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𝑌0, 𝑌1 ⫫ 𝐷|𝑋 (A-1)

• “⫫” denote independence. 

𝐹 𝑌0 𝐷 = 1, 𝑋 = 𝐹 𝑌0 𝐷 = 0, 𝑋 = 𝐹(𝑌0|𝑋)

and

𝐹 𝑌1 𝐷 = 1, 𝑋 = 𝐹 𝑌1 𝐷 = 0, 𝑋 = 𝐹(𝑌1|𝑋)

• Matching
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0 < 𝑃𝑟 𝐷 = 1 𝑋 < 1 (A-1)

𝐸 𝑌0 𝐷 = 1, 𝑋 = 𝐸 𝑌0 𝐷 = 0, 𝑋 .

• In addition,

𝐸 𝑌1 𝐷 = 1, 𝑋 = 𝐸 𝑌1 𝐷 = 0, 𝑋 .
𝐸 𝑈0 𝐷 = 1, 𝑋 = 𝐸 𝑈0 𝐷 = 0, 𝑋 = 𝐸 𝑈0 𝑋 .

• Assumptions A-1 and A-2 imply that



Heckman 4

𝐸 𝑌0 𝐷 = 1, 𝑋 = 𝐸 𝑌0 𝐷 = 0, 𝑋 .

• In addition,

𝐸 𝑌1 𝐷 = 1, 𝑋 = 𝐸 𝑌1 𝐷 = 0, 𝑋 .
𝐸 𝑈0 𝐷 = 1, 𝑋 = 𝐸 𝑈0 𝐷 = 0, 𝑋 = 𝐸 𝑈0 𝑋 .

• Assumptions A-1 and A-2 imply that
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𝐸 𝑌1 − 𝑌0 𝑋,𝐷 = 1

and the effect of “nontreatment on the nontreated” parameter 
using the same data.

𝐸 𝑌0 − 𝑌1 𝑋,𝐷 = 0 .

• If A-1 and A-2 are true, it is possible to construct both the 
“treatment on the treated” parameter

• In fact, TOT=TUT, MTE is flat. Will show in next lecture.
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𝑌 = 𝑌0 + 𝐷 𝑌1 − 𝑌0

𝐸 𝑌 𝑋 = 𝐸 𝑌0 𝑋 + 𝐸 𝑌1 − 𝑌0 𝑋,𝐷 = 1 𝐷

by matching

𝐸 𝑌1 − 𝑌0 𝑋,𝐷 = 1 = 𝐸 𝑌1 − 𝑌0 𝑋

∴ 𝐸 𝑌 𝑋 = 𝐸 𝑌0 𝑋 + 𝐷 𝐸(𝑌1 − 𝑌0|𝑋)

• Observe no exclusion restriction needed.
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𝐸 𝑈0 𝑋, 𝐷 = 1 = 𝐸 𝑈0 𝑋,𝐷 = 0
= 𝐸 𝑈0 𝑋
= 0.

• Under exogeneity for 𝑋and 𝐸 𝑈0 = 0
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𝐸 𝑈1 𝑋,𝐷 = 1 = 𝐸 𝑈1 𝑋,𝐷 = 1
= 𝐸 𝑈1 𝑋
= 0.

• Also under exogeneity and 𝐸 𝑈1 = 0

𝐸 𝑌1 − 𝑌0 𝑋,𝐷 = 1 = 𝐸 𝑌1 − 𝑌0 𝑋 .

• But exogeneity not required
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How to Construct Matches

• Matches constructed on the basis of a neighborhood 𝐶𝑖 around 𝑋𝑖.

• 𝐶(𝑋𝑖) defines the neighborhood.

• Let 𝑋𝑖 be a vector of characteristics for person 𝑖.

• Thus, the persons in sample 𝐶 who are neighbors to 𝑖 are persons 
𝑗, for whom 𝑋𝑗 ∈ 𝐶(𝑋𝑖) i.e., it is the set of persons 𝐴𝑖 for whom.

𝐴𝑖 = {𝑗|𝑋𝑗 ∈ 𝐶𝑖}
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• Let 𝑊 𝑖, 𝑗 be a weight.



𝑗=1

𝑁𝑖𝑗

𝑊 𝑖, 𝑗 = 1

ത𝑌𝑖
𝐶 = 

𝑗=1

𝑁𝑖𝑗

𝑊 𝑖, 𝑗 𝑌𝑗
𝐶

• Estimated treatment effect for person 𝑖 is 𝑌𝑖 − ത𝑌𝑖
𝐶.



Heckman 11

• Nearest-neighbor matching estimator defines 𝐴𝑖

𝐴𝑖 = 𝑗 𝑀𝑖𝑛 ∥ 𝑋𝑖 − 𝑋𝑗 ∥

𝑗 ∈ {1, … , 𝑁𝑐}

where “∥ ∥” is a metric.
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• The weighting scheme for the nearest-neighbor estimator is

𝑊 𝑖, 𝑗 = 1 𝑖𝑓 𝑗 ∈ 𝐴𝑖
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

• “Caliper” matching adds a “closeness” requirement:

∥ 𝑋𝑖 − 𝑋𝑗 ∥< 𝜀
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• The overall mean difference is the treatment effect:

𝑚 =
1

𝑁𝑡


𝑖=1

𝑁𝑡

(𝑌𝑖
𝑡 − ത𝑌𝑖

𝐶)

=
1

𝑁𝑡


𝑖=1

𝑁𝑡

(𝑌𝑖
𝑡 −

𝑗=1

𝑁𝐶

𝑊 𝑖, 𝑗 𝑌𝑗
𝐶)
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• Kernel matching 𝐴𝑖 = {1,… , 𝑁𝐶}

𝑊 𝑖, 𝑗 =
𝐾(𝑋𝑗 − 𝑋𝑖)

σ
𝑗=1
𝑁𝐶 𝐾(𝑋𝑗 − 𝑋𝑖)

• K is a kernel
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• Mahalanobis Metric:

∥∥= 𝑋𝑖 − 𝑋𝑗
′


𝐶

−1

𝑋𝑖 − 𝑋𝑗 .
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Regression-adjusted matching

• Heckman, Ichimura and Todd (1997, 1998)

𝐴 𝑌𝑖 = 𝑌𝑖 − 𝑋𝑖𝛽
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• Rosenbaum and Rubin (1983),

𝑌1, 𝑌0 ⫫ 𝐷|𝑃 𝑋 , for 𝑋 ∈ 𝐶

𝐵 𝑃 𝑋 = 𝐸 𝑌0 𝑃 𝑋 , 𝐷 = 1 − 𝐸 𝑌0 𝑃 𝑋 , 𝐷 = 0

= 0

• Can construct counterfactual

𝐸 𝑌0 𝑃 𝑋 , 𝐷 = 1
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• Matching is sometimes used to estimate 
𝐸(𝑌1 − 𝑌0|𝑋, 𝐷 = 1) at points of 𝑋 = 𝑥.

• An averaged version

𝐸 𝑌1 − 𝑌0 𝐷 = 1 =
𝑆(𝑋)𝐸 𝑌1 − 𝑌0 𝐷 = 1, 𝑋 𝑑𝐹(𝑋|𝐷 = 1)

𝑆(𝑋)𝑑𝐹(𝑋|𝐷 = 1)
.

• S(X) is common support of X for D=1 and D=0 samples 
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Instrumental Variable Estimator as Matching-
Comparison Group Estimator

𝑌 = 𝛽 𝑋 + 𝛼 𝑋 𝐷 + 𝑈
𝐸 𝑌 𝑋, 𝑍 = 𝛽 𝑋 + 𝐸 𝛼 𝑋 𝑋, 𝐷 = 1 𝐸 𝐷 𝑋, 𝑍 + 𝐸 𝑈 𝑋, 𝑍

𝑌 = 𝛽 + 𝐸 𝛼 𝑋 𝑋, 𝐷 = 1 𝐸 𝐷 𝑋, 𝑍 + 𝑈 + 𝛼𝑊

where 𝐷 = 𝐸 𝐷 𝑍 +𝑊
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𝐸 𝛼 𝑋 𝑋, 𝑍, 𝐷 = 1 = 𝐸 𝛼 𝑋 𝑋, 𝑋𝐷 = 1
𝐸 𝐷 𝑋, 𝑍 ≠ 𝐸 𝐷 𝑋, 𝑍′ .

𝑌𝑖 − 𝑌𝑖′

𝐸 𝐷𝑖 𝑋, 𝑍𝑖 − 𝐸(𝐷𝑖′|𝑋, 𝑍𝑖′)

𝐸
𝑌𝑖 − 𝑌𝑖′

𝐸 𝐷𝑖 𝑋, 𝑍𝑖 − 𝐸 𝐷𝑖′ 𝑋, 𝑍𝑖′
= 𝐸(𝛼(𝑋)|𝑋, 𝐷 = 1)
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ො𝛼 =
𝑖𝑗

𝑌𝑖 − 𝑌𝑖′

𝐸 𝐷𝑖 𝑋, 𝑍𝑖 − 𝐸 𝐷𝑖′ 𝑋, 𝑍𝑖′
𝑊(𝑖, 𝑖′)

𝑊 𝑖, 𝑖′ =
𝐸 𝐷𝑖 𝑍𝑖 − 𝐸 𝐷𝑖′ 𝑍𝑖′

2

σ𝑖,𝑖′ 𝐸 𝐷𝑖 𝑍𝑖 − 𝐸 𝐷𝑖 𝑍𝑖′
2

𝑌𝑖−𝑌𝑖′

𝐸 𝐷𝑖 𝑋, 𝑍𝑖 −𝐸(𝐷𝑖′|𝑋,𝑍𝑖′)
= 0, if denominator zero.

• The IV method does not eliminate conventional econometric 
exogeneity bias – it just balances the bias.

• By the same token, OLS is a matching estimator (see notes on 
Theil weights).
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Panel Data Estimators as Matching Estimators
(Difference in Differences Estimators)

• Consider an intervention in period 𝑘.

• For person 𝑖 at time 𝑡 > 𝑘 (𝑘 is the program participation period).

• Assume a stationary environment.

Fixed Effect

• We match 𝑌0,𝑖,𝑡′ , 𝑡
′ < 𝑘.

𝑌1,𝑖,𝑡 −𝑊 𝑖, 𝑡′ 𝑌0,𝑖,𝑡′ 𝑡′ < 𝑘

where 𝑊 𝑖, 𝑡′ = 1.
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General Form

𝑌0,𝑖,𝑡
𝑐 = 

𝑗=0

𝑘−1

𝑊 𝑖, 𝑗 𝑌0,𝑖,𝑗 , 𝑗 < 𝑘

where σ𝑗=0
𝑘−1𝑊 𝑖, 𝑗 = 1.

• 𝑡 = 𝑘 + 1,… , 𝑇, the summed comparison group-controls are



𝑡=𝑘+1

𝑇

𝑌1,𝑖,𝑡 − 𝑌𝑖,𝑡
𝑐 𝜙 𝑖, 𝑡 , 

𝑡=𝑘+1

𝑇

𝜙 𝑖, 𝑡 = 1
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More Generally



𝑡=𝑘+1

𝑇

(𝛼 𝑖, 𝑡 𝑌1,𝑖,𝑡 − 𝛽 𝑖, 𝑡 𝑌𝑖,𝑡
𝑐 )



𝑡=𝑘+1

𝑇

𝛼 𝑖, 𝑡 = 1

and



𝑡=𝑘+1

𝑇

𝛼 𝑖, 𝑡 = 

𝑡=𝑘+1

𝑇

𝛽(𝑖, 𝑡) for all 𝑖

𝑌0,𝑖′,𝑡 −

𝑗=1

𝑘−1

𝑊 𝑖′, 𝑗 𝑌0,𝑖′,𝑗 𝑡 > 𝑘 > 𝑗
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More Generally

where 



𝑗=0

𝑘−1

𝑊 𝑖′, 𝑗 = 1

𝑌1,𝑖,𝑡 −

𝑗=0

𝑘−1

𝑊 𝑖, 𝑗 𝑌0,𝑖,𝑗 − 𝑌0,𝑖,𝑡 −

𝑗=0

𝑘−1

𝑊 𝑖′, 𝑗 𝑌0,𝑖′,𝑗

and 𝑊 𝑖, 𝑗 = 𝑊(𝑖′, 𝑗) for (𝑖, 𝑖′) and all 𝑗 and



𝑖

𝑊 𝑖, 𝑗 = 1, 

𝑖′

𝑊 𝑖′, 𝑗 = 1
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• This eliminates common trends.

𝑌1,𝑖,𝑗 −

𝑗=0

𝑘−1

𝑊 𝑖, 𝑗 𝑌𝑖,𝑗
0 −

1

𝑁𝑐


𝑖′=1

𝑁𝑐

𝑌0,𝑖′,𝑡 −

𝑗=0

𝑘−1

𝑊 𝑖′, 𝑗 𝑌0,𝑖′,𝑗 𝜑(𝑖′)

• 𝑁𝑐 = # in control group.
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1

𝑁


𝑖′=1

𝑁𝑐

𝜑(𝑖′)

1

𝑁


𝑖′=1

𝑁𝑐

𝑊 𝑖′, 𝑗 𝜑 𝑖′ = 𝑊 𝑖, 𝑗 .

• This eliminates age-or-period-specific common trends or year 
effects. We can form variance weighted versions.

• The same scheme can be used to estimate models with person-
specific, time varying variables. Let 𝐴𝑖𝑡(𝑌𝑖𝑡) be an “adjustment” to 
𝑌𝑖𝑡.

• An example is
𝐴𝑖𝑡 𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 𝑋𝑖𝑡𝛽
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or for more general models we may write

𝐴𝑖𝑡 𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 𝑔 𝑋𝑖𝑡 .

• Then the comparison group for person i can be written as

• 𝐴𝑖𝑡
𝑐 𝑌𝑖 , 𝑡 = σ𝑗=0

𝑘−1𝑊 𝑖, 𝑗 𝐴𝑗𝑡(𝑌0,𝑖,𝑗)

𝐴𝑖𝑡 𝑌1,𝑖𝑡 − 𝐴𝑖,𝑡
𝑐 𝑌𝑖𝑡 = estimator.
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Similar Modification to Differences in Differences

𝐴𝑖𝑡 𝑌1, 𝑖, 𝑡 −

𝑗=0

𝑘−1

𝑊 𝑖, 𝑗 𝐴𝑗𝑡 𝑌0,𝑗,𝑡 − 𝐴𝑖′,𝑡 𝑌0,𝑖′,𝑡 −

𝑗=0

𝑘−1

𝑊 𝑖′, 𝑗 𝐴𝑖′,𝑗 𝑌0,𝑖′,𝑗 .
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