Econometric Estimators as Weighting Schemes

by James J. Heckman, Robert J. LaLonde and Jeffrey Smith
From Section 7 of Handbook of Labor Economics, 1999

James J. Heckman

Econ 312, Spring 2023

- Matching

$$
\begin{equation*}
\left(Y_{0}, Y_{1}\right) \Perp D \mid X \tag{A-1}
\end{equation*}
$$

- " \Perp " denote independence.

$$
\begin{gathered}
F\left(Y_{0} \mid D=1, X\right)=F\left(Y_{0} \mid D=0, X\right)=F\left(Y_{0} \mid X\right) \\
\text { and } \\
F\left(Y_{1} \mid D=1, X\right)=F\left(Y_{1} \mid D=0, X\right)=F\left(Y_{1} \mid X\right)
\end{gathered}
$$

$$
\begin{equation*}
0<\operatorname{Pr}(D=1 \mid X)<1 \tag{A-1}
\end{equation*}
$$

- Assumptions A-1 and A-2 imply that

$$
E\left(Y_{0} \mid D=1, X\right)=E\left(Y_{0} \mid D=0, X\right)
$$

- In addition,

$$
\begin{aligned}
& E\left(Y_{1} \mid D\right.=1, X) \\
& E\left(U_{0} \mid D\right.=1, X)=E\left(Y_{1} \mid D=0, X\right) . \\
&\left(U_{0} \mid D=0, X\right)=E\left(U_{0} \mid X\right) .
\end{aligned}
$$

- Assumptions A-1 and A-2 imply that

$$
E\left(Y_{0} \mid D=1, X\right)=E\left(Y_{0} \mid D=0, X\right)
$$

- In addition,

$$
\begin{aligned}
E\left(Y_{1} \mid D\right. & =1, X)
\end{aligned}=E\left(Y_{1} \mid D=0, X\right) .
$$

- If A-1 and A-2 are true, it is possible to construct both the "treatment on the treated" parameter

$$
E\left(Y_{1}-Y_{0} \mid X, D=1\right)
$$

and the effect of "nontreatment on the nontreated" parameter using the same data.

$$
E\left(Y_{0}-Y_{1} \mid X, D=0\right)
$$

- In fact, TOT=TUT, MTE is flat. Will show in next lecture.

$$
\begin{gathered}
Y=Y_{0}+D\left(Y_{1}-Y_{0}\right) \\
E(Y \mid X)=E\left(Y_{0} \mid X\right)+E\left(Y_{1}-Y_{0} \mid X, D=1\right) D
\end{gathered}
$$

by matching

$$
\begin{gathered}
E\left(Y_{1}-Y_{0} \mid X, D=1\right)=E\left(Y_{1}-Y_{0} \mid X\right) \\
\therefore E(Y \mid X)=E\left(Y_{0} \mid X\right)+D E\left(Y_{1}-Y_{0} \mid X\right)
\end{gathered}
$$

- Observe no exclusion restriction needed.
- Under exogeneity for X and $E\left(U_{0}\right)=0$

$$
\begin{aligned}
E\left(U_{0} \mid X, D=1\right) & =E\left(U_{0} \mid X, D=0\right) \\
& =E\left(U_{0} \mid X\right) \\
& =0 .
\end{aligned}
$$

- Also under exogeneity and $E\left(U_{1}\right)=0$

$$
\begin{aligned}
& E\left(U_{1} \mid X, D=1\right)=E\left(U_{1} \mid X, D=1\right) \\
&=E\left(U_{1} \mid X\right) \\
&=0 . \\
& E\left(Y_{1}-Y_{0} \mid X, D=1\right)=E\left(Y_{1}-Y_{0} \mid X\right) .
\end{aligned}
$$

- But exogeneity not required

How to Construct Matches

- Matches constructed on the basis of a neighborhood C_{i} around X_{i}.
- $C\left(X_{i}\right)$ defines the neighborhood.
- Let X_{i} be a vector of characteristics for person i.
- Thus, the persons in sample C who are neighbors to i are persons j, for whom $X_{j} \in C\left(X_{i}\right)$ i.e., it is the set of persons A_{i} for whom.

$$
A_{i}=\left\{j \mid X_{j} \in C_{i}\right\}
$$

- Let $W(i, j)$ be a weight.

$$
\begin{gathered}
\sum_{j=1}^{N_{i j}} W(i, j)=1 \\
\bar{Y}_{i}^{C}=\sum_{j=1}^{N_{i j}} W(i, j) Y_{j}^{C}
\end{gathered}
$$

- Estimated treatment effect for person i is $Y_{i}-\bar{Y}_{i}^{C}$.
- Nearest-neighbor matching estimator defines A_{i}

$$
\begin{aligned}
& A_{i}=\left\{j \mid \operatorname{Min}\left\|X_{i}-X_{j}\right\|\right\} \\
& j \in\left\{1, \ldots, N_{c}\right\}
\end{aligned}
$$

where "|| ||" is a metric.

- The weighting scheme for the nearest-neighbor estimator is

$$
W(i, j)=1 \begin{array}{ll}
1 & \text { if } j \in A_{i} \\
0 & \text { otherwise } .
\end{array}
$$

- "Caliper" matching adds a "closeness" requirement:

$$
\left\|X_{i}-X_{j}\right\|<\varepsilon
$$

- The overall mean difference is the treatment effect:

$$
\begin{aligned}
& m=\frac{1}{N_{t}} \sum_{i=1}^{N_{t}}\left(Y_{i}^{t}-\bar{Y}_{i}^{C}\right) \\
& =\frac{1}{N_{t}} \sum_{i=1}^{N_{t}}\left(Y_{i}^{t}-\sum_{j=1}^{N_{C}} W(i, j) Y_{j}^{C}\right)
\end{aligned}
$$

- Kernel matching $A_{i}=\left\{1, \ldots, N_{C}\right\}$

$$
W(i, j)=\frac{K\left(X_{j}-X_{i}\right)}{\sum_{j=1}^{N_{C}} K\left(X_{j}-X_{i}\right)}
$$

- K is a kernel
- Mahalanobis Metric:

$$
\left\|\|=\left(X_{i}-X_{j}\right)^{\prime} \sum_{C}^{-1}\left(X_{i}-X_{j}\right)\right.
$$

Regression-adjusted matching

- Heckman, Ichimura and Todd $(1997,1998)$

$$
A\left(Y_{i}\right)=Y_{i}-X_{i} \beta
$$

- Rosenbaum and Rubin (1983),

$$
\begin{aligned}
& \left(Y_{1}, Y_{0}\right) \Perp \quad D \mid P(X), \quad \text { for } X \in C \\
& B(P(X))=E\left(Y_{0} \mid P(X), D=1\right)-E\left(Y_{0} \mid P(X), D=0\right) \\
& \\
& =0
\end{aligned}
$$

- Can construct counterfactual

$$
E\left(Y_{0} \mid P(X), D=1\right)
$$

- Matching is sometimes used to estimate $E\left(Y_{1}-Y_{0} \mid X, D=1\right)$ at points of $X=x$.
- An averaged version

$$
E\left(Y_{1}-Y_{0} \mid D=1\right)=\frac{\int_{S(X)} E\left(Y_{1}-Y_{0} \mid D=1, X\right) d F(X \mid D=1)}{\int_{S(X)} d F(X \mid D=1)}
$$

- $S(X)$ is common support of X for $D=1$ and $D=0$ samples

Instrumental Variable Estimator as MatchingComparison Group Estimator

$$
\begin{aligned}
Y & =\beta(X)+\alpha(X) D+U \\
E(Y \mid X, Z) & =\beta(X)+E(\alpha(X) \mid X, D=1) E(D \mid X, Z)+E(U \mid X, Z) \\
Y & =\beta+E(\alpha(X) \mid X, D=1) E(D \mid X, Z)+(U+\alpha W)
\end{aligned}
$$

where $D=E(D \mid Z)+W$

$$
\begin{gathered}
E(\alpha(X) \mid X, Z, D=1)=E(\alpha(X) \mid X, X D=1) \\
E(D \mid X, Z) \neq E\left(D \mid X, Z^{\prime}\right) . \\
\frac{Y_{i}-Y_{i^{\prime}}}{E\left(D_{i} \mid X, Z_{i}\right)-E\left(D_{i^{\prime}} \mid X, Z_{i^{\prime}}\right)} \\
E\left[\frac{Y_{i}-Y_{i^{\prime}}}{E\left(D_{i} \mid X, Z_{i}\right)-E\left(D_{i^{\prime}} \mid X, Z_{i^{\prime}}\right)}\right]=E(\alpha(X) \mid X, D=1)
\end{gathered}
$$

$$
\begin{gathered}
\hat{\alpha}=\sum_{i j}\left[\frac{Y_{i}-Y_{i^{\prime}}}{E\left(D_{i} \mid X, Z_{i}\right)-E\left(D_{i^{\prime}} \mid X, Z_{i^{\prime}}\right)}\right] W\left(i, i^{\prime}\right) \\
W\left(i, i^{\prime}\right)=\frac{\left(E\left(D_{i} \mid Z_{i}\right)-E\left(D_{i^{\prime}} \mid Z_{i^{\prime}}\right)\right)^{2}}{\sum_{i, i^{\prime}}\left(E\left(D_{i} \mid Z_{i}\right)-E\left(D_{i} \mid Z_{i^{\prime}}\right)\right)^{2}} \\
\frac{Y_{i}-Y_{i^{\prime}}}{E\left(D_{i} \mid X, Z_{i}\right)-E\left(D_{i^{\prime}} \mid X, Z_{i^{\prime}}\right)}=0, \text { if denominator zero. }
\end{gathered}
$$

- The IV method does not eliminate conventional econometric exogeneity bias - it just balances the bias.
- By the same token, OLS is a matching estimator (see notes on Theil weights).

Panel Data Estimators as Matching Estimators (Difference in Differences Estimators)

- Consider an intervention in period k.
- For person i at time $t>k$ (k is the program participation period).
- Assume a stationary environment.

Fixed Effect

- We match $Y_{0, i, t^{\prime}}, t^{\prime}<k$.

$$
Y_{1, i, t}-W\left(i, t^{\prime}\right) Y_{0, i, t^{\prime}} \quad t^{\prime}<k
$$

where $W\left(i, t^{\prime}\right)=1$.

General Form

$$
\begin{aligned}
& \qquad Y_{0, i, t}^{c}=\sum_{j=0}^{k-1} W(i, j) Y_{0, i, j}, \quad j<k \\
& \text { where } \sum_{j=0}^{k-1} W(i, j)=1
\end{aligned}
$$

- $t=k+1, \ldots, T$, the summed comparison group-controls are

$$
\sum_{t=k+1}^{T}\left[\left(Y_{1, i, t}-Y_{i, t}^{c}\right)\right] \phi(i, t), \quad \quad \sum_{t=k+1}^{T} \phi(i, t)=1
$$

More Generally

$$
\begin{gathered}
\sum_{t=k+1}^{T}\left(\alpha(i, t) Y_{1, i, t}-\beta(i, t) Y_{i, t}^{c}\right) \\
\\
\sum_{t=k+1}^{T} \alpha(i, t)=1
\end{gathered}
$$

and

$$
\begin{array}{cc}
\sum_{t=k+1}^{T} \alpha(i, t)=\sum_{t=k+1}^{T} \beta(i, t) & \text { for all } i \\
Y_{0, i^{\prime}, t}-\sum_{j=1}^{k-1} W\left(i^{\prime}, j\right) Y_{0, i^{\prime}, j} & t>k>j
\end{array}
$$

More Generally

where

$$
\begin{aligned}
& \sum_{j=0}^{k-1} W\left(i^{\prime}, j\right)=1 \\
& {\left[Y_{1, i, t}-\sum_{j=0}^{k-1} W(i, j) Y_{0, i, j}\right]-\left[Y_{0, i, t}-\sum_{j=0}^{k-1} W\left(i^{\prime}, j\right) Y_{0, i^{\prime}, j}\right]}
\end{aligned}
$$

and $W(i, j)=W\left(i^{\prime}, j\right)$ for $\left(i, i^{\prime}\right)$ and all j and

$$
\sum_{i} W(i, j)=1, \quad \sum_{i^{\prime}} W\left(i^{\prime}, j\right)=1
$$

- This eliminates common trends.

$$
\left[Y_{1, i, j}-\sum_{j=0}^{k-1} W(i, j) Y_{i, j}^{0}\right]-\frac{1}{N_{c}} \sum_{i^{\prime}=1}^{N_{c}}\left[Y_{0, i^{\prime}, t}-\sum_{j=0}^{k-1} W\left(i^{\prime}, j\right) Y_{0, i^{\prime}, j}\right] \varphi\left(i^{\prime}\right)
$$

- $N^{c}=\#$ in control group.

$$
\begin{aligned}
& \frac{1}{N} \sum_{i^{\prime}=1}^{N_{c}} \varphi\left(i^{\prime}\right) \\
& \frac{1}{N} \sum_{i^{\prime}=1}^{N_{c}} W\left(i^{\prime}, j\right) \varphi\left(i^{\prime}\right)=W(i, j)
\end{aligned}
$$

- This eliminates age-or-period-specific common trends or year effects. We can form variance weighted versions.
- The same scheme can be used to estimate models with personspecific, time varying variables. Let $A_{i t}\left(Y_{i t}\right)$ be an "adjustment" to $Y_{i t}$.
- An example is

$$
A_{i t}\left(Y_{i t}\right)=Y_{i t}-X_{i t} \beta
$$

or for more general models we may write

$$
A_{i t}\left(Y_{i t}\right)=Y_{i t}-g\left(X_{i t}\right) .
$$

- Then the comparison group for person i can be written as
- $A_{i t}^{c}\left(Y_{i}, t\right)=\sum_{j=0}^{k-1} W(i, j) A_{j t}\left(Y_{0, i, j}\right)$

$$
A_{i t}\left(Y_{1, i t}\right)-A_{i, t}^{c}\left(Y_{i t}\right)=\text { estimator. }
$$

Similar Modification to Differences in Differences

$$
\left[A_{i t}\left(Y_{1}, i, t\right)-\sum_{j=0}^{k-1} W(i, j) A_{j t}\left(Y_{0, j, t}\right)\right]-\left[A_{i^{\prime}, t}\left(Y_{0, i^{\prime}, t}\right)-\sum_{j=0}^{k-1} W\left(i^{\prime}, j\right) A_{i^{\prime}, j}\left(Y_{0, i^{\prime}, j}\right)\right] .
$$

