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E (θ) = 0; E (εi) = 0; i = 1, . . . , 5

θ ⊥⊥ (εi , . . . , ε5)

R1 = α1θ + ε1, R2 = α2θ + ε2, R3 = α3θ + ε3,
R4 = α4θ + ε4, R5 = α5θ + ε5, εi ⊥⊥ εj , i ̸= j

Cov (R1,R2) = α1α2σ
2
θ

Cov (R1,R3) = α1α3σ
2
θ

Cov (R2,R3) = α2α3σ
2
θ

• Normalize α1 = 1
Cov (R2,R3)

Cov (R1,R2)
= α3
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• ∴ We know σ2
θ from Cov (R1,R2).

• From Cov (R1,R3) we know

α3, α4, α5.

• Can get the variances of the εi from variances of the Ri

Var(Ri) = α2
i σ

2
θ + σ2

εi
.

• If T = 2, all we can identify is α1α2σ
2
θ .

• If α1 = 1, σ2
θ = 1, we identify α2.

• Otherwise model is fundamentally underidentified.
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2 Factors: (Some Examples)

θ1 ⊥⊥ θ2

εi ⊥⊥ εj ∀i ̸= j

R1 = α11θ1 + (0)θ2 + ε1

R2 = α21θ1 + (0)θ2 + ε2

R3 = α31θ1 + α32θ2 + ε3

R4 = α41θ1 + α42θ2 + ε4

R5 = α51θ1 + α52θ2 + ε5

Let α11 = 1, α32 = 1. (Set scale)
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Cov (R1,R2) = α21σ
2
θ1

Cov (R1,R3) = α31σ
2
θ1

Cov (R2,R3) = α21α31σ
2
θ1

• Form ratio of
Cov (R2,R3)

Cov (R1,R2)
= α31, ∴ we identify

α31, α21, σ
2
θ1
, as before.

Cov (R1,R4) = α41σ
2
θ1
, ∴ since we know σ2

θ1
∴ we get α41.

...

Cov (R1,Rk) = αk1σ
2
θ1

• ∴ we identify αk1 for all k and σ2
θ1
.

Heckman Factor Models: A Review of General Models



Cov (R3,R4)− α31α41σ
2
θ1
= α42σ

2
θ2

Cov (R3,R5)− α31α51σ
2
θ1
= α52σ

2
θ2

Cov (R4,R5)− α41α51σ
2
θ1
= α52α42σ

2
θ2
,

• By same logic,

Cov (R4,R5)− α41α51σ
2
θ1

Cov (R3,R4)− α31α41σ2
θ1

= α52

• ∴ get σ2
θ2

of “2” loadings.
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• If we have dedicated measurements on each factor do not need
a normalization on the factors of R .

• Dedicated measurements set the scales and make factor models
interpretable:

M1 = θ1 + ε1M

M2 = θ2 + ε2M

Cov (R1,M) = α11σ
2
θ1

Cov (R2,M) = α21σ
2
θ1

Cov (R3,M) = α31σ
2
θ1

Cov (R1,R2) = α11α12σ
2
θ1
,

Cov (R1,R3) = α11α13σ
2
θ1
, so we can identify α12σ

2
θ1

• ∴ We can get α12, σ
2
θ1

and the other parameters.
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General Case

R
T×1

= M
T×1

+ Λ
T×K

θ
K×1

+ ε
T×1

• θ are factors, ε uniquenesses, θ ⊥⊥ ε

E (ε) = 0

Var (εε′) = D =


σ2
ε1

0 · · · 0

0 σ2
ε2

0
...

... 0
. . .

...
0 · · · 0 σ2

εT


E (θ) = 0

Var (R) = ΛΣθΛ
′ + D Σθ = E (θθ′)
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• The only source of information on Λ and Σθ is from the
covariances.

• (Each variance is “contaminated” by a uniqueness.)

• Associated with each variance of Ri is a σ2
εi
.

• Each uniqueness variance contributes one new parameter.

• How many unique covariance terms do we have?

• T (T − 1)

2
.
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• We have T uniquenesses; TK elements of Λ.

• K (K − 1)

2
elements of Σθ.

• K (K − 1)

2
+ TK parameters (Σθ,Λ).

• Need this many covariances to identify model
“Ledermann Bound”:

T (T − 1)

2
≥ TK +

K (K − 1)

2
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Lack of Identification Up to Rotation

• Observe that if we multiply Λ by an orthogonal matrix C ,
(CC ′ = I ), we obtain

Var (R) = ΛC [C ′ΣθC ]C
′Λ′ + D

• C is a “rotation.”

• Cannot separate ΛC from Λ.

• Model not identified against orthogonal transformations in the
general case.
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Some common assumptions:

(i) θi ⊥⊥ θj , ∀ i ̸= j

Σθ =


σ2
θ1

0 · · · 0

0 σ2
θ2

0
...

... 0
. . .

...
0 · · · 0 σ2

θK
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joined with

(ii)

Λ =



1 0 0 0 · · · 0
α21 0 0 0 · · · 0
α31 1 0 0 · · · 0
α41 α42 0 0 · · · 0
α51 α52 1 0 · · · 0
α61 α62 α63 0 · · · 0
...

...
... 1

...



Heckman Factor Models: A Review of General Models



• We know that we can identify of the Λ,Σθ parameters.

K (K − 1)

2
+ TK

# of free parameters

≤ T (T − 1)

2
data

“Ledermann Bound”

• Can get more information by looking at higher order moments.

• (See, e.g., Bonhomme and Robin, 2009.)
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• Normalize: αI∗ = 1, α1 = 1 ∴ σ2
θ ∴ α1.

• Can make alternative normalizations.
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Recovering the Distributions Nonparametrically

Theorem 1
Suppose that we have two random variables T1 and T2 that satisfy:

T1 = θ + v1

T2 = θ + v2

with θ, v1, v2 mutually statistically independent, E (θ) < ∞,
E (v1) = E (v2) = 0, that the conditions for Fubini’s theorem are
satisfied for each random variable, and the random variables possess
nonvanishing (a.e.) characteristic functions, then the densities
f (θ) , f (v1) , and f (v2) are identified.

Proof.
See Kotlarski (1967).
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• Suppose

I = µI (X ,Z ) + αIθ + εI

Y0 = µ0 (X ) + α0θ + ε0

Y1 = µ1 (X ) + α1θ + ε1

M = µM (X ) + θ + εM .

• System can be rewritten as

I − µI (X ,Z )

αI
= θ +

εI
αI

Y0 − µ0(X )

α0
= θ +

ε0
α0

Y1 − µ1(X )

α1
= θ +

ε1
α1

M − µM(X ) = θ + εM
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• Applying Kotlarski’s theorem, identify the densities of

θ,
εI
αI

,
ε0
α0

,
ε1
α1

, εM .

• We know αI , α0 and α1.
• Can identify the densities of θ, εI , ε0, ε1, εM .
• Recover the joint distribution of (Y1,Y0).

F (Y1,Y0 | X ) =

∫
F (Y1,Y0 | θ,X ) dF (θ) .

• F (θ) is known.

F (Y1,Y0 | θ,X ) = F (Y1 | θ,X )F (Y0 | θ,X ) .

• F (Y1 | θ,X ) and F (Y0 | θ,X ) identified

F (Y1 | θ,X , S = 1) = F (Y1 | θ,X )

F (Y0 | θ,X , S = 0) = F (Y0 | θ,X ) .

• Can identify the number of factors generating dependence
among the Y1, Y0, C , S and M .

Heckman Factor Models: A Review of General Models


