

J. Heckman & R. Pinto

Causality and Econometrics



5. The Neyman-Rubin (NR) Causal Model

® The goal of mediation models is to decompose the total effect of T
on Y into an indirect effect that includes the effect of T on M and
M on Y and a direct effect not mediated by M.

® To facilitate the discussion, let T and M denote binary variables
taking values in {0, 1}.

® The average (total) effect of T on Y is E..(Y (1) — Y(0)).
® We can also define the average direct effect of T on Y as

1
Eee( Y(LM) = Y(O,M)) = 3 Eeu(Y(1, m) = Y(0, m))Pe(M = m)
m=0

and the average indirect effect as
Ee.(Y(T,0)—Y(T,1)) = Z%:o Eer(Y(t,1)=Y(t,0))Pe(T =t).37

37 Alternatively, we can then define the direct effect and indirect effects for a given t by (20)
and (21) respectively.

DE(t) = Ee. (Y(1, M(£)) — Y/(0, M(t))) = /Ee*(Y(l,m) — Y(0, m))dFuey(m)  (20)
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® Table 12 displays there hypothetical models suitable for examining
the total, direct and indirect effects. The first DAG corresponds to
the total effect. The hypothetical variable T replaces the T-input
of both the mediator M and the outcome Y equations. The second
DAG corresponds to the indirect effect only and the hypothetical
variable replaces only the T-input of the mediator equation.

® The last DAG corresponds to the direct effect only where the
hypothetical variable T replaces only the T-input of outcome
equation.
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Table 12: Hypothetical Models for the Mediation Model: Total, Direct
and Indirect Effects

Total Effect Indirect Effect Direct Effect
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® The confounding variable V prevents the identification of the
counterfactual means E.-(M(t)) and E.-(Y(t, m)).

® A solution to this identification problem using NR is the
Sequential Ignorability (SI):%®

(Y(t',m),M(t)) LL T, (22)
Y(t',m) 1L M(t)| T, (23)

for any t, t' € supp(T) and m € supp(M).

® S| (22)—(23) enables analysts to identify counterfactual means
by statistical conditioning E.(M(t)) = E-«(M | T = t) and
Ee«(Y(t,m)=E(Y | T =1t,M=m).

38See 77 for the properties of these assumptions.
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SI assumptions (22)—(23) can be understood as an application
of the matching condition to mediation models.

Assumption (22) states that the choice T is exogenous with
respect to the outcome and mediator counterfactuals.

The assumption would be justified if T were randomly assigned
by a RCT experiment.

The interpretation of assumption (23) is less straightforward.

It states that the counterfactual mediator M(t) is independent
of the counterfactual outcome Y(t, m) when conditioned on T.

The assumption cannot be directly tested even in randomized
experiments (7).

SI assumptions (22)—(23) are much more easily interpreted
using structural equations.

The assumptions rule out any confounding variable V/,
generating the model in Table 13.
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Table 13: Mediation Model with No Confounding Variables

Causal Model DAG
T = fr(eT)

T M Y
M = fu(T, eu) .Q.
Y =f(T,M,ey)

J. Heckman & R. Pinto
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e S| assumptions (22)—(23) are rather strong.

® They can be weakened if instrumental variables are available as
depicted in Table 14.

® We use the model to exemplify a case in which NR assumptions
are logically possible but generate a causal model that is
difficult to justify using any plausible argument. The structural
model enables the analyst to interpret the statistical
assumptions using behavioral theory.
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Table 14: Mediation Model with Instrumental Variables

Causal Model

V = fy(ey)

Z = fz(éz)
T=1(Z,V,er)
M= (T, V,em)
Y =f(T,M,V, ey)
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® The mediation model with IV has four counterfactuals, T(z),
M(t), Y(t), Y(t, m) previously defined.

¢ In language of NR, the model would be characterized by IV
exogeneity condition Z 1L (T(z), M(t), Y(t), Y(t, m)).

® The condition holds due to the independence of Z and V.

® Suppressing Y generates an IV model where M plays the role
of the outcome.

® To dig more deeply, investigate the case of a binary instrument
Z €{0,1}.

39Note that if we were to suppress M from the DAG of Table 14, we would obtain the
empirical model of Table 3
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® The response vector S; = [T;(0), T;(1)]’ denotes the vector of
treatment choices that agent / would take if it were assigned to
each of the instrumental values. Section 4 shows that, given S,
the treatment choice T depends only on the instrument Z.

® The exogeneity condition states Z is independent of the
counterfactual outcome Y(t). Thus

T 1L Y(t)]| S. (24)

S is a balancing score for V.
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® 7?7 uses the language of NR to identify mediation effects using
instrumental variables.

¢ His solution merges S| (22)-(23) with the matching property of
the response vector S in (24).

® He advocates an assumption that he terms the local average
causal mediation effects (LACME) assumption:

(Y(t,m),M(t")) LL T | (S =[0,1]"), (25)
Y(t,m) 1L M(¢) | (T,S=[0,1]).  (26)
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* LACME (25)—(26) adds the the response vector S as an
additional conditioning variable to the Sl independence
relationships in (22)-(23).

e Assumption (25) is a simple extension of the matching property
of S from the IV model of Table 13 to the mediator model of
Table 14. Under monotonicity (19), the LACME assumption
identifies the direct and indirect mediation effects for compliers.
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® |t is easy to interpret LACME in terms of NR assumptions:
assumptions(25)—(26) are a weaker version of Sl (22)-(23) that
incorporates the LATE analysis of ?.

® On the other hand, it is difficult to gauge how the LACME
assumptions fit into the mediation model of Table 11.

® |t is even harder to interpret the causal content of these
assumptions.
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e Table 15 presents two DAGs that use the structural approach
to clarify the causal content of LACME.

® The first DAG places the unobserved response vector S into
the mediation model of Table 11.

® The response vector S plays the role of a balancing score for V
only for choice T .40

® The addition of the response vector does not result in any loss
of generality.

40This property is based on the discreteness of the instrument.
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® The second DAG displays the mediation model under LACME.

® According to assumption (26), the response vector S plays the
role of a balancing score for T and M.

¢ In addition, LACME prevents V from jointly causing M, Y and
implies that S directly causes M, Y. It is hard to translate
LACME into credible causal relationships.
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® S =[T(0), T(1)] is expressed as a function of the confounding
variable V because T(z) is a function of V. Note that the
choice T is expressed as a function of S and Z because
T =[1[Z =0],1[Z = 1]]S.

® The response vector S = [T(0), T(1)]' is expressed as a
function of the confounding variable V because T(z) is a
function of V.

® The resulting DAG does not include more information than the
original model of Table 11 because S is unobserved.
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® The second DAG displays the mediation model under LACME.
From assumption (26), the response vector S plays the role of
a matching variable for the causal effect of M on Y. It plays
the role of a balancing score for V for T, M, and Y. The
assumption prevents V' from jointly causing M, Y and implies
that S directly causes M, Y.

® |t is hard to produce interpretable models that justify S as a
cause of M or Y. LACME is an unmotivated but statistically
useful assumption.
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Table 15: Mediation Model including § and the Mediation Model under
LACME Assumption

General DAG with IV DAG under LACME
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Using Structural Equations to ldentify the Mediation Model with IV

? study the identification of causal effects for the mediation
model with an instrumental variable.

® Their analysis illustrates the gain in clarity and scrutiny when a
causal model is expressed by structural equations instead of NR
statistical independence relationships.

® A typical empirical setting of an IV model consist of one
instrument and various outcomes.

® A mediation model with an instrument arises when treatment
causes an intermediate outcome (the mediator), which in turn
causes a final outcome. The DAG of this empirical model is
presented in the first column of Table 16.

J. Heckman & R. Pinto Causality and Econometrics



5. The Neyman-Rubin (NR) Causal Model

® The second column of Table 16 presents the DAG generated by
suppressing the final outcome. The resulting DAG is an IV
model like that examined in Section 3. The causal effect of T
on M can be identified by the methods discussed in Section 4.

® The third column of Table 16 suppresses the mediator M.

® The resulting model is also an IV model. This means that the
total effect of T on Y can also be identified by the methods of
Section 4.

e Unfortunately, the IV does not identify the causal effect of M
on Y. Consequently, mediation analysis cannot be conducted
without further assumptions.
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Table 16: Dissecting the Mediation Model

Original Model Suppressing the Qutcome Suppressing the Mediator
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® ? address the question of whether it is possible to use an
instrumental variable Z to nonparametrically identify the causal
chain connecting T, M, Y while maintaining the endogeneity
of the treatment T with respect to the mediator M and
outcome Y.

® They show that the only solution to this problem is to assume
the partially confounded mediation model of Table 17.
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Table 17: Partially Confounded Model with Instrumental Variables

Causal Model

Vr = fur(evy)

Vy = fyy(evy)

/= fz(ez)

T =fr(Z,Vr,eT)

M = fM(T7 VT7 VY7€M)
Y = fY(Tu M7 VY7 6Y)
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® The partially confounded assumption is that V+ 1L Vy.

® The assumption generates an additional exogeneity condition
(M(z),Y(m,t)) LL Z | (T = t) while maintaining the
endogeneity of the treatment T with respect to M and Y. This
means that Z is a valid instrument for identifying the causal
effect of M on Y when conditioning on the treatment variable
T. If the assumption holds, the causal effect of M on T can be
evaluated by the methods of Section 4.

e ? discuss the intuition, plausibility, and estimation of the
partially confounded mediation model. They illustrate a range
of examples where the partially confounding assumption may
hold and where it does not.
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6. The Do-Calculus and the Hypothetical

Model
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6. The Do-Calculus and the Hypothetical Model

® This section compares the do-calculus (DoC) of ? with the
Neyman-Rubin (NR) framework of ?? and the Hypothetical
Model (HM) approach of ?.

® The DoC was first presented in ?.

® The method employs graph theory-based algorithms to identify
the probability distribution of counterfactual variables in causal
models represented by DAGs.*!

® |n contrast with NR, DoC is based on autonomous structural
equations.

® The method clearly describes the causal relationships between
model variables and does not encounter the problematic causal
interpretations of the NR approach.

41For a recent book on the graphical approach to causality, see ?, and for related works on
causal discovery, see 7, 7, ?, and ?.
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® The DoC applies to any nonparametric and recursive system of
structural equations.

® Similar to the HM, DoC allows for unobserved variables.

® |t can be applied to multiple equation causal models and a
range of causal inquiries.

® The HM and the DoC differ greatly regarding counterfactual
manipulations.

® To address the causal operation of fixing, the HM solution uses
a hypothetical model that formalizes the notion of thought
experiments and places it on a sound probabilistic footing.
Contrary to HM, DoC defines hypothetical models by making
manipulations within the empirical model. The method
implements the notion of setting or fixing using a set of rules
that combine graphical analysis, independence relationships and
probability equalities.
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® Some notation is required to explain the method. Let G denote
a DAG that represents the original causal model. Let Y, K, X,
T denote disjoint variable sets in 7T .

¢ In DoC notation, T(X) denotes the variables in T that do not
directly or indirectly cause X. The DoC uses Gy for the derived

DAG that deletes all causal arrows arriving at K in the original
DAG G.

® Gy denotes the DAG that deletes all causal arrows emerging
from T. In this notation, Gg 1 stands for the derived DAG that
suppresses all arrows arriving at K and emerging from T, while
Gi 7xy deletes all arrows arriving at K in addition to arrows
arriving at T(X), namely, arriving at variables in T that are not
ancestors of X.
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® The DoC uses three rules.

® Each rule combines a graphical condition and a conditional
independence relation that, when satisfied, imply a probability
equality: The Three DoC Rules
® Rule 1: if Y 1L T | (K, X) holds in G, then
P(Y | do(K), T,X) = P(Y | do(K), X),
® Rule 2: if Y 1L T | (K, X) holds in Gg , then
P(Y|do(K),do(T),X) = P(Y | do(K), T, X),
® Rule 3: if Y LL T | (K, X) holds in GKW’ then
P(Y|do(K),do(T),X) = P(Y | do(K), X),
® The process of checking if a causal effect is identified requires
reiterative use of these rules. We present several examples of
how to use the DoC method below.
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® In computer science, the DoC is said to be “complete.” This is
different from the notion of completeness as defined in
simultaneous equations theory discussed in Section 7.

e The DoC notion is that if a causal effect is identifiable, it can
be identified by the iterative application of some sequence of
the three rules (?7?).
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® A major limitation of do-calculus is that it only applies to
non-parametric models that can be fully characterized by a
DAG.

e Otherwise stated, the method does not account for
assumptions about the functional forms of the structural
equations or cross covariance restrictions.

e This limitation hinders the application of most of the popular
econometric tools used in empirical economics such as cross
equation restrictions, separability, additivity or monotonicity
assumptions.

® For instance, the Generalized Roy model is not identified by
DoC because it requires assumptions such as separability. The
same is true of the IV model. Separability cannot be
characterized by conditional independence assumptions
generated by a DAG.

¢ By the rules of do-calculus, the IV model and the Roy model

are not identified. We now demonstrate these points.
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Using Do-Calculus to Investigate the Roy Model

® \We show the limitations of the DoC for identifying the Roy
model.

Table 18: Using Do-Calculus to Investigate the Roy Model

Original DAG G Derived DAG Gz Derived DAG G5 Derived DAG G+

Z
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® The first column of Table 18 presents the DAG of the original
Roy model, which is denoted by G.

® The second column displays the DAG Gz which suppresses the
arrow arising from Z.

o The LMC of Z on DAG Gz is Z 1L (Y, T).
® From Rule 2 of DoC, we obtain P(T | do(Z)) = P(T | 2).

® Summarizing:

Gz =T 1. Z,= byRule2 P(T |do(Z)) = P(T | Z).
(27)
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e This says that Z is statistically independent of T when we fix
Z.

¢ In the NR framework, this is the exogeneity condition
T(z) LL Z, namely, that the instrument Z is independent of
the counterfactual choice T(z). Instrument Z in DAG Gz is
independent of both 7 and Y. Thus we can replace T by Y in
(27) to obtain P(Y | do(Z)) = P(Y | Z).

® This means that conditioning on Z is equivalent to fixing Z.
Indeed the instrument Z is an external variable and the causal
operation of fixing is translated to standard statistical
conditioning.
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The third column of Table 18 displays the DAG G+ which
suppresses the arrow arriving at T.

LMC of Z on G+ implies Z 1L Y.
By Rule 1 of DoC, we have that
P(Y | do(T),Z) = P(Y | do(T)).

Summarizing:

Gy = Y1.Z = byRule 1 P(Y|do(T),Z)=P(Y |do(T)).
(28)

This means that Z is statistically independent of Y when we fix
T.

This statement refers to the exogeneity condition Y(t) 1L Z or
the independence relationship Y L Z | T of the HM
framework.
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The last column of Table 18 displays the DAG G+ ; which
suppresses the arrow arriving at T and arising from Z.

* Note that the DAGs G+ ; and G are the same. The LMC of
Z for G implies Z 1L Y.
By Rule 1 of DoC, we have that

P(Y | do(T),Z) = P(Y | do(T)).

In summary:

Gy = Y1LZ,= by Rule 1 P(Y|do(T),Z)=P(Y |do(T)).
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® This means that Z is statistically independent of Y when we fix
T.

* This statement is the exogeneity condition Y(t) LL Z or the
independence relationship Y Ll Z | T of the HM framework.

® The LMCof Zis Z 1L (T, Y, V) which implies that Z LL| T
holds. Using Rule 2 of the DoC we obtain:

Gr,=Y W Z|T, soRule2P(Y|do(T),do(Z)) =

(30)
P(Y | do(T), 2).
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e Combining P(Y | do(T),Z) = P(Y | do(T)) in (29) with
P(Y | do(T),do(Z)) = P(Y | do(T), Z) in (30) we obtain
P(Y | do(T),do(Z)) = P(Y | do(T)). This means that the
probability distribution of the outcome Y when we fix both Z,
T is the same as the counterfactual outcome generated by
fixing only the choice T. In the NR framework, this property
refers to the exclusion restriction Y;(t,z) = Y;(t,Zz’) for all
z,7" € supp(2).

® These statements exhaust the analysis of the Roy model
analysis that can be performed using DoC.

® DoC describes some key properties of the Roy model, but
application of its rules alone cannot deliver identification of
treatment effects.

¢ Unfortunately, the type of assumptions that would secure the

identification of treatment effects in the Roy model are ruled
out by DoC.
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The Front-door Model

® To make a more positive statement, it is useful to compare the
identification machinery of the DoC and HM using a causal model
when treatment effects are identified by DoC.

® We use the Front-Door model of ? to illustrate the differences in
the approaches.

¢ The Front-Door model (31)—(34) consists of three observed
variables T, M, Y and an unobserved confounding variable V.
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® Treatment T causes a mediator M which in turn causes
outcome Y.

¢ Confounding variable V causes T, Y but not M.%2

V = fy(ev) (31)
T =1r(V,er) (32)
M = (M, em) (33)
Y =Ff(M,V, ey) (34)

42As before, the error terms ey, €T, €pm, €y in the front-door model (31)-(34) are mutually
statistically independent.
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® The causal effect of T on Y in the Front-door model is
identified.

® This result arises from the fact that the causal effect of T on
M is not confounded by V/, and therefore it is identified by
standard methods.

e Also, conditioning on T blocks the effect of the confounder V
on M. Thus, we can identify the causal effect of M on Y
conditional on T.

® The causal effect of T on Y can be evaluated as the
compound effect of T on M and M on Y.
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Table 19: Using Do-Calculus to Identify the Causal Effect of T on Y in
the Front-Door Model

Front-Door Model G Derived DAG Gt Derived DAG Gy;
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® We illustrate how to use DoC to identify the distribution of the
counterfactual outcome P,(Y(t)).

® For sake of notational simplicity, suppose that all variables are
discrete. The do-calculus is cumbersome.

® The method requires the five derived DAGs displayed in
Table 19.

¢ The identification formula of the counterfactual outcome is
obtained by the following sequence of steps:

® 7 1L M in Gt holds, thus by Rule 2 we have that
Pi(M | do(T))=Pe(M|T).

® M 1L T in Gy; holds, thus by Rule 3 we have that
P.i(T | do(M)) = P(T).

©® M 1L Y | T in Gpy holds, thus by Rule 2 we have that
Pi(Y | T,do(M))=P(Y | T, M)
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6. The Do-Calculus and the Hypothetical Model

O Adding these results, we have that:
" Pe(Y | do(M)) =" Pi(Y | T =t,do(M))P.i(T =t | do(M))
t
by Law of Iterated Expectations (L.I.E.)
_ZP Y| T=tMP(T =1t)
by steps 1,2, and 3
® Y UL M| T in Gg, holds, thus by Rule 2,
Pi(Y | M,do(T)) = P.(Y | do(M),do(T))

@ Y UL T |Min GFy; holds, thus by Rule 3,
Pet(Y | do(T), do(M)) = Pei(Y | do(M))

@ Collecting these results, we have that
Pi(Y | Z,do(T)) = P.(Y | do(Z),do(T)) = P.i(Y | do(M)).
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6. The Do-Calculus and the Hypothetical Model

O Finally, we can use previous results to obtain the following equation:

o Pi(Y|do(T)=t) =
= Pai(Y | M=m,do(T)=t)P;(M=m| do(T)=t)
by L.I.E.
= Pi(Y | do(M)=m,do(T)=t)Pei(M=m | do(T)=t)

by step 5
= Pi(Y | do(M) = m)P;(M=m|do(T) = t)

by step 7

= Z(Z P(Y | T=t, I\/I:m)P(T:t’)) Po(M=m| T=t)

m T=t'
by step 4
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6. The Do-Calculus and the Hypothetical Model

The Front Door Model in the Hypothetical Model Framework

® \We now investigate the same front-door model using the
hypothetical framework.

® Table 21 displays the hypothetical model associated with the
Front-door model (31)—(34) as a DAG.

® The bottom panel of Table 21 presents the LMC for both
models.
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Table 20: The Empirical and Hypothetical Front-door Modelsl

Empirical Model Hypothetical Model

LMC LMC
V-] V1 (M, T)

T 1 —|V T (MY, TV
MUV|T ML (T,V)|T
YU TI(V,M)  YL(T,T)|(V,M)

T 1L (T,V)
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6. The Do-Calculus and the Hypothetical Model

® We seek to identify the counterfactual outcome P,(Y | T=t)ie,
to express Py(Y | T = t) in terms of the observed distribution
P.(T,M,Y). ldentification requires us to connect the probability
distributions of the hypothetical and the empirical models.

® To do so we seek independence relationships that contain T and T,
that is, sothat Y LL T | (M, T)and M 1L T | T hold.*3

® It is also the case T L T holds as T is externally specified
(exogenous) and does not cause T.

® We can then apply rules (12)—(13) to generate the following
probability equalities:

YILT |< T, M>:>Ph(Y|'I~', =t ,I\/I):Pe(Y|T: t' ,M)
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6. The Do-Calculus and the Hypothetical Model

® The causal effect of T on Y of the Front-door model is identified
through the following logic:

Po(Y | T=1t)=
S PW(Y[m T=/t, T=t)Py(m|T=¢t'T=

/
t',m

t)Py(T=t | T=t)
(38)

= > PV mT=t)Pe(m| T=t)P(T=¢) (39

t' .m

® Equation (38) is a sum of probabilities defined in the hypothetical
model by to application of the law of iterated expectation over T
and M.

® Equation (39) replaces each of the hypothetical model probabilities
with empirical model probabilities using rules (12)-(13).
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Understanding the Identification Criteria

® The identification of the counterfactual outcomes in the Front-door
Model stems from the three independence relationships in
(35)—(37).

® These independence relationships comply with two general
properties that facilitate the identification of the counterfactual
outcome.

® We clarify the underlying properties that secure identification.
® The first property is called alternate conditionals.
® |t refers to the fact that the first relationship (35) is an

independence relationship regarding | T conditional on T.

® The second relationship (36) is an independence relationship of T
conditional on | T .
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6. The Do-Calculus and the Hypothetical Model

® The property of alternate conditionals describes an alternating
feature to the identification equation (39).

® The first term of (39) is conditioned on T = ' which refers
to the first conditional | T in (35).
® The identification equation (39) sums t’ over the support of T.

® The second term of (39) is conditioned on the treatment value
T = t. which refers to the second conditional | T in (36).

® The value t remains fixed in the summation as it is the value
used to define the counterfactual (Y | T = t).

® The last term in (39) alternates.

® |t is conditioned on T = 't which refers to the last conditional
T in (37) and 't' varies in the summation.
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6. The Do-Calculus and the Hypothetical Model

® The second property of the set of independence relationships is
called bridging and it refers to the variables other than (T, T).

® The first independence relationship (35) starts with the
outcome Y and conditions on the variable M .

® The second relationship (36) starts with M and conditions on
no other variable besides T or T).

® We say that variable M bridges the path between Y and
(T, T), thatis, Y — M — (T, T).

¢ In general terms, bridging refers to a sequence of nested sets
Ti C -+ C Tk of observed variables in 7_such that the
property of alternate conditionals Y 1L T | (T, Tx),
(7}\7} 1)J_LT|(T’TK 1), .-, until 73 1L T | ( ) or
71 1L T | T holds.
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6. The Do-Calculus and the Hypothetical Model

¢ |dentification is secured whenever a set of conditional
independence relationships among observe variables in the
hypothetical model exhibits the alternate conditionals and the
bridging properties.

® We illustrate these ideas for the complex mediation model of
Table 21.

® The model has three observed mediating variables M;, M,, M3
(instead of M) and three unobserved, confounding variables V,
Vs, Vs (instead of V).
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Table 21: Using the HM to Identify Counterfactuals

Directed Acyclic Graph of the Empirical Model
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¢ The following conditional independence relationships hold for
the hypothetical model:

Y 1L T | (T, My, My, M) (40)
My 1L (T | (T, M, M) (41)
M, 1L T |(T, M) (42)
M, U T | T (43)
T 1 T |T (44)

® The set of independence relationships (40)—(44) is a set of
alternate conditionals.

® The first relationship is conditioned on T , the second on T ,
followed by ' T and so on.
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6. The Do-Calculus and the Hypothetical Model

® The bridging property also holds.
® The right-hand variable of each independence relationship gives
the bridging sequence: Y — M3 — My — M; — T.

® We can define the nested sets 7; = {M}, To = { My, My},
T3 = {My, My, M3}, to rewritten (40)—(44) as:

Y 1L TI|(T,T) (45)
B\T% LT |(T, T, M) (46)
B\ UL T|(T T) (47)

oW T T (48)

T 1L T| T (49)

J. Heckman & R. Pinto Causality and Econometrics
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® The law of iterated expectations and independence
relationships (40)—(44) enable us to express the counterfactual

probability P,(Y | T) as:

Hypothetical Model

where:

Pu(Y | T=1t)= Z Ap - By Cy- Dy - Ep,

/
t,m3,mp,m

=Pu(Y | m3,my,my, T =t T = t)
=Py(M3 =m3 | my,my, T = t T = t)
=Py (My=my | m, T=¢t.T=t)
=P (M =m | T=t . T=1t)
=P(T=1t|T=1t)
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® The connection rules (12)—(13) enable us to translate
hypothetical probabilities into empirical probabilities. The
identification equation displays the alternative pattern of values
t and t’ in the same fashion as the identification equation of
the Front-door model:
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Empirical Model

Pe(Y(t)= >  Ac-B.-Co-D.-E.,

!
t,m3,mp,m

where:
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6. The Do-Calculus and the Hypothetical Model

Comparing DoC and HM Frameworks

® Both DoC and HM employ structural equations and describe
causal models with both observed and unobserved variables.

® They clearly separate the task of defining counterfactuals and
identifying them. Both frameworks enable analysts to
disentangle the tasks of causal analysis in Table 1.

® Both frameworks employ scientific knowledge to define causal
models (Task 1) and the structural equations that underlie the
approach.

® There are, however, some distinct practices in DoC and HM.
When DoC fixes a treatment variable, it eliminates the variable
from the joint distribution of variables.

e All the DoC analysis is done within the empirical model so
generated.
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6. The Do-Calculus and the Hypothetical Model

® HM does not eliminate the equation for the treatment variable.

® [nstead, it adds a hypothetical variable. The presence of both
treatment and hypothetical variables in the HM framework
facilitates the study of the causal effects.

® They readily analyze both external manipulation and conditioning,
such as the treatment on the treated, whereas this is outside the
scope of DoC.

® |t facilitates examination of causal inference for direct and indirect
effects in which the hypothetical variable replaces some but not all
the treatment inputs of the structural equations. DoC needs to
invent new rules to undertake those tasks. For each combination of
conditioning variables.
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® The identification of causal effects (Task 2) requires connecting
the hypothetical model with the empirical model.

® HM employs two statistical implications to connect the
probability distributions of the hypothetical and empirical
models.

® HM implications remain within the realm of standard statistical

theory and do not require invocation of non-probabilistic
DAG-based rules.
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6. The Do-Calculus and the Hypothetical Model

The DoC machinery consists of three DAG-based rules.
It constructs a series of possible DAGs.

Each of them constitutes a causal model that modifies the
empirical model.

Each modification of the empirical model corresponds to
introducing a new set of conditional independence relationships.

The search for the combinations of DAGs and conditional
independence relationships are required to identify
counterfactuals grows exponentially. An algorithm has been
developed to perform this task.**

Calculations with HM are simpler than those based on DoC.
They rely on a single modification of the original DAG, as
encoded in the hypothetical model instead of a growing list of
DAGs to implement the three guiding rules of DoC.

44See 7.
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® DoC relies critically on DAGs, conditional independence
relationships, and a special set of rules.

® The HM machinery remains within the statistical realm to
make statistics converse with causality.

® In doing so, the method is capable to accommodate
assumptions that explore functional form restrictions or
distributional assumptions outside the scope of DoC.
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7. Simultaneous Causality
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7. Simultaneous Causality

® The Generalized Roy model is usually expressed as a recursive
model.*> However, simultaneous causality is a property of many
economic models.

® Examples of such models include social interactions, general
equilibrium, Walrasian market clearing, or simultaneous play in
Nash models of industrial organization are staples of economic
theory (see, e.g., 7).

® These type of models are ignored in most discussions of
causality in the NR literature.

® The NR approach commonly invokes the Stable Unit Treatment
Value Assumption (SUTVA), which excludes the possibility of
interaction between agents.*°

45See, however, 7.
46See, for instance, ?.
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7. Simultaneous Causality

e [t is instructive to consider these models because they challenge
the approximating approaches in the literature, but are easily
analyzed in econometric causal policy analysis.

® The pioneering econometric models featured simultaneity.
Many of the core ideas are ignored or remain unknown to the
followers of the approximating approaches, which rely on
recursive formulations, and are considered as essential features
of causal models.

¢ In fact, these are at best only convenient assumptions for
analyzing causal models, used as special by economists for
generations.*

47See 7.
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7. Simultaneous Causality

e Simultaneous causality is an essential feature of structural
equation models.*8

® The LISREL model of ? allows for simultaneity, measurement
error and latent variables proxied by measurements as discussed
in Section 4.

® The structural systems typically consist of two parts: (a) an
autonomous system expressed in terms of latent variables (?)
and (b) a measurement system. The measurement system
proxies the latent variables. The first part of the structural
system consists of structure for person i:

i = oy + BN + I'xi + wi (50)

where n;, €;, x; are vectors of latent variables.

48See ? and ?.
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® The measurement system consists of vectors of measurements:

yi = o, + Ayni + €; (measurement for ;)
Measurement:
Xi = ax + AU = & (measurement for x;)

® These models have been extended to time series and panel data
settings (see e.g. 77).

® In a valuable paper, ? exposit this system of equations as a
causal model with simultaneity and show how various
measurent systems use factor models and other approaches to
proxy the latent variables which may be the variables measured
with error or omitted variables, like ability in an earnings
equation, or technical efficiency in a production function.
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® They dispel many misguided criticisms of the structural
approach lodged by advocates of the NR approach. These
systems are equipped to use cross equation restrictions and
covariance restrictions to secure identification of causal
parameters.

® This literature is rich and we lack the space to exposit it
thoroughly.

® We note that these systems illustrate—in linear equation
models—an approach for proxying V as previously discussed.

® |t is also an approach for studying mediation where analysts
can study how interventions on x; percolate through equation
system (43). ? summarizes a large literature on nonparametric
factors and proxy models.
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¢ Instead of a general exposition of these systems, we consider a
simple simultaneous equations model due to ?. We consider a
system of two autonomous causal (structural) equations:

Y]_ = ng(Y27X17 U]_,E]_) (51)
Yo =gv,(Y1, X0, Us,€2) Uy W Us. (52)

¢ We use this system to demonstrate how causality can be
analyzed in simultaneous systems.
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® This system of equations gives two maps:
8y, : (Yz,Xl, Ul) — Yg;gy2 . (Yl,Xl, U2) — Yg. Yl and Y2
could be actions of a pair of interacting agents.*’

® To simplify the discussion, we assume that both equations are
twice continuously differentiable. This is a convenience and not
a necessity.

® The model of equations (51)—(52) are treated in a special way
in the DoC approach.

® We focus on a two equation system to simplify the exposition.
Models with multiple simultaneous equations are standard in

491 the literature on peer effects, simultaneous equation problems are relabeled “reflection
problems.” See ?77.
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7. Simultaneous Causality

Equations (51) and (52) are assumed to be structural, i.e.,
invariant under manipulations of their arguments, so they are
stable, autonomous maps. Policies consist of manipulations of
their arguments.

In the classical model of market clearing equilibrium, Y is price;
Y, is quantity and Xj, X3, Ui, and U, are causal determinants.

Equations (51) and (52) are generated by thought experiments
varying the arguments and tracing out the outcomes.

Thus, (51) is the market price that is consistent with
hypothetical values Y, X1, U;. (52) is the analogous
relationship for quantity.

The addition of unobserved (by the economist) variables U,
and U, is made in anticipation of empirical applications. In the
peer effects literature, Y; and Y5 are behaviors of two
interacting agents (e.g., smoking or drug use).
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® In terms of our previous notation, the variable set is
Te = {Y1, Y2, X1, Xz, Uy, Us}.
M (Y1) = {Y2, X1, Ur}) and M(Y2) = { Y1, Xz, Ua}).

® The empirical and hypothetical models are displayed as DAGs
in Table 22 given by:

Table 22: Empirical and Hypothetical Causal Models

Empirical Model Hypothetical Model
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® The LMC condition breaks down so the Bayesian net approach
fails.

e “Fixing” and the hypothetical model approach readily extend to
a system of simultaneous equations for Y; and Y5, whereas the
fundamentally recursive methods based on DAGs require special
treatment.

J. Heckman & R. Pinto Causality and Econometrics



7. Simultaneous Causality

7.1. Completeness
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e “Completeness” assumes the existence of at least a local
solution for Y; and Y5 in terms of (X1, X3, Uy, Us):

Y1 = ¢1(X1, Xz, Us, Up) (53)
Yo = (X1, Xz, Un, Us). (54)

® These are reduced form equations (see, e.g., 777).

® They inherit the autonomy properties of the structural
equations.

® Completeness is a property that guarantees the conceptual
possibility of simultaneity, which is not necessarily guaranteed.
If it fails, the existence of consistent solutions to (51) and (52)
is not guaranteed.

® Nonetheless autonomous correspondences may still exist and
they can be used to make set-valued causal inferences.5°

50See, e.g., 777.
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® The causal effect of Y, on Y; when Y5 is fixed at y» is
generated by

Yl(.yZ) = ng()/2a X7 Ul)

® Symmetrically, the causal effect of Y; on Y, when Y is fixed at
y1 is generated by:

Yo(y1) = gv,(»1, X, Us).

® The relationships (51) and (52) can be defined even if they
might not be identified or estimated.

® The completeness assumption says that there are values of
Xi, Xo, Uy, U, that generate values of Y7, Y, consistent with
(51) and (52). These involve hypothetical variations.

® For certain models no such sets of variables may exist.

J. Heckman & R. Pinto Causality and Econometrics



7. Simultaneous Causality

7.2. Can We Hypothetically Vary Y, and Y;?
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® If Y, and Y; are simultaneously determined, the notion of
varying Y> to change Y; may seem impossible. ? preserves his
focus on recursive models and addresses this problem in a very
special way by assuming structural invariance and “shutting one
equation down,” assuming the rest of the system remains
unchanged.

e Thus, for example, equation (52) is suspended, but (51) is
maintained.

® This is consistent with the logic of do-calculus, which
eliminates relationships from systems, assuming invariance of
the remaining system. He sets Y, to a constant that can be
manipulated in (51).

® This thought experiment converts a simultaneous system into a
recursive system with all other equations assumed to hold as
before.
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® This approach is cumbersome and strains credibility in many
interlinked economic contents (e.g., person 1 influences 2, but
not vice versa) but is logically possible. It is unnecessary if
exclusions in (51) and (52) are used.

08y,
=0f

2%, or
all (Ya, X1, X, Uy).®! Exclusion of X; in (52) is defined as
0
% = 0 for all (Y1, X1, Xo, Us). Implicit is the assumption

1
that components of X; and X, can be varied.

® To show this, we define exclusion of X; in (51) as

¢ Under completeness and exclusion X, from (52), by the chain
rule, the causal effect of Y, on Yj is

(9gy1 8Y1 /8Y2 (9@1 /(9(,02

Yy 00X,/ 0Xa 00X,/ 90Xy

510r more generally, Xo is not an argument of gYy.
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® We may define and identify causal effects for Y7 on Y5 in an
analogous fashion. Variations in X; and X, that respect
completeness define the causal parameters when the
components of X; and X, can be independently varied.>?

® No implausible “shutting down” of any equation in a system
and assuming autonomy of the remaining system is required.

® This logic is now standard and is the basis for an estimation
technique, “indirect least squares” (see ? and 77).

¢ |t demonstrates the flexibility of the econometric approach for
defining and identifying causal parameters outside the narrow
world of DAGs. ? gives a range of approaches for identifying
systems like (51) and (52) using restrictions within and across
equations for observables and unobservables.

52 Assuming that the completeness condition is part of the thought experiment. In some
contexts it may be ruled out as not credible.
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7.3. Econometric Mediation Analysis
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® We have already discussed mediation analyses in recursive
models. These notions extend to models with simultaneity.

e Under completeness, reduced forms (53) and (54) estimate the
net effect of a policy change Xi:

8Y]_ o a¢1()<17)<27 Ul; U2)
oXy 0Xy ' (55)
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¢ Following ? and ??, we can conduct “mediation analyses” that
address problem P-2 and trace the impact of an externally
manipulated X; on Y7, both through its direct effect on (51)
and its indirect effect through Y5:

oy _ (8gy1> (6\/2) L Oen _ 06u(X%. %, U, Un)

6X1 a Y2 8X]_ aXl 6X1
——
From  From Reduced From Structure
Structure Form
~ ~~ - Direct effect
Indirect effect
through Y3
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® This approach can be readily applied to recursive systems and
general multiple equation systems. Reliance on linear
equations, while traditional in the literature, is not necessary
and nonparametric approaches are available.53

® Mediation is a staple of econometric policy evaluation to
examine all channels of influence of variables (see, e.g., 7).

e All of the tools used to analyze simultaneous equations are
available to estimate these models (See e.g., 777).

53See 77?7 for nonparametric analyses of such systems.
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8. Conclusion

Conclusion

® This paper presents the basic framework of the econometric
model for causal policy analysis. We discuss the definition of
causal parameters and approaches to their identification within
it.

® We consider two approximations to it that are current in the
literature on causal inference and their relationship with the
econometric approach.

® The econometric model is based on clearly stated and
interpretable models of behavior that adequately characterize
the lessons of economic theory and allow for testing it, for
synthesizing evidence on it from multiple sources, constructing
credible policy counterfactuals, including forecasting policy
impacts in new environments and forecasting the likely impacts
of policies never previously implemented.

® The econometric approach delineates the definition of causal
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Conclusion

® The two approximating approaches are: (a) the Neyman-Rubin
approach rooted in the statistics of experiments, and (b) the
do-calculus that originated in computer science. Both arc
recent developments that attempt to address some of the same
problems tackled by the econometric approach.

® Each has important, but different, limitations.

® Neither has the flexibility or clarity of the econometric
approach.

e All start from the basic intuitive definition of a causal effect as
a ceteris paribus consequence of a policy change.

® However, the rules of constructing and identifying
counterfactuals are very different.
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Conclusion

® The do-calculus invokes a special set of rules for identifying
causal parameters that lie outside of probability theory and that
use a limited class of identifying assumptions for behavioral
equations.

® |t relies heavily on recursive directed acyclic graphs and
assumptions about conditional independence. lts rigid rules
preclude the use of many traditional techniques of identification
and estimation.
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Conclusion

® The Neyman-Rubin approach eschews the benefits of structural
equations and many fruitful strategies for their identification.

® Reflecting its origins, it casts all policy problems into a
“treatment-control” framework.

® |n some versions, it conflates issues of definition with issues of
identification.

® lts lack of reliance on structural equations with explicit links to
theory and explicit analyses of unobservables, makes it difficult
to interpret estimates obtained from it or to analyze well-posed
economic questions with it using the large toolkit of modern
econometrics.

® Economics has a rich body of theory and tools to address policy
problems.

¢ Applied economists would do well by using the impressive set of
conceptual tools available from econometric theory.
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