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1 The Weibull Distribution

Suppose is i.i.d. Weibull. Then the CDF of is given as

Pr( ) = ( ) = exp ( exp ( ( + )))

where is a parameter of the Weibull CDF. Also, by the
assumption of independence and identical distribution, we can
write

( 1 2 ) =
Y
=1

( ) =
Y
=1

exp ( exp ( ( + )))
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The Weibull distribution has two useful features. First, the
di erence between two Weibulls is a logit. Second, Weibulls
are closed under maximization, since (assuming independence)

Pr
³
max{ }

´
=

Y
=1

Pr( ) (1)

=
Y
=1

exp ( exp ( ( + )))

= exp

Ã ÃX
=1

exp ( ( + ))

!!

= exp

Ã
(exp ( ))

X
=1

exp( )

!
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Consider
P

=1 exp( ) We can solve for in the following
equation: X

=1

exp( ) = exp( )

which implies

= log

ÃX
=1

exp( )

!

We can then substitute this value of into equation (1) to get

Pr
³
max{ }

´
= exp ( (exp ( )) exp( ))

= exp ( exp ( ( + )))

which is indeed a Weibull.
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2 Random Utility Model

An individual with characteristics has a choice set ,where
B is a feasible set. We write

Pr ( | )

as the probability that a person of characteristics chooses
from the feasible set. We also suppose that

( ) = ( ) + ( )

where is i.i.d. Weibull. From our information on Weibulls in
section 1, we know that + , (and thus ), has a Weibull
distribution with parameter To see this,

Pr ( + ) = Pr( )

= exp ( exp ( ( + )))
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Let us now suppose that there are two goods and two cor-
responding utilities. Consumers govern their choices by the
obvious decision rule: choose good one if 1 2 More gen-
erally, if there are goods, then good will be selected if
argmax { } =1 Specifically, in our two good case,

Pr (1 is chosen) = Pr( 1 2) = Pr ( 1 + 1 2 + 2)
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Imposing that is i.i.d. Weibull, we can be much more precise
about this probability,

Pr ( 1 + 1 2 + 2)

= Pr ( 1 + 1 2 2)

=

Z
( 1)

μZ
1+ 1 2

( 2) 2

¶
1

=

Z
( 1) exp ( exp ( 1 + 1 2 + 2)) 1 (2)

Observe that ( 1) = exp ( exp ( 1 + 1)) which implies

( 1) =
( 1)

1
= exp (exp ( 1 + 1)) (exp ( 1 + 1))

= exp ( 1 + 1) (exp ( exp ( 1 + 1)))

6



Substituting this into (2), gives us

Pr (1 is chosen)

=

Z
exp ( 1 + 1) (exp ( exp ( 1 + 1)))

× exp ( exp ( 1 + 1 2 + 2)) 1

= 1

Z ¡
1
¢

[ exp( 1)][exp( 1) exp ( 1 2+ 2)]
1

= exp ( 1)
1

exp ( 1) + exp ( 1 2 + 2)

¸
× £ [ exp( 1)][exp( 1) exp ( 1 2+ 2)]

¤
=

exp ( 1)

exp ( 1) + exp ( 1 2 + 2)

=
exp( 1 1)

exp( 1 1) + exp( 2 2)

7



This result generalizes, because the max over ( 1) choices
is still a Weibull so we can make a two stage maximization
argument:

Pr ( 1 + 1 + = 1 2 )

= Pr

μ
1 + 1 max

=2
( + )

¶

=
exp( 1 1)

exp( 1 1) + exp( 2 2) + · · ·+ exp( )

=
exp( 1̃)P
=1 exp (˜ )

where ˜ =

8



3 Derivation of Logit

We will now show how the multinomial logit can be derived
from Luce Axioms presented below.
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3.1 Luce Axioms

Axiom 1 Independence of Irrelevant Alternatives.

Suppose that Then,

Pr ( | { }) Pr ( | ) = Pr ( | { }) Pr ( | )

or,
Pr ( | { })
Pr ( | { }) =

Pr ( | )

Pr ( | )

The term on the left is the odds ratio; the ratio of probabilities
of choosing to given characteristics and { } This axiom
has been named “Independence of Irrelevant Alternatives” for
an obvious reason–the odds of our choice are not e ected by
adding additional alternatives.
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Axiom 2 Positivity.

Pr ( | ) 0

With the preceding assumptions, we can now proceed to our
derivation of the logit. Define = Pr ( | { }). Then
by Axiom 1 above, we knowμ ¶

Pr ( | ) = Pr ( | ) (3)

Summing over

Pr ( | )
Xμ ¶

= 1 Pr ( | ) =
1P ³ ´

(4)
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Again using Axiom 1, forμ ¶
Pr ( | ) = Pr ( | ) and (5)μ ¶
Pr ( | ) = Pr ( | )

Substituting this in equation (3),

μ ¶
=
Pr ( | )

Pr ( | )
=

μ ¶
Pr ( | )μ ¶
Pr ( | )

= (6)
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Write ( ) = ln which implies = exp ( ( ))

Define a comparable expression for . Replacing this into

equation (5) produces

=
exp ( ( ))

exp ( ( ))
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Thus from (4),

Pr ( | ) =
1P μ

exp ( ( ))

exp ( ( ))

¶

=
1μ

1

exp ( ( ))

¶P
(exp ( ( )))

=
exp ( ( ))P
(exp ( ( )))
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Assuming A-3: additive separability, ( ) = ( ) ( ) .
(This is equivalent to assuming irrelevance of the benchmark).
From this assumption,

Pr ( | ) =
exp ( ( ) ( ))P
(exp ( ( ) ( )))

=
exp ( ) exp ( ( ))

exp ( ( ))
³P

exp ( ( ))
´

=
exp ( )P
exp ( ( ))

(7)

which gives the multinomial logit. McFadden (1974) shows
that Luce Axioms and a condition on (“Translation Com-
pleteness”) produce the Weibull.
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3.2 Consequences of Independence

We just showed

=
exp( )P
exp( )

so that

=

exp( )P
exp( )

exp( )P
exp( )

=
exp( )

exp( )
= exp ( ) ln

μ ¶
=
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A common specification for is = Thus,

ln

μ ¶
= ( )

ln

μ ¶
=

or, changes in characteristics have a common e ect on the
ratio of log probabilities. This allows for estimation of the
probabilities of purchasing a new good. (One could obtain an
estimate of from the existing goods. This estimate can then
be combined with the characteristics, of the new good to
estimate the probability of selection, as in equation (6)).
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Further, from equation (6),

Pr (2 | {1 2}) =
2

1 + 2

and

Pr (2 | {1 2 3}) =
2

1 + 2 + 3
Pr (2 | {1 2})
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This leads us to a restrictive property of the multinomial logit
model–we have assumed independence of the when in fact,
they may be correlated. This is illustrated by McFadden’s
famous red bus, blue bus problem: Suppose we are modeling
transportation choice and our alternatives consist of {car, bus,
train}. If the alternatives are replaced by {car, red bus, blue
bus}, then we have violated our assumption of dissimilar alter-
natives; if 2 1, then the event 3 1 is more likely. One
can see by the preceding equation that adding more bus colors
continually decreases the probability that car travel is chosen.
We can deal with the problem of similar alternatives by using
the nested logit model (Section 5) or the random coe cient
probit model.
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4 Probit: Random Coe cients

Suppose
= +

where (0 2), k Moreover, is a random
variable, with (¯ ), so that

=
¡
¯ +

¢
+ = ¯ +

¡
¯
¢
+

It follows that

1 2 0

( 1 2) ¯ + ( 1 2)
¡

¯
¢
+ ( 1 2) 0

1 3 0

( 1 3) ¯ + ( 1 3)
¡

¯
¢
+ ( 1 3) 0
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Further,

Var ( 1 2)

=
n
[( 1 2) ( 1 2)]

0
[( 1 2) ( 1 2)]

o

=

( £
( 1 2)

¡
¯
¢
+ ( 1 2)

¤0
× £( 1 2)

¡
¯
¢
+ ( 1 2)

¤
)

=

Ã
( 1 2)

¡
¯
¢ ¡

¯
¢0
( 1 2)

0

+ ( 1 2) ( 1 2)
0

!

= ( 1 2) ( 1 2)
0
+ 2

1 +
2
2

and similarly,

Var ( 1 3) = ( 1 3) ( 1 3)
0
+ 2

1 +
2
3
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Thus,

( 1 2 1 3) = ( 1 2) ( 1 3)
0
+ 2

1

so

= Corr ( 1 2 1 3) =
( 1 2) ( 1 3)

0
+ 2

1p
Var ( 1 2)Var ( 1 3)

We now seek to derive the probability of choosing good 1 in a
three good case,

Pr (choosing 1) = Pr ( 1 2 0 and 1 3 0)

From before, we know that

1 2

¡
( 1 2) ¯ Var ( 1 2)

¢
1 3

¡
( 1 3) ¯ Var ( 1 3)

¢
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Thus,

Pr ( 1 2 0 and 1 3 0)

= Pr
hp
Var ( 1 2) 1 + ( 1 2) ¯ 0

and
p
Var ( 1 3) 2 + ( 1 3) ¯ 0

i
where 1 and 2 are standard normal. Thus, the above equation
reduces to

Pr

Ã
1

( 1 2) ¯p
Var ( 1 2)

and 2
( 1 3) ¯p
Var ( 1 3)

!

= Pr

Ã
1

( 1 2) ¯p
Var ( 1 2)

and 2
( 1 3) ¯p
Var ( 1 3)

!
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As 1 and 2 may be correlated, we integrate over the joint
density to get the probability

Pr (choosing 1)

=

Z ÃZ Ã
1

2
p
1 2

exp
1

2

μ
2
1 2 1 2 +

2
2

1 2

¶!
2

!
1

where

=
( 1 2) ¯p
Var ( 1 2)

and =
( 1 3) ¯p
Var ( 1 3)
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Now consider adding a third good to the two good case. If the
third good has identical characteristics as the first, then 2 =

3 If there is no stochastic component (no utility innovation),
then 2

1 =
2
2 =

2
3 = 0 Therefore, in this case,

Pr (1 chosen) = Pr ( 1 2 0 and 1 3 0)

= Pr ( 1 2 0)

Thus, there is no change in the probability of choosing good 1
despite the addition of a third good.
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Again focusing on the two good case, we observe

Pr (1 chosen) = Pr ( 1 2 0) = Pr

Ã
( 1 2) ¯p
Var ( 1 2)

!

=
1

2

Z ( 1 2)
¯

[( 1 2) ( 1 2)
0
+ 2

1+
2
2]
1 2
μ
exp

μ
2

2

¶ ¶

which can be evaluated to derive the desired probability.
Finally, consider a McFadden-Luce type of set up, where one
imposes = 0 Defining =

p
2
1 +

2
2 we observe that the

probability of choosing good 1 in the two-good case is

1

2

Z ( 1 2)
¯ μ
exp

μ
2

2

¶ ¶
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Adding a third good to the scene with identical characteristics,
( 2 = 3), yields the probability for good 1 being purchased
as

( 1 2)
¯Z Z ( 1 2)

¯

1

2
p
1 2

exp
1

2

μ
2
1 2 1 2 +

2
2

1 2

¶¸
1 2

One can show that, upon evaluation of these integrals, the
probability derived from addition of the third good is less than
the probability in the two good case. This leads us to a simi-
lar problem as the multinomial logit - adding alternatives de-
creases the probability of choice, despite the fact that the al-
ternatives are quite similar.
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5 Nested Logit

5.1 Generalized Extreme Value (GEV)Model

Consider a function ( 1 2 ) where satisfies:

i. Non-negativity:

( 1 2 ) 0 ( 1 2 ) 0

ii. Homogeneous of degree 1:

( 1 2 ) = ( 1 2 )

iii.

1 2
0 if even

0 if odd.
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If satisfies these conditions, then we get the following prob-
ability:

=
( 1 2 )

( 1 2 )

where is a probability that can be derived from utility max-
imization. We can use the theorem above to derive a special
case of the nested logit model.
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Define

(exp( 1) exp( 2) exp( ))

= exp( 1)

+ exp

μ
2

1

¶
+ exp

μ
3

1

¶
+ · · ·+ exp

μ
1

¶¸1

Observe that = 0 is the ordinary logit model. (With de-
fined in this way, we are assuming that 1 is uncorrelated with
all of the other while the remaining may be correlated).
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This function obviously meets the conditions for the GEV
model. For,

i. Non-negativity: obvious as 0 1
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ii. Homogeneity:

( exp( 1) exp( 2) exp( ))

= exp( 1) +
³
( exp( 2))

1
1 + · · ·+ ( exp ( ))

1
1

´1

= exp( 1) +

³
1

1

´
(exp( 2))

1
1

+ · · ·+
³

1
1

´
(exp ( ))

1
1

1

= exp( 1) +

μ ¡
exp( 2

1
)
¢

+ · · ·+ ¡exp ¡
1

¢¢ ¶1

=

Ã
exp( 1) +

exp
¡

2

1

¢
+ · · ·+ exp ¡

1

¢ ¸1 !

= ( (exp( 1) exp( 2) exp( )))
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iii. By inspection, one can see that this derivative
property will hold. (It is obvious when di erentiat-
ing with respect to exp( 1) For other derivatives,
the fact that 0 1 gives the needed alternation
in sign).
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Thus, we can now proceed to derive our probabilities. First,
consider

Pr (1 | {1 2}) =
1

1 +
³

2
1

´1
=

1

1 + 2

which is simply our binomial logit model.
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Also note that in the three good case,

2 = (1 )

Ã
exp( 1) + exp

μ
2

1

¶
+ exp

μ
3

1

¶¸ !

× 1

1
exp

μ
2

1

¶

= exp

μ
2

1

¶

×
Ã
exp( 1) + exp

μ
2

1

¶
+ exp

μ
3

1

¶¸ !
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Now suppose that we eliminate choice 1 (by letting 1 ).
Then,

Pr (2 | {2 3})

=

exp( 2) exp

μ
2

1

¶
exp

μ
2

1

¶
+ exp

μ
3

1

¶¸

exp

μ
2

1

¶
+ exp

μ
3

1

¶¸1

=

exp

μ
2

1

¶

exp

μ
2

1

¶
+ exp

μ
3

1

¶
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Observe

Pr (1 | {1 2 3}) =
1

1 +
³

2
1 +

3
1

´1
=

1

1 +
n

2
1

³
1 +

3 2
1

´o1
=

1

1 + 2

³
1 +

¡
3

2

¢ 1
1

´1 (8)
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Letting 1 and supposing 2 3 we get

μ
3

2

¶
1

μ
3

2

¶ 1
1

0

and thus from equation (8),

Pr (1 | {1 2 3})
1

1 + 2
(9)
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Conversely, if 3 2 just reverse the roles of 2 and 3 so

Pr (1 | {1 2 3})
1

1 + 2

μ
3

2

¶ (10)

=
1

1 + 3

Combining equations (9) and (10), we get, as 1

Pr (1 | {1 2 3})
1

1 +max{ 2 3} (11)
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Similarly, we find

Pr (2 | {1 2 3}) (12)

=

2 (1 )
exp

μ
2

1

¶

+exp

μ
3

1

¶ 1
1

exp

μ
2

1

¶

1 +

½
exp

μ
2

1

¶
+ exp

μ
3

1

¶¾1

=
exp

¡
2

1

¢ ©
exp

¡
2

1

¢
+ exp

¡
3

1

¢ª
1 +

©
exp

¡
2

1

¢
+ exp

¡
3

1

¢ª1
=

exp
¡

2

1

¢
Ã

1 +

½
exp

¡
2

1

¢
+exp

¡
3

1

¢ ¾1 !¡
exp

¡
2

1

¢
+ exp

¡
3

1

¢¢
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When = 0 we have ordinary conditional logit. Suppose
2 3 and 1. By appealing to the result derived in
equation (11),

(2 | {1 2 3}) =
2

1
2

1
+

3

1

·
exp

μ
2

1

¶
+ exp

μ
3

1

¶¸ 1

1

exp 1 + exp

μ
2

1

¶
+ exp

μ
3

1

¶¸ 1

1
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for 2 3μ
3

2

¶
1

μ
3

2

¶ 1
1

0 1

and thus, from equation (12),

Pr (2 | {1 2 3}) exp( 2)

exp( 1) + exp( 2)
1
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(One could derive a similar result be assuming that 3 2)
Finally, suppose that 2 = 3 then,

= 1 + exp

μ
2

1

¶
+ exp

μ
2

1

¶¸1

= 1 + 2 exp

μ
2

1

¶¸1
= exp( 1) + 2

1 exp ( 2)
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Thus,

Pr (2 | {1 2 3}) =
exp ( 2) 2

exp( 1) + 21 exp ( 2)

=
exp 2

2 exp 1 + 2 exp 2

lim
1
Pr (2 | {1 2 3}) 1

2

exp( 2)

exp( 1) + exp( 2)

This final equation tells us if the characteristics are identical in
the nested logit model, then the probability in the three choice
case reduces to the binomial logit–the probability of the two
choice case.
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