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2. Notation and a model of program participation

2.1. Earnings functions

• To focus on essential aspects of the problem, assume that
individuals experience only one opportunity to participate in
training.

• This opportunity occurs in period k .

• Training takes a single period for participants to complete.

• During training, participants earn no labor income.
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• Denote earnings of individual i in period t by Y ∗
it .

• Earnings depend on a vector of observed characteristics, Xit .

• Post-program earnings (t > k) also depend on a dummy
variable, di , which equals one if the ith individual participates
and is zero if he does not.

• Let Uit represent the error term in the earnings equation and
assume that E [Uit ] = 0.
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• Adopting a linear specification, latent earnings as

Y ∗
it = Xitβ + Uit ,

where β is a vector of parameters.

• Linearity is adopted only as a convenient starting point and is
not an essential aspect of any of the methods presented in
these notes.

• Throughout, we assume that the mean of Uit given Xit is the
same for all Xit .

• Sometimes we require independence between Xit and current,
future, and lagged values for Uit .

• When Xit contains lagged values of Y ∗
it , we assume that the

equation for Y ∗
it can be solved for a reduced form expression

involving only exogenous regressor variables.

• Under standard conditions, it is possible to estimate the
structure from the reduced form so defined.
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• Under these assumptions, β is the coefficient of X in the
conditional expectation of Y ∗ given X .

• Observed earnings Y ∗
it are related to latent earnings Y ∗

it in the
following way:

Y ∗
it =

{
Xitβ + diα + Uit t > k

Xitβ + Uit t ≤ k
(1)

where di = 1 if the person takes training and di = 0 otherwise
and where α is one definition of the causal or structural effect
of training on earnings.

• Observed earnings are the sum of latent earnings and the
structural shift term diα that is a consequence of training. Y ∗

it

is thus the sum of two random variables when t > k .
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• The problem of selection bias arises because di may be
correlated with Uit .

• This is a consequence of selection decisions by agents. Thus,
selection bias is present if

E (Uitdi) ̸= 0.
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• Observed earnings may be written as

Y ∗
it = Xitβ + diα + Uit t > k (2)

Y ∗
it = Xitβ + Uit t ≤ k ,

where β and α are parameters.

• Because of the covariance between di and Uit ,

E (Y ∗
it | Xit , di) ̸= Xitβ + diα.
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• Equation (2) assumes that training has the same effect on
everyone.

• We can also develop the analysis when α varies among
individuals, as is assumed in many analyses of experimental and
nonexperimental data (see Fisher, 1953).

• Throughout, we largely ignore effects of training which grow or
decay over time.
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2.2. Enrollment rules

• The decision to participate in training may be determined by a
prospective trainee, by a program administrator or both.

• Whatever the specific content of the rule, it can be described in
terms of an index function framework.

• Let INi be an index of benefits to the appropriate
decision-makers from taking training.

• It is a function of observed (Zi) and unobserved (Vi) variables.

• Thus
INi = Ziγ + Vi . (3)
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• In terms of this function,

di =

{
1 iff INi > 0

0 otherwise.

The distribution function of Vi is denoted as
F (vi) = Pr(Vi < vi).

• Vi is assumed to be independently and identically distributed
across persons.

• Let p = E [di ] = Pr[di = 1] and assume 1 > p > 0.
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• Assuming that Vi is distributed independently of Zi (a
requirement not needed for most of the estimators considered
in this paper), we may write Pr(di = 1 | Zi) = F (−Ziγ), which
is sometimes called the “propensity score” in statistics (see,
e.g., Rosenbaum and Rubin, 1983).

• We show later a special subclass of econometric
selection-correction estimators can be expressed as functions of
the propensity score.
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• The condition for the existence of selection bias

E (Uitdi) ̸= 0

may occur because of stochastic dependence between Uit and
the unobservable Vi in equation (2) (selection on the
unobservables) or because of stochastic dependence between
Uit and Zi in equation (2) (selection on observables).

Heckman & Robb Alternative Methods



Notation Cross Repeated Repeat First Non-random Conc Random

A Behavioral Model
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• To interpret various specifications of equation (2), we need a
behavioral model.

• A natural starting point is a model of trainee self-selection
based on a comparison of the expected value of earnings with
and without training.

• For simplicity, assume that training programs accept all
applicants.
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• All prospective trainees are assumed to discount earnings
streams by a common discount factor 1/(1 + r).

• From (1) training raises trainee earnings by α per period.

• While in training, individual i receives a subsidy Si which may
be negative (so there may be direct costs of program
participation).

• Trainees forego income in training period k .

• To simplify the expressions, we assume that people live forever.
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• As of period k , the present value of earnings for a person who
does not receive training is

PVi(0) = Ek−1

(
∞∑
j=0

(
1

1 + r

)j

Yi ,k+j

)
.

• Ek−1 means that the expectation is taken with respect to
information available to the prospective trainee in period k − 1.

• The expected present value of earnings for a trainee is

PVi(1) = Ek−1

(
Si +

∞∑
j=1

(
1

1 + r

)j

Yi ,k+j +
∞∑
j=1

α

(1 + r)j

)
.
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• The risk-neutral wealth-maximizing decision rule is to enroll in
the program if PVi(l) > PVi(0) or, letting INi denote the index
function in decision rule (3),

INi = PVi(1)− PVi(0) = Ek−1[Si − Yik + α/r ], (4)

so the decision to train is characterized by the rule

di =

{
1 iff Ek−1[Si − Yik + α/r ] > 0

0 otherwise.
(5)
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• Let Wi be the determinant of the subsidy that the
econometrician observes (with associated coefficient ϕ) and let
τi be the part which he does not observe:

Si = Wiϕ+ τi .

• A special case of this model arises when agents possess perfect
foresight so that Ek−1[Si ] = Si , Ek−l [Yik ] = Yik and
Ek−1[α/r ] = α/r .
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• Collecting terms,

di =

{
1 iff Si − Yik + α/r = Wiϕ+ α/r − Xikβ + τi − Uik > 0

0 otherwise.

(6)

• Then (τi − Uik) = Vi in (3) and (Wi ,Xik) corresponds to Zi in
(3).

• Assuming that (Wi ,Xik) is distributed independently of Vi

makes (6) a standard discrete choice model.

• This assumption is only required for some of the estimators
discussed here.
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• Suppose decision rule (6) determines enrollment.

• If the costs of program participation are independent of Uit for
all t (so both Wi and τi are independent of Uit), then
E [Uitdi ] = 0 only if the unobservables in period t are (mean)
independent of the unobservables in period k or

E [Uit | Uik ] = 0 for t > k .

Question: Prove this.

• Whether or not Uit and di are uncorrelated hinges on the serial
dependence properties of Uit .
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• If Uit is a moving average of order m so

Uit =
m∑
j=1

ajεi ,t−j ,

where the εi ,t−j are iid, then for t − k > m, E [Uitdi ] = 0.

• On the other hand, if Uit follows a first-order autoregressive
scheme, then E [Uit | Uik ] ̸= 0 for all finite t and k .
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• The enrollment decision rules derived in this subsection give
context to the selection bias problem.

• The estimators discussed in this paper differ greatly in their
dependence on particular features of these rules.

• Some estimators do not require that these decision rules be
specified at all, while other estimators require a great deal of a
priori specification of these rules.

• Given the inevitable controversy that surrounds specification of
enrollment rules, there is always likely to be a preference by
analysts for estimators that require little prior knowledge about
the decision rule.

• But this often throws away valuable information and ignores
the subjective evaluation implicit in di = 1.
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Link to Section 3. Appendix
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4. Cross-sectional procedures

• Standard cross-sectional procedures invoke unnecessarily strong
assumptions.

• All that is required to identify α in a cross-section is access to a
regressor in (3).

• In the absence of a regressor, assumptions about the marginal
distribution of Uit , can produce consistent estimators of the
training impact.
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4.1. Without distributional assumptions a regressor is needed

• Let Ȳ
(1)
t denote the sample mean of trainee earnings and let

Ȳ
(0)
t denote the sample mean of non-trainee earnings:

Ȳ
(1)
t =

∑
diY

∗
it∑

di
,

Ȳ
(0)
t =

∑
(1− di)Y

∗
it∑

(1− di)
,

for 0 <
∑

di < I , where I is the number of observations.

• We retain the assumption that the data are generated by a
random sampling scheme.
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• If no regressors appear in (1) then Xitβ = βt , and

plim Ȳ
(1)
t = βt + α + E [Uit | di = 1],

plim Ȳ
(0)
t = βt + E [Uit | di = 0].

• Thus

plim
(
Ȳ

(1)
t − Ȳ

(0)
t

)
= α + E [Uit | di = 1]/(1− p),

since pE [Uit | di = 1] + (1− p)E [Uit | di = 0] = 0.
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• Even if p were known, α cannot be separated from
E [Uit | di = 1] using cross-sectional data on sample means.

• Sample variances do not aid in securing identification unless
E [U2

it | di = 0] or E [U2
it | di = 1] is known a priori.

• Similar remarks apply to the information from higher moments.
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4.2. Overview of cross-sectional procedures which use regressors

• If, however, E [Uit | di = 1,Zi ] is a non-constant function of Zi ,
it is possible (with additional assumptions) to solve this
identification problem.

• Securing identification in this fashion explicitly precludes a fully
non-parametric strategy in which both the earnings function (1)
and decision rule (3) are estimated in each (Xit ,Zi) stratum.

• For within each stratum, E [Uit | di = 1,Zi ] is a constant
function of Zi and α is not identified from cross-section data.

• Restrictions across strata are required.
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• If E [Uit | di = 1,Zi ] is a non-constant function of Zi it is
possible to exploit this information in a variety of ways
depending on what else is assumed about the model.

• Here we simply sketch alternative strategies.
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a Suppose Zi or a subset of Zi is exogenous with respect to Uit .
Under conditions specified more fully below, the exogenous
subset may be used to construct an instrumental variable for di
in eq. (1), and α can be consistently estimated by instrumental
variables methods. No distributional assumptions about Uit or
Vi are required [Heckman (1978)].

b Suppose that Zi , is distributed independently of Vi , and the
functional form of the distribution of Vi , is known, or can be
consistently estimated. Under standard conditions, γ in (3) can
be consistently estimated by conventional methods in discrete
choice analysis. If Zi , is distributed independently of Uit ,
F (−Zi γ̂) can be used as an instrument for di , in eq. (1)
[Heckman (1978)].
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c Under the same conditions as specified in (b),

E [Y ∗
it | Xit ,Zi ] = Xitβ + α(1− F (−Ziγ)).

γ and α can be consistently estimated using F (−Zi γ̂) in place
of F (−Ziγ) in the preceding equation [Heckman (1976,1978)]
or else the preceding equation can be estimated by non-linear
least squares, estimating β, α and γ jointly (given the
functional form of F ).
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d If the functional forms of E [Uit | di = 1,Zi ] and
E [Uit | di = 0,Zi ] as functions of Zi , are known up to a finite
set of parameters, it is sometimes possible to consistently
estimate β, α and the parameters of the conditional means
from the (non-linear) regression function

E [Y ∗
it | di ,Zi ] =Xitβ + diα + diE [Uit | di = 1,Zi ]

+ (1− di)E [Uit | di = 0,Zi ]. (7)

One way to acquire information about the functional form of
E [Uit | di = 1,Zi ] is to assume knowledge of the functional
form of the joint distribution of (Uit ,Vi) (e.g., that it is
bivariate normal), but this is not required. Note further that
this procedure does not require that Zi , be distributed
independently of Vi in (3) [Barnow, Cain and Goldberger
(1980)].
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e Instead of (d), it is possible to use a two-stage estimation
procedure if the joint density of (Uit ,Vi) is assumed known up
to a finite set of parameters. In stage one E [Uit | di = 1,Zi ]
and E [Uit | di = 0,Zi ] are determined up to some unknown
parameters by conventional discrete choice analysis. Then
regression (7) is run using estimated E values in place of
population E values on the right-hand side of the equation.

f Under the assumptions of (e), use maximum likelihood to
consistently estimate α ([Heckman (1978)]. Note that a
separate value of α may be estimated for each cross-section so
that depending on the number of crosssections it is possible to
estimate growth and decay effects in training (e.g., αt can be
estimated for each cross-section).
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• Conventional selection bias approaches (d)-(f) as well as
(b)-(c) rely on strong distributional assumptions but in fact
these are not required.

• Given that a regressor appears in decision rule (3), if it is
uncorrelated with Uit , the regressor is an instrumental variable
for di .

• It is not necessary to invoke strong distributional assumptions,
but if they are invoked, Zi need not be uncorrelated with Uit .

• In practice, however, Zi and Uit are usually assumed to be
independent.

• We next discuss the instrumental variables procedure in greater
detail.
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4.3. The instrumental variable estimator

• This estimator is the least demanding in the a priori conditions
that must be satisfied for its use.
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• It requires the following assumptions:

There is at least one variable in Zi , Z
e
i , with a non-zero γ

coefficient in (3), such that for some known transformation
of Z e

i , g(Z
e
i ), E [Uitg(Z

e
i )] = 0.

(8a)

Array Xit , and di into a vector J1it = (Xit , di). Array Xit and
g(Z e

i ) into a vector J2it = (Xit , g(Z
e
i )). In this notation, it

is assumed that

E

[
It∑

i=1

(J ′
2itJ1it/It)

]
has full column rank uniformly in It for It sufficiently large,
where It denotes the number of individuals in period t.

(8b)
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• With these assumptions, the IV estimator,(
β̂
α̂

)
IV

=

(
It∑

i=1

(J ′
2itJ1it/It)

−1
It∑

i=1

(J ′
1itY

∗
it/It)

)
,

is consistent for (β, α) regardless of any covariance between Uit

and di .

• It is important to notice how weak these conditions are.

• The functional form of the distribution of Vi need not be
known.

• Zi need not be distributed independently of Vi .

• Moreover, g(Z e
i ) may be a non-linear function of variabies

appearing in Xit as long as (8) is satisfied.
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• The instrumental variable, g(Z e
i ) may also be a lagged value of

time-varying variables appearing in Xit provided the analyst has
access to longitudinal data.

• The rank condition (8b) will generally be satisfied in this case
as long as Xit exhibits serial dependence.

• Thus longitudinal data (on exogenous characteristics) may
provide a source of instrumental variables.

Heckman & Robb Alternative Methods



Notation Cross Repeated Repeat First Non-random Conc Random

4.4. Identification through distributional assumptions about the
marginal distribution of Uit

• If no regressor appears in decision rule (3) the estimators
presented so far in this section cannot be used to estimate α
consistently unless additional restrictions are imposed.

• Heckman (1978) demonstrates that if (Uit ,Vi) are jointly
normally distributed, α is identified even if there is no regressor
in enrollment rule (3).

• His conditions are overly strong.
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• If Uit has zero third and fifth central moments, α is identified
even if no regressor appears in the enrollment rule.

• This assumption about Uit is implied by normality or symmetry
of the density of Uit but it is weaker than either provided that
the required moments are finite.

• The fact that α can be identified by invoking distributional
assumptions about Uit illustrates the more general point that
there is a tradeoff between assumptions about regressors and
assumptions about the distribution of Uit that must be invoked
to identify α.
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• We have established that under the following assumptions, α in
(1) is identified:

E [U3
it ] = 0. (9a)

E [U5
it ] = 0. (9b)

{Uit ,Vi} is iid. (9c)

• A consistent method of moments estimator can be devised that
exploits these assumptions.

• [See Heckman and Robb (1985).]

• Find α̂ that sets a weighted average of the sample analogues of
E [U3

it ] and E [U5
it ] as close to zero as possible.
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• To simplify the exposition, suppose that there are no regressors
in the earnings function (1), so Xitβ = βi .

• The proposed estimator finds the value of α̂ that sets

(1/It)
I t∑
i=1

[(Y ∗
it − Ȳ )− α̂(di − d̄)]3 (10a)

and

(1/It)
I t∑
i=1

[(Y ∗
it − Ȳ )− α̂(di − d̄)]5 (10b)

as close to zero as possible in a suitably chosen metric where,
as before, the overbar denotes sample mean.

• In our earlier paper, we establish the existence of a unique
consistent root that sets (10a) and (10b) to zero in large
samples.
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4.5. Selection on Observables

• In the special case in which

E (Uit | di ,Zi) = E (Uit | Zi),

selection is said to occur on the observables.
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• Such a case can arise if Uit is distributed independently of Vi in
equation (2), but Uit and Zi are stochastically dependent (i.e.,
some of the observables in the enrollment equation are
correlated with the unobservables in some earnings equation).

• In this case Uit and di can be shown to be conditionally
independent given Zi .

• If it is further assumed that Uit and Vi conditional on Zi are
independent, then Uit and di can be shown to be conditionally
independent given Zi .
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• In the notation of Dawid (1979) as used by Rosenbaum and
Rubin (1983),

Uit ⊥⊥ di | Zi ,

i.e., given Zi , di is strongly ignorable.
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• In a random coefficient model the required condition is

(Uit + ϵidi) ⊥⊥ di | Zi .
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• The strategy for consistent estimation presented in 4.2 must be
modified; in particular, methods (a)-(c) are inappropriate.

• However, method (d) still applies and simplifies because

E (Uit | di = 1,Zi) = E (Uit | di = 0,Zi) = E (Uit | Zi),

so that we obtain in place of equation (8)

E (Y ∗
it | di ,Y ∗

it ,Zi) = Xitβ + diα + E (Uit | Zi). (8′)
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• Specifying the joint distribution of (Uit ,Zi) or just the
conditional mean of Uit given Zi , produces a formula for
E (Uit | Zi) up to a set of parameters.

• The model can be estimated by nonlinear regression.

• Conditions for the existence of a consistent estimator of α are
presented in our companion paper (see also Barnow et al.,
1980).
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• Method (e) of Section 4.2 no longer directly applies.

• Except in unusual circumstances (e.g., a single element of Zi),
there is no relationship between any of the parameters of
E (Uit | Zi) and the propensity score Pr(di = 1 | Zi), so that
conventional two-stage estimators generated from discrete
choice theory do not produce useful information. Method (f)
produces a consistent estimator provided that an explicit
probabilistic relationship between Uit and Zi is postulated.
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4.6. Summary
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• Conventional cross-section practice invokes numerous
extraneous assumptions to secure identification of α.

• These overidentifying restrictions are rarely tested, although
they are testable.

• Strong distributional assumptions are not required to estimate
α.
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• Assumptions about the distributions of unobservables are rarely
justified by an appeal to behavioral theory.

• Assumptions about the presence of regressors in enrollment
equations and assumptions about stochastic dependence
relationships among Uit , Zi , and di are sometimes justified by
behavioral theory.
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5. Repeated cross-section methods for the case when
training identity of individuals is unknown

• In a time homogeneous environment, estimates of the
population mean earnings formed in two or more cross-sections
of unrelated persons can be used to obtain selection bias free
estimates of the training effect even if the training status of
each person is unknown (but the population proportion of
trainees is known or can be consistently estimated).

• With more data, the time homogeneity assumption can be
partially relaxed.
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• Assuming a time homogeneous environment and access to
repeated cross section data and random sampling, it is possible
to identify α

a without any regressor in the decision rule,
b without need to specify the joint distribution of Uit and Vi , and
c without any need to know which individuals in the sample

enrolled in training (but the proportion of trainees must be
known or consistently estimable).
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• To see why this claim is true, suppose that no regressors appear
in the earnings function.

• (Comment: If regressors appear in the earnings function, the
following procedure can be used. Rewrite (1) as
Y ∗
it = βt + Xitπ + diα + Uit . It is possible to estimate π from

pre-program data. Replace Y ∗
it by Y ∗

it − Xit π̂ and the analysis in
the text goes through. Note that we are assuming that no Xit

variables become non-constant after period k .)
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• In the notation of eq. (1), Xitβ = βt .

• Then, assuming a random sampling scheme generates the data,

plimY t = plim
∑

Y ∗
it/It

= E [βt + αdi + Uit ] = βt + αp, t > k

plim Ȳt′ = plim
∑

Yit′/It′

= E [βt′ + Uit′] = βt′ , t
′ < k .

• In a time homogeneous environment, βt = βt′ , and

plim
(
Y t − Y t′

)
/p̂ = α,

where p̂ is a consistent estimator of p = E [di ].
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• With more than two years of repeated cross-section data, one
can apply the same principles to identify α while relaxing the
time homogeneity assumption.

• For instance, suppose that population mean earnings lie on a
polynomial of order L− 2:

βt = π0 + π1t + · · ·+ πL−2t
L−2.

• From L temporally distinct cross-sections, it is possible to
estimate consistently the L− 1 π-parameters and α provided
that the number of observations in each cross-section becomes
large, and there is at least one pre-program and one
post-program cross-section.
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• If the effect of training differs across periods, it is still possible
to identify αt , provided that the environment changes in a
‘sufficiently regular’ way.

• For example, suppose

βt = π0 + π1t for t > k ,

αt = ϕ0(ϕ1)
t−k for t > k .

• In this case, π0, π1, ϕ0, ϕ1 are identified from the means of four
cross-sections, so long as at least one of these means comes
from a pre-program period.
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5. Repeated cross-section methods for the case when
training identity of individuals is unknown

• Most longitudinal procedures require knowledge of certain
moments of the joint distribution of unobservables in the
earnings and enrollment equations.

• We present several illustrations of this claim, as well as a
counterexample.

• The counterexample identifies α by assuming only that the
error term in the earnings equation is covariance stationary.

• Consider three examples of estimators which use longitudinal
data.
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6.1. The fixed effects method

• This method was developed by Mundlak (1961,1978) and
refined by Chamberlain (1982).

• It is based on the following assumption:

E [Uit − Uit′ | di ,Xit − Xit′] = 0 for all t, t ′, t > k > t ′.
(11)

• As a consequence of this assumption, we may write a difference
regression as

E [Y ∗
it − Yit′ | di ,Xit − Xit′] = (Xit − Xit′) β+diα, t > k > t ′.
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• Suppose that (11) holds and the analyst has access to one year
of preprogram and one year of post-program earnings.

• Regressing the difference between post-program earnings in any
year and earnings in any pre-program year on the change in
regressors between those years and a dummy variable for
training status produces a consistent estimator of α.
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• Some decision rules and error processes for earnings produce
(11).

• For example, consider a certainty environment in which the
earnings residual has a permanent-transitory structure:

Uit = ϕi + εit , (12)

where εit is a mean zero random variable independent of all
other values of εit , and is distributed independently of ϕi , a
mean zero person-specific time-invariant random variable.

• Assuming that Si , in decision rule (6) is distributed
independently of all εit except possibly for εik , then (11) will be
satisfied.

• With two periods of data (in t and t ′, t > k > t ′) α is just
identified. With more periods of panel data, the model is
overidentified and hence condition (12) is subject to test.
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• Eq. (11) may also be satisfied in an environment of uncertainty.

• Suppose eq. (12) governs the error structure in (1) and

Ek−1 [εik ] = 0,

and
Ek−1 [ϕi ] = ϕi ,

• Agents cannot forecast innovations in their earnings, but they
know their own permanent component.

• Provided that Si , is distributed independently of all εit , except
possible for εik , this model also produces (11).
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• We investigate the plausibility of (11) with respect to more
general decision rules and error processes in section 8.
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6.2. Uit follows a first-order autoregressive process

• Suppose next that Uit follows a first-order autoregression:

Uit = ρUi ,t−1 + νit , (13)

where E [νit ] = 0 and the νit are mutually independently (not
necessarily identically) distributed random variables with p ̸= 1.

• Substitution using (1) and (13) to solve for Uit′ yields

Y ∗
it =

[
Xit − Xit′ρ

t−t′
]
β +

(
1− ρt−t′

)
diα + ρt−t′Yit′

+


t−(t′+1)∑

j=0

ρjνi ,t−j

 , t > t ′ > k . (14)
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• Assume further that the perfect foresight rule (6) determines
enrollment, and the νij are distributed independently of Si and
Xik in (6).
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• As a consequence of these assumptions,

E [Y ∗
it | Xit ,Xit′ , di ,Yit′] =

(
Xit − Xit′ρ

t−t′
)
β

+
(
1− ρt−t′

)
diα + ρt−t′Yit′ , (15)

so that (linear or non-linear) least squares applied to (15)
consistently estimates α as the number of observations
becomes large.

• (The appropriate non-linear regression increases efficiency by
imposing the cross-coefficient restrictions.)
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• As is the case with the fixed effect estimator, increasing the
length of the panel and keeping the same assumptions, the
model becomes overidentified (and hence testable) for panels
with more than two observations.
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6.3. Uit is covariance-stationary

• The next procedure invokes an assumption implicitly used in
many papers on training [e.g., Ashenfelter (1978) Bassi (1983)
and others] but exploits the assumption in a novel way.
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• Assume Uit is covariance stationary:

E [UitUi ,t−j ] = E [Uit′Ui ,t′−j ] = σj for j ≥ 0 for all t, t ′, (16a)

Access to at least two observations on pre-program earnings
in t ′ and t ′−j as well as one period of post-program earnings
in t where t − t ′ = j ,

(16b)

pE [Uit′ | di = 1] ̸= 0.
(16c)

• We make no assumptions here about the appropriate
enrollment rule or about the stochastic relationship between Uit

and the cost of enrollment Si .
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• Let

Y ∗
it = βt + diα + Uit , t > k ,

Yit′ = βt′ + Uit′ , t ′ < k ,

where βt and βt′ are period-specific shifters.
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• From a random sample of pre-program earnings from periods t ′

and t ′ − j , σj can be consistently estimated from the sample
covariances between Yit′ and Yi ,t′−j :

m1 =
(∑(

Yit′ − Y t′
) (

Yi ,t′−j − Y t′−j

))
/I , plimm1 = σj .

• If t > k and t − t ′ = j so that the post-program earnings data
are as far removed in time from t ′ as t ′ is removed from t ′ − j ,
form the sample covariance between Y ∗

it and Yit′ :

m2 =
(∑(

Y ∗
it − Y t

) (
Yi ,t′ − Y t′

))
/I ,

plimm2 = σj + αpE [Uit′ | di = 1] , t > k > t ′.
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• From the sample covariance between di and Yit′ ,

m3 =
(∑(

Yit′ − Y t′
)
di
)
/I ,

plimm3 = pE [Uit′ | di = 1] , t ′ < k .

• Combining this information and assuming pE [Uit′ | di ̸= 0] for
t ′ < k ,

plim α̂ = plim ((m2 −m1) /m3) = α.

• For panels of sufficient length (e.g., more than two preprogram
observations or more than two postprogram observations), the
stationarity assumption can be tested.

• Thus as before, increasing the length of the panel converts a
just identified model to an overidentified one.
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6.4 An Unrestricted Process for Uit When Agents Do Not Know
Future Innovations in Their Earnings

• The estimator proposed in this subsection assumes that agents
cannot perfectly predict future earnings.

• More specifically, for an agent whose relevant earnings history
begins N periods before period k , we assume that
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a Ek−1(Uik) = E (Uik | Ui ,k−1, . . .Ui ,k−N),

i.e. that predictions of future Uit are made solely on the basis of
previous values of Uit .

• Past values of the exogenous variables are assumed to have no
predictive value for Uik .
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• Assume further

b the relevant earnings history goes back N periods
before period k ;

c the enrollment decision is characterized by equation (4);

d Si and Xik are known as of period k − 1 when the
enrollment decision is being made;

e Xit is distributed independently of Uij for all t and j ;
and

f Si is distributed independently of Uij for all j .
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• Defining

ψi = (Yi ,k−1 − Xi ,k−1β, . . . ,Yi ,k−N − Xi ,k−Nβ)

and
G (ψi) = E (di | ψi),

• Under these conditions α can be consistently estimated.

• Define
p = E (di),

and

c =
E [Uit(G (ψi)− p)]

E (G (ψi)− p)2
.
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• Rewrite (2) in the following way:

Y ∗
it = Xitβ + diα+ c(G (ψi)− p) + [Uit − c(G (ψi)− p)]. (17)

• This defines an estimating equation for the parameters of the
model.

• In the transformed equation

E {X ′
it [Uit − c(G (ψi)− p)]} = 0

by assumption (e) above.

• The transformation residual is uncorrelated with c(G (ψi)− p)
from the definition of c .
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• Thus, it remains to show that

E {di [Uit − c(G (ψi)− p)]} = 0.

• Before proving this it is helpful to notice that as a consequence
of assumptions (a), (d), and (e),

E (di | Uit ,Ui ,t−1, . . . ,Ui ,k−1, . . . ,Ui ,k−N) = E (di | Ui ,k−1, . . . ,Ui ,k−N) t > k .
(18)

Question: Prove this.
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• This relationship is proved in our companion paper.

• Since only preprogram innovations determine participation and
because Uit is distributed independently of Xik and Si in the
decision rule of equation (4), the conditional mean of di does
not depend on postprogram values of Uit given all preprogram
values.

• Intuitively, the term Uit − c(G (ψi)− p) is orthogonal to G (ψi),
the best predictor of di based on ψi ; if Uit − c(G (ψi)− p) were
correlated with di , it would mean that Uit helped to predict di ,
contradicting condition (18).
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• The proof of the proposition uses the fact that from condition
(18) that E (di | ψi ,Uit) = G (ψi) in computing the expectation

E {di [Uit − c(G (ψi)− p)]} = E [E {di [Uit − c(G (ψi)− p)]} | ψi ,Uit ]

= E {[Uit − c(G (ψi)− p)]E (di | ψi ,Uit)}
= E {[Uit − c(G (ψi)− p)]G (ψi)}
= 0

as a consequence of the definition of c .
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• The elements of ψi can be consistently estimated by fitting a
preprogram earnings equation and forming the residuals from
preprogram earnings data to estimate Ui ,k−1, . . . ,Uk,k−N .

• One can assume a functional form for G and estimate the
parameters of G using standard methods in discrete choice
applied to enrollment data.

Heckman & Robb Alternative Methods



Notation Cross Repeated Repeat First Non-random Conc Random

6. Repeated cross-section analogues of longitudinal
procedures

• Most longitudinal procedures can be fit on repeated
cross-section data.

• Repeated cross-section data are cheaper to collect and they do
not suffer from problems of non-random attrition which plague
panel data.
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• The previous section presented longitudinal estimators of α.

• In each case, however, α can actually be identified with
repeated cross-section data.

• Here we establish this claim.
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6.1. The fixed effect model

• As in section 5.1, assume that (12) holds so

E [Uit |di = 1] = E [U ′
it |di = 1],E [Uit |di = 0] = E [U ′

it |di = 0],

for all t > k > t ′. Let Xitβ = βt and define, in terms of the
notation of section 3.1,

α̂ = [Ȳ
(1)
t − Ȳ

(0)
t ]− [Ȳ

(1)
t′ − Ȳ

(0)
t′ ].

• Assuming random sampling, consistency of α̂ follows
immediately from (11):

plim α̂ = [α + βt − βt + E [Uit |di = 1]− E [Uit |di = 0] ]

− [βt′ − βt′ + E [Uit′|di = 1]− E [Uit′|di = 0]] = α.
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6.2. Uit follows a first-order autoregressive process

• In one respect the preceding example is contrived.

• It assumes that in pre-program cross-sections we know the
identity of future trainees.

• Such data might exist (e. g., individuals in the training period
k might be asked about their pre-period k earnings to see if
they qualify for admission).

• One advantage of longitudinal data for estimating α in the
fixed effect model is that if the survey extends before period k ,
the identity of future trainees is known.
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• The need for pre-program earnings to identify α is, however,
only an artifact of the fixed effect assumption (12).

• Suppose instead that Uit follows a first-order autoregressive
process given by (13) and that

E [Vit |di ] = 0, t > k , (19)

as in section 5.2.

• With three successive post-program cross-sections in which the
identity of trainees is known, it is possible to identify α.
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• To establish this result, let the three post-program periods be
t, t + 1 and t + 2.

• Assuming, as before, that no regressor appears in (1),

plim Ȳ
(1)
j = βj + α + E [Uij |di = 1],

plim Ȳ
(0)
j = βj + E [Uij |di = 0],

• From (19),

E [Ui ,t+1|di = 1] = ρE [Uit |di = 1],

E [Ui ,t+1|di = 0] = ρE [Uit |di = 0],

E [Ui ,t+2|di = 1] = ρ2E [Uit |di = 1],

E [Ui ,t+2|di = 0] = ρ2E [Uit |di = 0].
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• Using these formulae, it is straightforward to verify that ρ̂,
defined by

ρ̂ =

(
Ȳ

(1)
t+2 − Ȳ

(0)
t+2

)
−
(
Ȳ

(1)
t+1 − Ȳ

(0)
t+1

)
(
Ȳ

(1)
t+1 − Ȳ

(0)
t+1

)
−
(
Ȳ

(1)
t − Ȳ

(0)
t

) ,
is consistent for ρ, and that α̂ defined by

α̂ =

(
Ȳ

(1)
t+2 − Ȳ

(0)
t+2

)
− ρ̂

(
Ȳ

(1)
t+1 − Ȳ

(0)
t+1

)
1− ρ̂

,

is consistent for α.
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• For this model, the advantage of longitudinal data is clear.

• Only two time periods of longitudinal data are required to
identify α, but three periods of repeated cross-section data are
required to estimate the same parameter.

• However, if Y ∗
it is subject to measurement error, the apparent

advantages of longitudinal data become less clear.

• Repeated cross-section estimators are robust to mean zero
measurement error in the variables.
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• The longitudinal regression estimator discussed in section 6.2
does not identify α unless the analyst observes earnings without
error.

• Given three years of longitudinal data and assuming that
measurement error is serially uncorrelated, one could instrument
(14) using earnings in the earliest year as an instrument.

• Thus one advantage of the longitudinal estimator disappears in
the presence of measurement error.
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6.3. Covariance stationarity

• For simplicity, suppress regressors in the earnings equation and
let Xitβ = βt .

• Assume that conditions (16) are satisfied.

• Before presenting the repeated cross-section estimator, it is
helpful to record the following facts:

var(Y ∗
it ) = α2(1− p)p + 2αE [Uit |di = 1]p + σ2

u, t > k ,
(20a)

var(Y ∗
it ) = σ2

u, t < k , (20b)

cov(Y ∗
it , di) = αp(1− p) + pE [Uit |di = 1]. (20c)
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• Note that E [U2
it ] = E [U2

it′], t > k > t ′, by virtue of assumption
(16a).

• Then

α̂ = (p(1− p))−1

(∑
(Y ∗

it − Ȳt)di
It

(21)

−

√(∑
(Y ∗

it − Ȳt)di
It

)2

− p(1− p)

(∑
(Y ∗

it − Ȳt)2

It
−
∑

(Yit′ − Ȳt′)2

It′

)
is consistent for α.
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• This expression arises by subtracting (20b) from (20a).

• Then use (20c) to get an expression for E [Uit |di = 1] which
can be substituted into the expression for the difference
between (20a) and (20b).

• Replacing population moments by sample counterparts
produces a quadratic equation in α̂, with the negative root
given by (21).

• The positive root is inconsistent for α.
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• Notice that the estimators of sections 5.3 and 6.3 exploit
different features of the covariance stationarity assumptions.

• The longitudinal procedure only requires that
E [UitUi ,t−j ] = E [Uit′Uit′−j ] for j > 0; variances need not be
equal across periods.

• The repeated cross-section analogue presented above only
requires that E [UitUi ,t−j ] = E [Uit′Ui ,t′−j ] for j = 0; covariances
may differ among equispaced pairs of the Uit .
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7. First difference methods

• Plausible economic models do not justify first difference
methods.

• Lessons drawn from these models are misleading.
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7.1. Models which justify condition (11)

• Whenever condition (11) holds, a can be estimated consistently
from the difference regression method described in section 6.1.

• Section 6.1 presents a model which satisfies condition (11): the
earnings residual has a permanent-transitory structure, decision
rule (5) or (6) determines enrollment, and Si is distributed
independently of the transitory component of Uit .
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• However, this model is rather special.

• It is very easy to produce plausible models that do not satisfy
(11).

• For example, even if (12) characterizes Uit , if Si in (6) does not
have same joint (bivariate) distribution with respect to all ϵit ,
except for ϵik , (11) may be violated.
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• Even if Si in (6) is distributed independently of Uit for all t, it
is still not the case that (11) is satisfied in a general model.

• For example, suppose Xit is distributed independently of all Uit

and let
Uit = ρUi ,t−l + Vit ,

where Vit is a mean-zero, iid random variable and |ρ| < 1.

• If ρ ̸= 0 and the perfect foresight decision rule characterizes
enrollment, (11) is not satisfied for t > k > t ′ because

E [Uit |di = 1] = E [Uit |Uik + Xikβ − α/r < Si ] = ρt−kE [Uik |di = 1]

̸= E [Uit′ |di = 1] = E [Uit′ |Uik + Xikβ − α/r < Si ],

unless the conditional expectations are linear (in Uik) for all t
and k − t ′ = t − k .
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• In that case

E [Uit |di = 1] = ρk−t′E [Uik |di = 1],

so E [Uit − Uit′ |di = 1] = 0 only for t, t ′ such that
k − t ′ = t − k .

• Thus (11) is not satisfied for all t > k > t ′.
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• For more general specifications of Uit and stochastic
dependence between Si and Uit , (11) will not be satisfied.
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7.2. More general first difference estimators

• Instead of (11), assume that

E [(Uit − Uit′)(Xit − Xit′)] = 0 for some t, t ′, t > k > t ′,

E [(Uit − Uit′)di ] = 0 for some t > k > t ′. (22)

• Two new ideas are embodied in this assumption.

• In place of the assumption that Uit − Uit′ be conditionally
independent of Xit − Xit′ and di , we only require
uncorrelatedness.
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• Also, rather than assume that E [Uit − Uit′|di ,Xit − Xit′] = 0 for
all t > k > t ′, the correlation needs to be zero only for some
t > k > t ′.

• For the appropriate values of t and t ′, least squares applied to
the differenced data consistently estimates α.
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Example That Satisfies (22) but not (12)

Uit is covariance stationary, (23a)

Uit has a linear regression on Uik for all t

(i .e.,E [Uit |Uik ] = βtkUik), (23b)

Uit is mutually independent of (Xik , Si) for all t, (23c)

α is common to all individuals (so the model is of the

fixed coefficient form), (23d)

The environment is one of perfect foresight where decision

rule (6) determines participation. (23e)
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• Under these assumptions, condition (22) characterizes the data.
Prove.
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• To see this note that (23a) and (23b) imply there exists a δ
such that

Uit = Ui ,k+j = δUik + ωit j > 0, t > k

Uit′ = Ui ,k−j = δUik + ωit′ j > 0,

and
E [ωit |Uik ] = E [ωit′ |Uik ] = 0.

• Now observe that

E [Uit |di = 1] = δE [Uik |di = 1] + E [ωit |di = 1].
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• But, as a consequence of (23c),

E [ωit |di = 1] = 0,

since E [ωit ] = 0 and because (23c) guarantees that the mean
of ωit does not depend on Xik and Si .

• Similarly,
E [ωit′|di = 1] = 0,

and thus (22) holds.
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• Linearity of the regression does not imply that the Uit are
normally distributed (although if the Uit are joint normal the
regression is linear).

• The multivariate t density is just one example of many
examples of densities with linear regressions.
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7.3. Anomalous features of first difference estimators

• Nearly all of the estimators require a control group (i,e., a
sample of non-trainees), The only exception is the fixed effect
estimator in a time homogeneous environment.

• In this case, if condition (11) or (22) holds, if we let Xitβ = βt
to simplify the exposition, and if the environment is time
homogeneous so βt = βt′ then

α̂ = Ȳ
(1)
t − Ȳ

(1)
t′

consistently estimates α.

• The frequently stated claim that ‘if the environment is
stationary, you don’t need a control group’ [see, e.g., Bassi
(1983)] is false except for the special conditions which justify
use of the fixed effect estimator.
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• Most of the procedures considered here can be implemented
using only post-program data.

• The covariance stationary estimators of sections 5.3 and 6.3,
certain repeated cross-section estimators and first difference
methods constitute an exception to this rule.

• In this sense, these estimators are anomalous.
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• Fixed effect estimators are also robust to departures from the
random sampling assumption.

• For instance, suppose condition (11) or (22) is satisfied, but
that the available data oversample or undersample trainees
(i.e., the proportion of sample trainees does not converge to
p = E [di ]).

• Suppose further that the analyst does not know the true value
of p.

• Nevertheless, a first difference regression continues to identify
α.

• Most other procedures do not share this property.
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8. Non-random sampling plans

• Virtually all methods can be readily adjusted to account for
choice based sampling or measurement error in training status.

• Some methods require no modification at all.
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• The data available for analyzing the impact of training on
earnings are often non-random samples.

• Frequently they consist of pooled data from two sources:

a a sample of trainees selected from program records and
b a sample of non-trainees selected from some national sample.

• Typically, such samples overrepresent trainees relative to their
proportion in the population.

• This creates the problem of choice based sampling analyzed by
Manski and Lerman (1977) and Manski and McFadden (1981).
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• A second problem, contamination bias, arises when the training
status of certain individuals is recorded with error.

• Many control samples such as the Current Population Surveyor
Social Security Work History File do not reveal whether or not
persons have received training.
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• Both of these sampling situations combine the following types
of data:

a Earnings, earnings characteristics, and enrollment
characteristics (Y ∗

it ,Xit and Zi for a sample of trainees
(di = 1),

b Earnings, earnings characteristics, and enrollment
characteristics for a sample of non-trainees (di = 0),

c Earnings, earnings characteristics, and enrollment
characteristics for a national ‘control’ sample of the population
(e.g., CPS or Social Security Records) where the training
status of persons is not known.
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• If type (A) and (B) data are combined and the sample
proportion of trainees does not converge to the population
proportion of trainees, the combined sample is a choice based
sample.

• If type (A) and (C) data are combined with or without type (B)
data, there is contamination bias because the training status of
some persons is not known.
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• Most procedures developed in the context of random sampling
can be modified to consistently estimate α using choice based
samples or contaminated control groups (i.e., groups in which
training status is not known for individuals).

• In some cases, a consistent estimator of the population
proportion of trainees is required.

• We illustrate these claims by showing how to modify the
instrumental variables estimator to address both sampling
schemes.
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8.1. The IV estimator: Choice-based sampling

• If condition (8a) is strengthened to read

E [X ′
itUit |di ] = 0, E [g(Z e

i )Uit |di ] = 0, (24)

and (8b) is also met, the IV estimator is consistent for α in
choice-based samples.
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• To see why this is so, write the normal equations for the IV
estimator in the following form:

∑
X ′
itXit

It

∑
X ′
itdi

It∑
g(Z e

i )Xit

It

∑
g(Z e

i )di
It

( β̂
α̂

)
=


∑

X ′
itY

∗
it

It∑
g(Z e

i )Y
∗
it

It


=


∑

X ′
itXit

It

∑
X ′
itdi

It∑
g(Z e

i )Xit

It

∑
g(Z e

i )di
It

( β
α

)
+


∑

X ′
itUit

It∑
g(Z e

i )Uit

It

 .

(25)
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• Since (24) guarantees that

plim
It→∞

∑
X ′
itUit

It
= 0 and plim

It→∞

∑
g(Z e

i )Uit

It
= 0, (26)

and the rank condition (8b) holds, the IV estimator is
consistent.
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• In a choice based sample, let the probability that an individual
has enrolled in training be p∗.

• Even if (8a) and (8b) are satisfied, there is no guarantee that
condition (26) will be met without invoking (24).

• This is so because

plim
It→∞

∑
X ′
itUit

It
= E [X ′

itUit |di = 1]p∗ + E [X ′
itUit |di = 0](1− p∗),

plim
It→∞

∑
g(Z e

i )Uit

It
= E [g(Z e

i )Uit |di = 1]p∗

+ E [g(Z e
i )Uit |di = 0](1− p∗).

• These expressions are not generally zero, so the IV estimator is
generally inconsistent.
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• In the case of random sampling, p∗ = Pr[di = 1] = p and the
above expressions are identically zero.

• They are also zero if (24) is satisfied.

• However, it is not necessary to invoke (24).

• Provided p is known, it is possible to reweight the data to
secure consistent estimators under the assumptions of section 4.
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• Multiplying eq. (1) by the weight

ωi = di
p

p∗
+ (1− di)

(
1− p

1− p∗

)
and applying IV to the transformed equation produces an
estimator that satisfies (26).

• It is straightforward to check that weighting the sample at hand
back to random sample proportions causes the IV method to
consistently estimate α and β.
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8.2. The IV estimator: Contamination bias

• For data of type (C), di is not observed.

• Applying the IV estimator to pooled samples (A) and (C),
assuming that observations in (C) have di = 0, produces an
inconsistent estimator.
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• In terms of the IV eq. (25), from sample (C) it is possible to
generate the cross-products∑

X ′
itXit

IC
,

∑
g(Z e

i )Xit

IC
,

∑
X ′
itY

∗
it

IC
,

∑
g(Z e

i )Y
∗
it

IC

which converge to the desired population counterparts where IC
denotes the number of observations in sample (C).

• Missing is information on the cross-products∑
X ′
itdi

IC
,

∑
g(Z e

i )di
IC

.

• Notice that if di were measured accurately in sample (C),

plim
IC→∞

∑
X ′
itdi

IC
= pE [X ′

it |di = 1],

plim
IC→∞

∑
g(Z e

i )di
IC

= pE [g(Z e
i )|di = 1].
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• But the means of Xit and g(Z e
i ) in sample (A) converge to

E [Xit |di = 1] and E [g(Z e
i )|di = 1],

respectively.

• Hence, inserting the sample (A) means of Xit and g(Z e
i )

multiplied by p in the second column of the matrix IV eq. (25)
produces a consistent IV estimator provided that in the limit
the size of samples (A) and (C) both approach infinity at the
same rate.
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8.3. Repeated cross-section methods with known training status and
choice-based sampling

• The repeated cross-section estimators discussed in section 4 are
inconsistent when applied to choice-based samples unless
additional conditions are assumed.

• For example, when the environment is time-homogeneous and
(11) also holds, (Ȳt − Ȳt′)/p remains a consistent estimator of
α in choice-based samples as long as the same proportion of
trainees are sampled in periods t ′ and t.
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• If a condition such as (11) is not met, it is necessary to know
the identity of trainees in order to weight the sample back to
the proportion of trainees that would be produced by a random
sample in order to obtain consistent estimators.

• Hence the class of estimators that does not require knowledge
of individual training status is not robust to choice-based
sampling.
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8.4. Control function estimators

• A subset of cross-sectional and longitudinal procedures is
robust to choice-based sampling.

• Those procedures construct a control function, Kit , with the
following properties:

Kit depends on variables . . . ,Yi ,t+1,Y
∗
it ,Yi ,t−1, . . . ,Xi ,t+1,Xit ,

Xi ,t−1, . . . , di and parameters ψ, and

E [Uit − Kit |di ,Xit ,Kit , ψ] = 0, (27a)

ψ is identified. (27b)
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• When inserted into the earnings function (1), Kit purges the
equation of dependence between Uit and di .

• Rewriting (1) to incorporate Kit ,

Y ∗
it = Xitβ + diα + Kit + {Uit − Kit}. (28)

• The purged disturbance {Uit − Kit} is orthogonal to the
right-hand-side variables in the new equation.

• Thus (possibly non-linear) regression applied to (28)
consistently estimates the parameters (α, β, ψ).
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• Moreover, (27) implies that {Uit − Kit} is orthogonal to the
right-hand-side variables conditional on di ,Xit and Kit :

E [Y ∗
it |Xit , diKit ] = Xitβ + diα + Kit .

• Thus if type (A) and (B) data are combined in any proportion,
least squares performed on (28) produces consistent estimates
of (α, β, ψ) provided the number of trainees and non-trainees in
the sample both approach infinity.

• The class of control function estimators which satisfy (27) can
be implemented without modification in choice-based samples.
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• We encountered a control function in section 6.

• For the model satisfying (13) and (19),

Kit = ρ(Yi ,t−1 − Xi ,t−1β − diα), t > k + 1,

so ψ = (ρ, β, α).

• The sample selection bias methods (d)-(e) described in section
4.2 exploit the control function principle.

• Our longer paper gives further examples of control function
estimators.
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9. Conclusion

• This paper presents alternative methods for estimating the
impact of training on earnings when non-random selection
characterizes the enrollment of persons into training.

• We have explored the benefits of cross-section, repeated
cross-section and longitudinal data for addressing this problem
by considering the assumptions required to use a variety of new
and conventional estimators given access to various commonly
encountered types of data.
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• We also investigate the plausibility of assumptions needed to
justify econometric procedures when viewed in the light of
prototypical decision rules determining enrollment into training.

• Because many of the available samples are choice-based
samples and because the problem of measurement error in
training status is pervasive in many available control samples,
we examine the robustness of the estimators to choice-based
sampling and contamination bias.
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• A key conclusion of our analysis is that the benefits of
longitudinal data have been overstated in the recent
econometric literature on training because a false comparison
has been made.

• A cross-section selection bias estimator does not require the
elaborate and unjustified assumptions about functional forms
often invoked in cross-sectional studies.

• Repeated cross-section data can often be used to identify the
same parameters as longitudinal data.

• The uniquely longitudinal estimators require assumptions that
are different from and often no more plausible than the
assumptions required for cross-section or repeated the repeated
cross-section cross-section estimators.
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Appendix of Section 3
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3. Random coefficients and the structural parameter of
interest

• We identify two different definitions associated with the notion
of a selection bias free estimate of the impact of training on
earnings.

• The first notion defines the structural parameter of interest as
the impact of training on earnings if people are randomly
assigned to training programs.

• The second notion defines the structural parameter of interest
in terms of the difference between the post-program earnings of
the trained and what the earnings in post-program years for
these same individuals would have been in the absence of
training.
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• The two notions come to the same thing only when training
has an equal impact on everyone or else assignment to training
is random and attention centers on estimating the mean
response to training.

• The second notion is frequently the most useful one for
forecasting future program impacts when the same enrollment
rules that have been used in available samples characterize
future enrollment.
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• In seeking to determine the impact of training on earnings in
the presence of non-random assignment of persons to training,
it is useful to distinguish two questions that are frequently
confused in the literature:

Q1 ‘What would be the mean impact of training on
earnings if people were randomly assigned to
training?’

Q2 ‘How do the post-program mean earnings of the
trained compare to what they would have been in
the absence of training?’
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• The second question makes a hypothetical contrast between
the post-program earnings of the trained in the presence and in
the absence of training programs.

• This hypothetical contrast eliminates factors that would make
the earnings of trainees different from those of non-trainees
even in the absence of any training program.

• The two questions have the same answer if eq. (1) generates
earnings so that training has the same impact on everyone.

• The two questions also have the same answer if there is
random assignment to training and attention centers on
estimating the population mean response to training.
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• In the presence of non-random assignment and variation in the
impact of training among persons, the two questions have
different answers.

• Question 2 is the appropriate one to ask if interest centers on
forecasting the change in the mean of the post-training
earnings of trainees when the same selection rule pertains to
past and future trainees.

• It is important to note that the answer to this question is all
that is required to estimate the future program impact if future
selection criteria are like past criteria.
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• To clarify these issues, we consider a random coefficient version
of (1) in which α varies in the population.

• In this model, the impact of training may differ across persons
and may even be negative for some people.

• We write in place of (1)

Y ∗
it = Xitβ + diαi + Uit , t > k .

• Define E [α] = ᾱ and εi = αi − ᾱ where E [εi ] = 0.

• With this notation, we can rewrite the equation above as

Y ∗
it = Xitβ + di ᾱi + {Uit + dεi}. (29)

• An alternative way to derive this equation is to express it as a
two-sector switching model following Roy (1951), Heckman and
Neumann (1977) and Lee (1978).
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• Let
Y1it = Xitβ1 + U1it

be the wage of individual i in sector 1 in period t.

• Let
Y0it = Xitβ0 + U0it

be the wage of individual i in sector 0.

• Letting di = 1 if a person is in sector 1 and letting di = 0
otherwise, we may write the observed wage as

Y ∗
it = diY1it + (1− di)Y0it

= Xitβ0 + E [Xit | di = 1](β1 − β0)di

+ [(Xit − E [Xit | di = 1])(β1 − β0) + U1it − U0it ] di + U0it .
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• Letting

ᾱ = E [Xit | di = 1](β1 − β0),

εi = (Xit − E [Xit | di = 1])(β1 − β0) + U1it − U0it

β0 = β,

U0it = Uit ,

produces eq. (29).

• In this model there is a fundamental non-identification result
when no regressors appear in the decision rule (3).

• Without a regressor in (3) and in the absence of any further
distributional assumptions it is not possible to identify ᾱ unless
E [εi | di = 1,Zi ] = 0 or some other known constant.
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• To see this, note that

E [Y ∗
it | di = 1,Zi ,Xit ] = Xitβ + ᾱ + E [εi | di = 1,Zi ,Xit ]

+ E [Uit | di = 1,Zi ,Xit ],

E [Y ∗
it | di = 0,Zi ,Xit ] = Xitβ + E [Uit | di = 0,Zi ,Xit ].

• Unless E [εi | di = 1,Zi ,Xit ] is known, without invoking
distributional assumptions it is impossible to decompose
ᾱ + E [εi | di = 1,Zi ,Xit ] into its constituent components
unless there is independent variation in E [εi | di = 1,Zi ,Xit ]
across observations [i.e., a regressor appears in (3)].

• Without a regressor, E [εi | di = 1,Zi ,Xit ] is a constant which
cannot be distinguished from ᾱ.
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• This means that in models without regressors in the decision
rule we might as well work with the redefined model

Y ∗
it = Xitβ + diα

∗ + {Uit + di(εi − E [εi | di = 1])}, (30)

where
α∗ = ᾱ + E [εi | di = 1],

and content ourselves with the estimation of α∗.

• If everywhere we replace α with α∗, the fixed coefficient
analysis of eq. (1) applies to (30).
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• The parameter α∗ answers Q2.

• It addresses the question of determining the effect of training
on the people selected as trainees.

• This parameter is useful in making forecasts when the same
selection rule operates in the future as has operated in the past.

• In the presence of non-random selection into training it does
not answer Ql.

• Indeed, without regressors in decision rule (3) this question
cannot be answered unless specific distributional assumptions
are invoked.
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• Random assignment of persons to training does not usually
represent a relevant policy option.

• For this reason, we will focus attention on question two.

• Hence, if the training impact varies among individuals, we will
seek to estimate α∗ in (30).

• Since eq. (30) may be reparametrized in the form of eq. (1) we
work exclusively with the fixed coefficient earnings function.

• Heckman & Smith (1997) gives precise statements of conditions
under which α is identified in a random coefficient model.
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• In the context of estimating the impact of nonrandom
treatments that are likely to be nonrandomly assigned in the
future, ᾱ is not an interesting policy or evaluation parameter
since it does not recognize selection decisions by agents.

• Only if random assignment is to be followed in the future is
there interest in this parameter.

• Of course, α∗ is interesting for prediction purposes only to the
extent that current selection rules will govern future
participation.

• In this note, we do not address the more general problem of
estimating future policy impacts when selection rules are
changed.

• To answer this question requires stronger assumptions on the
joint distribution of ϵi ,Uit , and Vi than are required to estimate
ᾱ or α∗.
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• It is also important to note that any definition of the structural
treatment coefficient is conditioned on the stability of the
environment in which the program is operating.

• In the context of a training program, a tenfold expansion of
training activity may affect the labor market for the trained and
raise the cost of the training activity (and hence the content of
programs).

• For either ᾱ or α∗ to be interesting parameters, it must be
assumed that such effects are not present in the transition from
the sample period to the future.
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• If they are present, it is necessary to estimate how the change
in the environment will affect these parameters.

• In this note, we abstract from these issues, as well as other
possible sources of interdependence among outcomes.

• The resolution of these additional problems would require
stronger assumptions than we have invoked here.
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• Before concluding this section, it is important to not that there
is a certain asymmetry in our analysis which, while natural in
the context of models for the evaluation of the impact of
training on earnings, may not be as natural in other contexts.

• In the context of a training program (and in the context of the
analysis of schooling decisions), it is natural to reason in terms
of a latent earnings function Y ∗

it which exists in the absence of
schooling or training options.

• “Uit” can be interpreted as latent ability or as skill useful in
both trained and untrained occupations.
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• Because of the natural temporal ordering of events, pretraining
earnings is a natural concept and αi is the markup (in dollar
units) of skills due to participation in training.

• Note that nothing in this formulation restricts agents to have
one or just two skills.

• Training can uncover or produce a new skill or enhance a single
common skill.

• Parameter α∗ is the gross return to training of the trained
before the direct costs of training are subtracted.
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• In other contexts there is no natural temporal ordering of
choices.

• In such cases the concept of α∗ must be refined since there is
no natural reference state.

• Corresponding to a definition of the gross gain using one state
as a benchmark, there is a definition of gross gain using the
other state as a benchmark.
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• In the context of the Roy model [discussed following equation
(6)], it is appropriate for an analysis of economic returns to
outcomes to compute a gross gain for those who select sector 1
which compares their average earnings in sector 1 with what
they would have earned on average in sector 0 and to compute
a gross gain for those who select sector 0 which compares their
average earnings in sector 0 with what they would have earned
on average in sector 1.
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• To state this point more clearly, assume that Xit in the
expression following equation (6) is a constant (=1) and drop
the time subscripts to reach the following simplified Roy model:

Y1i = µ1 + U1i

Y0i = µ0 + U0i .
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• In this notation

ᾱ = µ1 − µ0

ϵi = U1i − U0i .
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• The average gross gain for those who enter sector 1 from sector
0 is

α∗
1 = E (Y1i − Y0i | di = 1) = ᾱ + E (ϵi | di = 1).
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• The average gross gain for those who enter sector 0 from sector
1 is

α∗
0 = E (Y0i − Y1i | di = 0) = −ᾱ− E (ϵi | di = 0).

• Both coefficients compare the average earnings in the outcome
state and the average earnings in the alternative state for those
who are in the outcome state.
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• In a more general analysis, both α∗
1 and α∗

0 might be of interest.

• Provided that ᾱ can be separated from E (ϵi | di = 1), α∗
0 can

be estimated exploiting the fact that E (ϵi) = 0 and E (di) = p
are assumed to be known or estimable.

• No further identification conditions are required. For the sake
of brevity and to focus on essential points, we do not develop
this more general analysis here.

• The main point of this section — that ᾱ, the parameter of
interest in statistical studies of selection bias, is not the
parameter of behavioral interest — remains intact.
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Return to main text
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