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Topics to be Covered

• A. Basic Concepts

• What are the key concepts in Causality?
• What is a causal Model?
• What is a Causal Operation versus a statistical Operation?
• Fixing/Setting, Conditioning, Counterfactuals, Causal Effects
• Some common misconceptions
• Sequential Tasks of Causal Analysis

Theory ⇒ Causal Model ⇒ Identification ⇒ Estimation ⇒ Inference
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Topics to be Covered

• B. Causal Frameworks

• How to express causality?
• Discuss three distinct and widely used causal frameworks

1 Potential Outcomes Framework (Neyman-Rubin-Holland causal
model)

2 Causal Model based on Structural/Autonomous Equations
3 Frameworks for Causal Calculus

(Do-calculus, Hypothetical Model Framework, Settable
Systems)

• Clarify properties and differences
• Discuss nomenclature and applicability
• Illustrate advantages and disadvantages through selected

examples that are well-known in economics
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Related Literature on Causality

1 ?
Causal Inference in Statistics: An Overview

2 ?
Statistical Models and Causal Inference: A Dialogue with the Social
Sciences

3 ?
Econometric Causality

4 ?
The Scientific Model of Causality

5 ?
Causal Analysis after Haavelmo
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Related Literature on:

Language of Potential Outcomes (LPO)

1 ?
Statistics and Causal Inference

2 Angrist, Guido and Rubin (1996)
Identification of Causal Effects Using Instrumental Variables

Identification Theory

1 Arthur Lewbel (2019)
The Identification Zoo - Meanings of Identification in Econometrics

2 Matzkin (2005, 2007, 2013)
Identification of Consumers’ Preferences When Their Choices Are
Unobservable. Nonparametric Identification
Nonparametric Identification in Structural Economic Models

3 Newey and McFadden (1994) - extremum-based identification
Large Sample Estimation and Hypothesis Testing
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Related Literature on:

Evaluation Approaches in Applied Economics

1 ?
Alternative Approaches to Evaluation in Empirical Microeconomics

2 ?
Econometric Methods for Program Evaluation

3 ?
The State of Applied Econometrics: Causality and Policy Evaluation

Causal Calculus

1 ?
Causal Diagrams for Empirical Research

2 Jaber, Zhang, Bareinboin (2018) Causal Identification under
Markov Equivalence

3 Heckman and Pinto (2020)
Causal Calculus for the Hypothetical Model Framework
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1. Introduction
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Frisch: “Causality is in the Mind ”

“. . . we think of a cause as something imperative which exists in the

exterior world. In my opinion this is fundamentally wrong. If we strip

the word cause of its animistic mystery, and leave only the part that

science can accept, nothing is left except a certain way of thinking, [T]he

scientific . . . problem of causality is essentially a problem regarding our

way of thinking, not a problem regarding the nature of the exterior

world.” (? 1930, p. 36, published 2011)
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Haavelmo’s (1943, 1944) Insights:

1 What are Causal Effects?

• Not empirical descriptions of actual worlds,
• But descriptions of hypothetical worlds.

2 How are they obtained?

• Through Models – idealized thought experiments.
• By varying–hypothetically–the inputs causing outcomes.

3 But what are models?

• Frameworks defining causal relations among variables.
• Based on scientific knowledge.
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Haavemo’s Contributions to Causality are Many:

Haavelmo’s two seminal papers (1943, 1944):

1 Laid the foundations for counterfactual policy analysis.

2 Distinguished fixing (causal operation) from conditioning
(statistical operation).

3 Formalized Yule’s credo: Correlation is not causation.
(1895 paper on pauperism written when Yule was at UCL)

4 Developed Marshall’s notion of ceteris paribus (Marshal, 1890).

Most Important
Causal effects are determined by the impact of hypothetical
manipulations of an input on an output.
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Regression: Conditional Expectation or Thought
Experiment?

• Simple question: regression linear equation

Y = Xβ + U (1)

• Source of confusion: relationships like (1) defined by
statisticians as conditional expectations

• For Y = Xβ + U ,

E (Y |X ) = Xβ if E (U |X ) = 0.

• E (Y |X ) = Xβ + E (U |X ) if U ⊥⧸⊥ X .
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Thought Experiment

• Another way to define Y = Xβ + U .
• Hypothetically vary X and U .
• (X ,U) → Y via Y = Xβ + U
• This is not a statistical operation.
• This is not mysterious; it’s what you learned in high school
algebra; what is mysterious is why economists throw their basic
training in mathematics to the wind when they enter the world
of “causal analysis.”

• A whole literature has emerged to justify Y = Xβ + U as a
causal model.

• It involves operations outside statistics.
• Algebra much older than statistics.
• Economists (and other scientists) use hypothetical models
(thought experiments) to capture phenomena.

• These are not defined by statistical operations, although they
may be estimated by statistical methods.

• Creative thought experiments not readily automated; no
algorithm for creativity.
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Intuition of Ceteris Paribus (holding variables)

• Consider a simple linear model Y = β0 + β1X1 + β2X2 + U

• Y is a function of observed X1,X2 and unobserved U.

• This is called an “all causes” model in the literature.

• Let Y (x1, x2, u) = β0 + β1x1 + β2x2 + u be the counterfactual outcome
Y when variables (X1,X2,U) are set at (x1, x2, u).

• What is the causal effect of an unit increase in input X1 on outcome Y
Ceteris Paribus (holding X2,U fixed at u)?

Y (x1 + 1, x2, u)− Y (x1, x2, u)

= β0 + β1(x1 + 1) + β2x2 − (β0 + β1x1 + β2x2)

= β1(x1 + 1− x1) = β1

• A variety of potential outcomes can be obtained by varying X1,X2 and
U in different ways.

• All potential outcomes are outputs of such relationships.
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Ceteris Paribus and Conditional Expectation

• Now let U have mean zero and be (mean) independent of (X1,X2).

• If we evaluate Y for the fixed values (X1,X2,U) = (x1, x2, 0) we
obtain:

Y (x1, x2, 0) = β0 + β1x1 + β2x2

• Which is mathematically equal to the conditional expectation:

E (Y |X1 = x1,X2 = x2) = β0 + β1x1 + β2x2

• However these equations are conceptually very different.
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Ceteris Paribus versus Conditioning

• Y (x1, x2, 0) is a thought experiment that hypothetically assigns
values to the inputs of outcome Y .

• E (Y |X1 = x1,X2 = x2) is the conditional expectation of a random
variable that is believed to describe the data.

• Y (x1, x2, 0) is useful to characterise causal parameters.

• E (Y |X1 = x1,X2 = x2) is useful to estimate parameters from data
using statistical methods.

• Y (x1, x2, 0) is a causal ingredient. It generates an outcome value
when input variables are fixed.

• E (Y |X1 = x1,X2 = x2) is a statistical operation and can be used to
estimate model parameters.
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Two sources of Confusion

1 The concept of Ceteris Paribus is based on the causal operation of
fixing variables to values.

• Fixing differs from statistical conditioning
• Fixing is a causal operation outside probability/statistical

theory

2 Identification is often conflated with estimation

• Identification logically precedes estimation and is not
dependent on any estimation procedure (RCT, IV, etc.)

• However, identification and estimation are often describe as
they were the same action (Granger Causality)

• An example of this fact is the Diff-in-Diff estimator
• In statistics, it is common to merge identification and

estimation while seeking to prove that an estimator is
consistent
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The econometric approach to causality was developed to
address questions that arise in policy problems.
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Three Distinct Policy Questions Reviewed

P1 Evaluating the Impact of Historical Interventions on
Outcomes of the Treated Society at Large

P2 Forecasting the Impacts (Constructing Counterfactual
States) of Interventions Implemented in one
Environment in Other Environments (External Validity)

P3 Forecasting the Impacts of Interventions (Constructing
Counterfactual States Associated with Interventions)
Never Historically Experienced to Various Environments
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Econometric Approach to Causality

• To study causality, it is necessary to disentangle causal models from
particular estimation procedures

• Econometric approach to causality uses structural equation models
do describe causal models

• Identification is a mathematical/probability analysis that study if
counterfactuals have counterparts in observed data

• Estimation is an statistical exercise that employs observed data and
considers properties of estimators (limits, means, variances, etc.)
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Steps for Building An Empirical Causal Model

• A causal framework is a selection of mathematical and statistical
tools that are suitable to perform three distinct tasks of causal
inference:

Task Description Requirements
1 Defining Causal Models A Scientific Theory

A Mathematical Framework
2 Identifying Causal Parameters Mathematical Analysis

from Known Population Connect Hypothetical Variation
Distribution Functions of Data with Data Generating Process

(Identification in the Population)
3 Estimating Parameters from Statistical Analysis

Real Data Estimation and Testing Theory

1 Task 1 uses scientific theory outside Probability/Statistics

2 Task 2 relates causal concepts to hypothetical samples using
probability theory

3 Task 3 is a statistical exercise (but abduction can be used as well)Pinto and Heckman Causal Analysis 20 / 133
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Section 2: Basic Tools/Causal Languages
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Defining Causal Models

Causal Model: defined by a 4 components:

1 Random Variables that are observed and/or unobserved by the
analyst: T = {Y ,U,X ,V }. Y outcomes, U,X ,V inputs.

2 Error Terms: mutually independent: ϵY , ϵU , ϵX , ϵV .

3 Structural Equations that are autonomous : fY , fU , fX , fV .

• Autonomy means deterministic functions that are “invariant”
to changes in their arguments (Frisch. 1938). (Outputs may
change but functions do not.)

• Also known as “structural” (Hurwicz, 1962).
• Warning: various literature use different meanings of

“structural.” Recently, term has been applied to highly
parameterized econometric models.

• That is a misuse of traditional terminology.

4 Causal Relationships that map the inputs causing each variable:
Y = fY (X ,U, ϵY );X = fX (V , ϵX );U = fU(V , ϵU);V = fV (ϵV ).Pinto and Heckman Causal Analysis 22 / 133
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Structural Relationships / Autonomous Functions

Y = fY (X ,U , ϵY ), Y observed

X = fX (V , ϵX ), X observed

U = fU(V , ϵU), U unobserved

V = fV (ϵV ), V unobserved

Directed Acyclic Graph (DAG) representation
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Some Questions

• What statistical relationships are generated by this (or any)
causal model?

• Is there an equivalence between statistical relationships and
causal relationships?
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A Useful Tool: Local Markov Condition (LMC):
(Kiiveri, 1984, Lauritzen, 1996)

LMC: A variable is independent of its non-descendants conditional
on its parents

D Y

V

X

M

U

R D Y

V

X

M

U

R

R D Y

VX

R D Y

V

X Y

UV

X Y

UV

X
~

• For example: Y ⊥⊥ V︸︷︷︸
non-

descendants

|(X ,U︸︷︷︸
parents

)

• A fully non-parametric causal model can be equivalently
described by its LMCs.
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Additional Tool: Graphoid Axioms (GA)
(Dawid, 1979)

Primary GA rules:

Weak Union: X ⊥⊥ (W ,Y )|Z ⇒ X ⊥⊥ Y |(W ,Z ).

Contraction: X ⊥⊥ W |(Y ,Z ) and X ⊥⊥ Y |Z ⇒ X ⊥⊥ (W ,Y )|Z .
Intersection: X ⊥⊥ W |(Y ,Z ) and X ⊥⊥ Y |(W ,Z ) ⇒ X ⊥⊥ (W ,Y )|Z

Remaining GA rules:

Symmetry: X ⊥⊥ Y |Z ⇒ Y ⊥⊥ X |Z .
Decomposition: X ⊥⊥ (W ,Y )|Z ⇒ X ⊥⊥ Y |Z .

Redundancy: X ⊥⊥ Y |X .
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Analysis of Counterfactuals – The Fixing Operator

• Fixing: causal operation sets X -inputs of structural equations to x .

Standard Model Model under Fixing

V = fV (ϵV ) V = fV (ϵV )
U = fU(V , ϵU) U = fU(V , ϵU)
X = fX (V , ϵX ) X = x

Y = fY (X ,U, ϵY ) Y = fY (x ,U, ϵY )

• Importance: Establishes the framework for counterfactuals.

• Counterfactual: Y (x) represents outcome Y when X is fixed at x .

• Linear Case: Y = Xβ + U + ϵY and Y (x) = xβ + U + ϵY ;
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Fixing Properties

Fixing: causal exercise that hypothetically assigns values to inputs of the
autonomous equation we analyze.

• Fixing determines counterfactual outcomes: Y (x) = fY (x ,U, ϵY )

• Counterfactual outcomes are used to define causal effects

• The average Causal Effects of X on Y when X is fixed at x , x ′ is:

ATE = E(Y (x)− Y (x ′))

• Fixing X does not affect the distribution of random variables not
caused by X , namely V ,U.
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Fixing Properties ̸= Conditioning

Fixing: causal exercise that hypothetically assigns values to inputs of the
autonomous equation we analyze.

Y when X is fixed at x ⇒ Y (x) = fY (x ,U, ϵY )

Linear Case: E (Y (x)) = xβ + E (U);E (ϵY ) = 0.

Conditioning: Statistical exercise that considers the dependence
structure of the data generating process.

Y Conditioned on X = x :E (Y |X = x) = E (fY (X ,U, ϵY )|X = x)

Linear Case: E (Y |X = x) = xβ + E (U|X = x)

E (ϵY |X = x) = 0
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Joint Distributions

Model: Y = fY (x ,U, ϵY );X = x ;U = fU(V , ϵU);V = fV (ϵV ).

1 Standard Joint Distribution Factorization:

P(Y ,V ,U|X = x) = P(Y |U,V ,X = x)P(U|V ,X = x)P(V |X = x).

= P(Y |U,V ,X = x)P(U|V )P(V|X = x)

because U ⊥⊥ X |V by LMC.

2 Factorization under Fixing X at x :

P(Y ,V ,U|X fixed at x) = P(Y |U,V ,X = x)P(U|V )P(V).

• Conditioning on X : affects the distribution of all variables in the
system (including V )

• Fixing: X does not affect the distribution of V because X does not
cause V (and U)
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Fixing Cannot Be Defined by Standard Probability Theory

• Fixing is a causal operator, not a statistical operator.

• Fixing does not affect the distribution of ancestors variables
(including parents)

• Conditioning is a statistical operator that affects all variables.
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Problem: Causal Concepts are not Well-defined in
Traditional Statistics

Causal Inference Statistical Models

Directional Lacks directionality
Counterfactual Correlational
Fixing Conditioning

1 Fixing: Causal operation that assigns values to the inputs of
structural equations associated with the variable we fix.

2 Conditioning: Statistical exercise that encompasses the
dependence structure of the entire data generating process.
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A Causal Model – Theoretical Benefits

A Causal model:

• Clearly defines causal relations among variables

• Allows one to clearly define the operation of fixing

• Allows analyst to clearly define counterfactuals and causal effects

• Allows for the definition and investigation of unobserved
confounding variables.

• Allows for the precise assumptions regarding the interaction
between unobserved confounding variables and observed variables.

• This is missing in many rival approaches
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Section 3: Causal Languages
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Causal Languages that Cope with Fixing

• The attempt to integrate fixing into practical statistic
frameworks led to the development of several causal languages

• These languages append additional structure to standard
probability theory to cope with the abstract operation of fixing
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Examples of Causal Frameworks

(1) Neyman-Rubin model (Potential Outcomes)
• Does not use structural equations (no mechanisms).
• Choice of input (X ) not modeled.
• No explicit link of inputs and outputs.

(2) Hypothetical model (Heckman & Pinto, 2015)
• Framework fully integrated into standard probability theory.

(3) Do-Calculus (Pearl, 2009)
• Defines new rules outside of standard probability and statistics.
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3.1 The Language of Potential Outcomes
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The Language of Potential Outcomes
Basic Definitions

• The primitive object of analysis in the potential-outcome framework
is the Unit-based response variable, denoted Yω(t),

• Read: “the (potential) value that outcome Y would obtain in
experimental unit (individual) ω, had treatment T been t.”

• Yω(t) is the counterfactual outcome when T is fixed at a value
t ∈ supp(T )

• No equations are available for guidance on the causal relation
among variables

• Model properties are stated as independence relations

• And only among potential outcomes of observed variables
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The Language of Potential Outcomes
A Simple Model

• The Neyman-Rubin-Holland causal framework of potential
outcomes.

• Variables in common probability space (Ω,F ,P)

1 T Treatment choice
2 Y Outcome
3 X Baseline Characteristics

• Potential outcome Y of agent ω for fixed T = t is Yω(t).

• Causal effects of t ′ versus t for ω is Yω(t)− Yω(t
′).

• The observed outcome is given by:

Yw =
∑

t∈supp(T )

Yw (t) · 1[Tw = t] ≡ Yw (Tw )
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The Language of Potential Outcomes (LPO)
Tools and Goals

• Example of Observed Variables:
Treatment T , Outcome Y , Instrument Z , Controls X , Mediators M

• Mediators describe channels of influence

• Unobserved Variables:
Potential outcomes Y (t)

• Goal: Identification of causal Parameters

• Counterfactual Outcome Mean E(Y (t))
• Average Treatment Effect ATE = E(Y (t1)− Y (t0))
• Counterfactual Dist. P(Y (t) ≤ y) = E(1[Y (t) ≤ y ])

• How? Assume Independence Relations on Potential Outcomes
Ex.: IV Model Y (t, z) = Y (t, z ′), and (Y (t),T (z)) ⊥⊥ Z |X
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Example: Randomized Controlled Trials (RCT)

RCT Assumption : Y (t) ⊥⊥ T

Y (t) ⊥⊥ T ⇒ counterfactual outcomes identified:

E(Y |T = t) = E

 ∑
t∈supp(T )

Y (t) · 1[T = t]|T = t


= E (Y (t)|X ,T = t) = E(Y (t)) due to Y (t) ⊥⊥ T .

Average causal effects obtained as:

E (Y (t1)− Y (t0)) =
(
E (Y |T = t1)− E (Y |T = t0).
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Example: The Exogeneity (Matching) Assumption

Statistical assumption that Y (t) ⊥⊥ T |X is also called matching.

• Agents ω are comparable when conditioned on observed values X ,

• Causal effects are weighted average of treated and control
participants

• Conditional on their pre-intervention variables X .

1 Matching ⇒ exogenous variation of T under X by assumption

2 Randomization ⇒ exogenous variation of T under X by design
where X in RCT are the variables used in the randomization
protocol
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Example: The Exogeneity (Matching) Assumption

The identification relies on assuming independence
when controlling for pre-program variables X

Matching Assumption: Y (t) ⊥⊥ T |X ,

Y (t) ⊥⊥ T |X ⇒ counterfactual outcomes identified:

E(Y |T = t,X ) = E

 ∑
t∈supp(T )

Y (t) · 1[T = t]|X ,T = t


= E (Y (t)|X ,T = t) = E(Y (t)|X ) due to Y (t) ⊥⊥ T |X .

Average causal effects obtained as:

E(Y (t1)−Y (t0)) =

∫ (
E (Y |T = t1,X = x)−E (Y |T = t0,X = x)

)
dFX (x).

• However, often want effects conditional on X
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Contrast: Potential Outcomes × Causal Model Grounded in
Structural Equations

1 In LPO (Language of Potential Outcomes),
statistical independence relations among variables are assumed.

2 In a causal model (that relies on structural equations)
independence relations come as a consequence of the causal
relations of the model.
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Why bother to define a structural causal model?

• A desired property of the PO is its simplicity:

• Why? It circumvents the necessity of defining structural
equations

• How? It invokes the conditional independence conditions
generated an implicit causal model

• But this strategy has some limitations:

• Causal relations among variables are implicit, which
complicates model interpretation

• Ingredients never specified.
• Unobserved variables are absent in the PO language, which

often prohibit the investigation of assumptions that are based
on unobserved variables.

• The lack of tools to model unobserved variables impairs the
advance of identification theory and application of an entire
body of econometric tools designed to cope with unobservables
and their structuresPinto and Heckman Causal Analysis 45 / 133
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Traditional Approach That Links Causal Analysis to
Structural Models:

Decomposing Unobserved Confounders

“Transmission Model”

• Marschak and Andrews (1944) decompose the unobservable:

U = ϕV
↑

Source of
Confounding

+W (2)

• V ⧸⊥⊥ X so U ⊥⧸⊥ X and W ⊥⊥ (V ,X ).
• E (Y | X ) = Xβ + ϕE (V | X ).
• All estimators for causal models control for the effects of V
(implicitly or explicitly).

• Factor measurements M = µ(V , ε) might be used to control
for V .

• There are many other ways.
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Benefits of a Structural Causal Model versus LPO

• A proper Causal Model substantially enhances the toolkit of causal
analysts.

• Structural (Autonomous) equations clearly define causal relations
among variables

• Independence relations among counterfactual variables are not
necessarily assumed.

• Instead they arise as a consequence of the assumed causal relations
among the model variables

• The Structural Causal Model enables a better interpretation of the
model properties

• Links more tightly with economic theory

• Also enables to insert/manipulate unobserved variables which render
more sophisticated analyses

• Allows us to use toolkit of traditional econometrics
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Matching and RCT

1 Matching ⇒ exogenous variation of T under X by assumption

2 Randomization ⇒ exogenous variation of T under X by design
(where X are the variables used in the randomization protocol)

• LPO is simple and perfectly suitable to investigates these simple
cases

• LPO limitations only become apparent for more complex models we
encounter in encounter in doing economics everyday
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Revisiting the Matching Assumption: LPO x Structural Eq.

V = fV (ϵZ ) X V

T Y

X = fX (V , ϵX )
T = fT (X , ϵT )
Y = fY (T ,V , ϵY )

The Matching Assumption: Y (t) ⊥⊥ T |X
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Revisiting the Matching Assumption: Wrong Interpretation

• The Y (t) ⊥⊥ T |X can be generated by causal models that differ
from the original causal interpretation

• The common belief that matching is obtained by conditioning on a
rich set of pre-treatment variables is misleading

• For example, consider the model below:

1 X are pre-program variables, but Y (t) ⧸⊥⊥ T |X
2 K are post-treatment variables, but Y (t) ⊥⊥ T |K

 

Post-treatment

Pre-treatment
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Third Example: The IV Model
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The Instrumental Variable Model

The standard IV model is defined by the following causal model:

Z = fZ (ϵZ )

V

T YZ

V = fV (ϵX )
T = fT (Z ,V , ϵT )
Y = fY (T ,V , ϵY )

• Z is exogenous, it is not caused by V , thus Z ⊥⊥ V

• IV relevance: Z causes T

• Exclusion restriction: Z does directly not cause Y

• Consequence is the exogeneity condition: Z ⊥⊥ (Y (t),T (z))
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Identification Requires Additional Assumptions

• The exogeneity condition (Y (t),T (z)) ⊥⊥ Z is necessary

• But not sufficient to identify causal effects

• Must evoke additional assumptions to achieve identification

• A possibility is to invoke linearity ⇒ standard Two-stage Least
Squares on a constant coefficient model

• But it does not allow for unobserved heterogeneity in treatment
effects

Instead...
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Examples of Additional Assumptions using LPO

Most Famous Assumption in PO

• Binary/Ordered Monotonicity (Imbens and Angrist 1994, Imbens
and Angrist 1995)

Tω(z) ≤ Tω(z
′) for all ω such that supp(T ) = {1, ...,K}

Other PO Assumptions Exist (Examples)

• Partial Monotonicity (Mogstag, Torgovitsky, Walters, 2018)

Tω(z , z̄) ≤ Tω(z
′, z̄) for all ω, and T ∈ {0, 1}

• Unordered Monotonicity (Heckman and Pinto, 2018)

1[Tω(z) = t] ≤ 1[Tω(z
′) = t] for all ω and all t ∈ supp(T )
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Examples of Additional Assumptions using Structural Causal
Model

• Separability/Monotonicity (Heckman and Vytlacil, 2005)

T = 1[P(T = 1|Z ) ≥ g(V )] such that T ∈ {0, 1}

• Vytlacil’s theorem shows that LATE makes a functional form
assumption on choice equation and is based on an unobserved
random variable; this came as a shock to the statisticians who
thought they had no use for unobservables

• Unordered Monotonicity (Heckman and Pinto, 2018)

1[T = t] = 1[P(T = t|Z ) ≥ gt(V )] for all t ∈ {t1, t2, ...tN}

• Control Function Approach:

1 Y (t) ⊥⊥ T |V ⇒ V is a matching variable
2 But T = fT (Z ,V , ϵt)
3 Invoke assumptions that enable analyst to estimate (or

eliminate) V as a function of T ,Z
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Clarifying the Limitations of the LPO

Binary choice model T ∈ {0, 1} under Monotonicity/Separability:

• IV model represented by LPO:

1 (Y (t),T (z)) ⊥⊥ T
2 Tω(z) ≥ Tω(z

′) ∀ω or Tω(z) ≤ Tω(z
′) for any z , z ′

• IV model represented by a Structural Causal Model:

1 T = 1[h(Z ) ≥ (V )],
(separability = monotonicity, Vytlacil 2002)

2 Y = fY (T ,V , ϵY )
3 Z ⊥⊥ (V , ϵY )

• T = 1[h(Z ) ≥ g(V )] is equivalent to state:
T = 1[P(Z ) ≥ U]; U ∼ unif [0, 1] and P(Z ) ≡ P(T = 1|Z )

• Models are causally equivalent for certain questions, but differ in
power of analysis
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Main Results of the IV Model using LPO

For z , z ′ ∈ supp(Z ), let the propensity score P(z) > P(z ′) :

• The Two-Stage Least Squares:

2SLS =
cov(Y ,Z )

cov(Z ,T )
=

E (Y |Z = z)− E (Y |Z = z ′)

P(z)− P(z ′)

• Identifies LATE, the causal effect for compliers:

LATE (z , z ′) = E (Y (1)− Y (0)|T (z) ̸= T (z ′))
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A Structural Causal Model enable us to Define MTE

• Causal Model enables an enhanced analysis.

• It explicitly defines/declares the unobserved variable U implied by
LATE

• Unobservable emerges from the axioms

• Which enable us to define the Marginal Treatment Effect (MTE):

∆MTE (u) = E (Y (1)− Y (0)|U = u); u ∈ [0, 1]

• ∆MTE (p) stands for the causal effect of T on Y for the share of the
participants ω such that Uω = p.

• These agents whose unobserved variable U takes value u ∈ [0, 1]

• ∆MTE (p) can be identified by

• Estimating a function of the Y in terms of the propensity score
P(Z ) ∈ [0, 1]

• Differentiating this function with respect to P(Z ) at value
p = u.
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What are the benefits of the MTE ?

• MTE renders powerful tools of analyses.

• MTE is a primary concept that ties several causal parameters

• Example of causal parameters of interest:

ATE = E(Y (t1)− Y (t0))

TT = E(Y (t1)− Y (t0)|T = t1)

TUT = E(Y (t1)− Y (t0)|T = t0)

PRTE = E(Y (t1)− Y (t0)|P(Z ,X ) = P∗)

IV =
Cov(Y ,Z ))

Cov(T ,Z )
(TSLS)

OLS = E(Y |T = t1)− E(Y |T = t0) not a causal parameter

All causal parameters can be expressed as a weighted average of the
∆MTE (p) (Heckman and Vytlacil, 2005)!
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Causal Parameters as a function of the MTE

All causal parameters can be expressed as a weighed average of MTE:

ATE =

∫ 1

0

∆MTE (p)W ATE (p)dp; W ATE (p) = 1

TT =

∫ 1

0

∆MTE (p)W TT (p)dp; W TT (p) =
1− FP(p)∫ 1

0

(
1− FP(t)

)
dt

TUT =

∫ 1

0

∆MTE (p)W TUT (p)dp; W TUT (p) =
FP(p)∫ 1

0

(
1− FP(t)

)
dt

IV =

∫ 1

0

∆MTE (p)W IV (p)dp; W IV (p) =

∫ 1

p

(
t − E (P)

)
dFP(t)∫ 1

0

(
t − E (P)

)2
dFP(t)

OLS =

∫ 1

0

∆MTE (p)WOLS(p)dp; WOLS(p) =
1− FP(p)∫ 1

0

(
1− FP(t)

)
dt

LATE =

∫ P(z)

P(z′)

∆MTE (p)W LATE (p)dp; W LATE (p) =
1

P(z)− P(z ′)
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Summary of IV Model: LPO versus Structural Equations

• PO does not allow for Variable U

• Nor the separability equation

• MTE cannot be defined in PO

• As a consequence, the researcher using PO would never develop the
MTE analysis

• Nevertheless, the models at some level are equivalent
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Link to Appendix A: Mediation Model
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Link to Appendix B: Further Remarks on Causality
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What about a General Framework for Causal Calculus?

• The goal of a framework for causal calculus is to deliver a standard
methodology that applies to any DAG.

• A set general of rules that can be used to assess counterfactual
outcomes whenever those are identified.

• A methodology/algorithm that be coded, so the researcher does not
need to investigate case by case.

• Such framework is useful to investigate which properties of DAGs
are necessary/sufficient to render identification of causal parameters.

• Most important, a framework that facilitates to investigate the
identification of causal effect is more complex DAGs.
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A the Risk of Being Too Repetitious, Fixing is Not
Well-defined in Statistics

1 Fixing: causal operation that assigns values to the inputs of
structural equations associated to the variable we fix upon.

2 Conditioning: Statistical exercise that considers the dependence
structure of the data generating process.

• Fixing has direction while conditioning does not.

• Question: How can we make statistics converse with causality?

• Answer: The hypothetical model
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The Hypothetical Model Framework
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The Causal Calculus using The Hypothetical Framework
Merging Statical Theory and Causal Analysis

• The mismatch between statistical theory and causal inference
motivated the study of the Hypothetical Model Framework

• The framework merges statical theory and causal analysis without
the necessity of defining new tools of analysis
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Properties of the Hypothetical Model

• Insight: express causality through a hypothetical model
assigning independent variation to inputs determining
outcomes.

• Data: generated by an empirical model that shares some
features with the hypothetical model.

• Simplicity: the method does not rely on additional tools of
analysis beyond standard statistical theory

• Identification: relies on evaluating causal parameters defined
in the hypothetical model using data generated by the empirical
model.
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Example of Data Generating Model (DAG) Representation

Model: Y = fY (X ,U, ϵY );X = fX (V , ϵX );U = fU(V , ϵU);V = fV (ϵV ).

V U

X Y

• The Local Markov Condition (LMC) generates two independence
conditions:

• Y ⊥⊥ V |(U,X ) and U ⊥⊥ X |V
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Defining The Hypothetical Model

The hypothetical model stems from the following properties:

1 Same set of structural equations as the empirical model.

2 Appends a hypothetical variable that we fix.

3 Hypothetical variable not caused by any other variable.

4 Replaces the input variables we seek to fix by the hypothetical
variable.

Usage:

Empirical Model: Governs the data generating process.
Hypothetical Model: Abstract model used to examine causality.
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Example of the Hypothetical Model for fixing X

The Associated Hypothetical Model

Y = fY (X̃ ,U , ϵY );X = fX (V , ϵX );U = fU(V , ϵU);V = fV (ϵV ).

Empirical Model Hypothetical Model

V U

X Y

V U

X Y X̃

LMC LMC

Y ⊥⊥ V |(U,X ) Y ⊥⊥ (X ,V )|(U, X̃ )

U ⊥⊥ X |V U ⊥⊥ (X , X̃ )|V
X̃ ⊥⊥ (U,V ,X )

X ⊥⊥ (U,Y , X̃ )|V
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Why the hypothetical variable is useful?

Properties the Hypothetical Model:

1 Hypothetical Variable: X̃ replaces the X -inputs of structural
equations.

2 Characteristic: X̃ is an external variable, i.e., no parents.

3 Thus: Hypothetical variable has independent variation.

4 Usage: hypothetical variable X̃ enables analysts to examine
fixing using standard tools of probability (conditioning).
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Main Benefit

• Fixing in the empirical model is translated to

• statistical conditioning in the hypothetical model

EE(Y (t))︸ ︷︷ ︸
Causal Operation Empirical Model

= EH(Y |T̃ = t)︸ ︷︷ ︸
Statistical Operation Hypothetical Model

• Causality is defined Within Statistics/Probability.

• No additional Tools Required.
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Identification

• Hypothetical Model allows analysts to define and examine
causal parameters.

• Empirical Model generates observed/unobserved data;

Clarity: What is Identification?
The capacity to express causal parameters of the hypothetical model
through observed probabilities in the empirical model.

Tools: What does Identification require?
Probability laws that connect Hypothetical and Empirical Models.
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Connecting Hypothetical and Empirical Models:
Two Useful Conditions

Only two conditions suffice to investigate the identification of causal parameters!

For any disjoint set of variables Y ,W in Be , we have that:

Rule 1:Y ⊥⊥ T̃ |(T ,W ) ⇒

PH(Y |T̃ ,T = t ′,W ) = PH(Y |T = t ′,W ) = PE (Y |T = t ′,W )

Rule 2:Y ⊥⊥ T |(T̃ ,W ) ⇒

PH(Y |T̃ = t,X ,W ) = PH(Y |T̃ = t,W ) = PE (Y |T = t,W )
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If Y ⊥⊥ T̃ |(T ,W ) or Y ⊥⊥ T |(T̃ ,W ) occurs in the hypothetical
model, then we are able to equate variable distributions of the

hypothetical and empirical models!
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How to use this Causal Framework?
Rules of Engagement

1 Define the empirical and associated hypothetical model.

2 Hypothetical Model: Generate statistical relationships (LMC,
GA).

3 Express PH(Y |X̃ ) in terms of other variables.

4 Connect this expression to the empirical model using
Y ⊥⊥ T̃ |(T ,W ) or Y ⊥⊥ T |(T̃ ,W )
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Example of the Hypothetical Model for Fixing X

Empirical Model Hypothetical Model

D Y

V

X

M

U

R D Y

V

X

M

U

R

R D Y

VX

R D Y

V

X Y

UV

X Y

UV

X
~

D Y

V

X

M

U

R D Y

V

X

M

U

R

R D Y

VX

R D Y

V

X Y

UV

X Y

UV

X
~

Local Markov Condition Local Markov Condition

Y ⊥⊥ V |(U,X ) Y ⊥⊥ (X ,V )|(U, X̃ )

U ⊥⊥ X |V X ⊥⊥ (U,Y , X̃ )|V

1 EH(Y |X̃ = x ,V ) = EE (Y (x)|V ) by the main property of the HM

2 X ⊥⊥ (U,Y , X̃ )|V ⇒ X ⊥⊥ Y |(X̃ ,V ) holds by LMC

3 EH(Y |X̃ = x ,V ) = EE (Y |X = x ,V ) by rule 2
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Rule 2 is a Matching Property

If there exist V such that, X ⊥⊥ Y |V , X̃ , then EH(Y |V , X̃ = x) in
hypothetical model is equal to EE(Y (x)|X = x) in empirical model.

• Main Property of the Hypothetical Model implies that counterfactual
outcome EE(Y (x)) can be expressed as

EE(Y (x)) =

∫
EH(Y |V = v , X̃ = x)dFV (v)

• LMC for the hypothetical model generates Y ⊥⊥ X |(V , X̃ ).

• By Rule 2, EH(Y |V = v , X̃ = x) = EE(Y |V = v ,X = x)

• Thus, the counterfactual outcome EE(Y (x)) can be obtained by:

EE(Y (x)) =

∫
EE(Y |V = v ,X = x)dFV (v)︸ ︷︷ ︸

In Empirical Model by Rule 2

CONCLUSION
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Link to Appendix C: Some Additional Examples
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Link to Appendix D: The Do Calculus

Pinto and Heckman Causal Analysis 81 / 133



Intro Concepts Languages IV Appendix

Appendix
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Appendix A: Mediation Model

Pinto and Heckman Causal Analysis 83 / 133



Intro Concepts Languages IV Appendix

Fourth Example: The Mediation Model
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Fourth Example: The Mediation Model

Three observed variables:

1 T is the causal treatment choice

2 M is the mediator caused by T

3 Y is the outcome caused by both T and M

1 Y (t) is the counterfactual outcome for T fixed at t

2 Y (t,m) for T and M fixed to (t,m)

3 M(t) stands for the counterfactual mediator for T fixed at t
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Part 1: The Language of Potential Outcomes
Third Example – Mediation Model

Causal parameters of mediation analysis are:
Average Total Effect : ATE = E (Y (t1)− Y (t0))
Average Direct Effect : ADE (t) = E (Y (t1,M(t))− Y (t0,M(t)))
Average Indirect Effect : AIE (t) = E (Y (t,M(t1))− Y (t,M(t0)))

The total effect (TE or ATE) is the sum of direct and indirect effects
(Robins & Greenland, 1992):

ATE = E (Y (t1,M(t1))− Yi (t0,M(t0)))

= DE (t1) + IE (t0)

= IE (t1) + DE (t0).

We seek to identify E (Y (t,M(t ′))
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A PO Assumption for the Mediation Model

Statistical Assumption: Sequential Ignorability (?):(
Y (t ′,m),M(t)

)
⊥⊥ T |X

Y (t ′,m) ⊥⊥ M(t)|(T ,X ),

For any r.v. A,B,C ,D, the graphoid axiom of Intersection states that

A ⊥⊥ B|(C ,D) & A ⊥⊥ C |(B,D) ⇒ A ⊥⊥ (C ,B)|D

Setting A,B,C ,D to Y (t ′,m),T ,M(t),X , we obtain:

Y (t ′,m) ⊥⊥ T |(M(t),X ) & Y (t ′,m) ⊥⊥ M(t)|(T ,X )

⇒ Y (t ′,m) ⊥⊥ (M(t),T )|X
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Identifying the Mediation Model

Identification:

(1)Y (m, t ′) ⊥⊥ (M(t),T ) and (2) M(t) ⊥⊥ T

E (Y (t,M(t ′))) =
=
∫
E
(
Y (t,m)|M(t ′) = m

)
dFM(t′)(m), L.I.E.

=
∫
E
(
Y (t,m)

)
dFM(t′)(m), by 1

=
∫
E
(
Y (t,m)

)
dFM|T=t′(m), by 2

=
∫
E
(
Y (t,m)|T = t,M(t) = m

)
dFM|T=t′(m), by 1

=
∫
E
(
Y (T ,m)|T = t,M(T ) = m

)
dFM|T=t′(m),

=
∫
E
(
Y (T ,M(T ))|T = t,M(T ) = m

)
dFM|T=t′(m),

=
∫
E
(
Y |T = t,M = m

)
dFM|T=t′(m),
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Identifying Mediation Effects

Sequential Ignorability(
Y (t ′,m),M(t)

)
⊥⊥ T |X

Y (t ′,m) ⊥⊥ M(t)|(T ,X ),

Identifies counterfactual variables as:

ADE (t) =

∫ (
E (Y |T = t1,M = m,X = x)
−E (Y |T = t0,M = m,X = x)

)
dFM|T=t,X=x(m)dFX (x)

AIE (t) =

∫ ( E (Y |T = t,M = m,X = x)·[
dFM|T=t1,X=x(m)− dFM|T=t0,X=x(m)

] )
dFX (x).
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Interpreting the PO Assumption for the Mediation Model

What does Sequential Ignorability mean?(
Y (t ′,m),M(t)

)
⊥⊥ T |X

• Assumes that T is exogenous conditioned on X .

• No unobserved variable that causes T and Y or T and M.

Y (t ′,m) ⊥⊥ M(t)|(T ,X )

• Assumes that M(t) is exogenous conditioned on X and T

• Stronger than randomization

• None of those assumptions are testable.
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Can we Obtain the PO Assumption via RCT?

• Plain Randomization on T : Y (t),M(t) ⊥⊥ T |X

• Plain Randomization on M: Y (m) ⊥⊥ M|X

• Randomization on T and M: Y (t,m) ⊥⊥ (T ,M)|X

• Which implies that: Y (t,m) ⊥⊥ M|(T ,X )

• What does Y (t ′,m) ⊥⊥ M(t)|(T ,X ) mean?

For each participant ω, Randomize T , say agent ω is assigned to t ′,
Then assign ω to the mediation value Mω(t)
that agent ω would take if ω were assigned to treatment t!
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Reexamining the Mediation Model using SCM

Constructing the Mediation Model using a SCM:

• There are three observed variables in the mediation model are:
Treatment T , mediator M and outcome Y .

• Need two more variables to account for unobserved confounding
effects:

1 A general confounder V is an unobserved exogenous variable
that causes T , M and Y .

2 The unobserved mediator U is caused by T and causes
observed mediator M.
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A General Mediation Model with Confounding Variables

Treatment: T = fT (V , ϵT ),

Unobserved Mediator: U = fU(T ,V , ϵU),

Observed Mediator: M = fM(T ,U,V , ϵM),

Outcome: Y = fY (M,U,V , ϵY )

Independence: V , ϵT , ϵU , ϵM , ϵY .

V

T M Y

U

• Both variables T ,M are endogenous.

• T ⧸⊥⊥ (M(t),Y (t ′)) and M ⧸⊥⊥ Y (m).
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DAG of a General Mediation Model

V

T M Y

U

• Both variables T ,M are endogenous.

• T ⧸⊥⊥ (M(t),Y (t ′)) and M ⧸⊥⊥ Y (m).
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Understanding Sequential Ignorability

Sequential Ignorability (?):(
Y (t ′,m),M(t)

)
⊥⊥ T |X

Y (t ′,m) ⊥⊥ M(t)|(T ,X ),

What causal assumptions are necessary to render Sequential Ignorability?

V

T M Y

U

• It assumes that V does not exist

• It assumes that U does not cause M (no confounding effect)
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Seeking Identification of the Mediation Model

• Mediation model is hopelessly unidentified.

• One alternative: seek for an instrument Z that causes T

• and can be used to identify the causal effect of T on M,Y

• as well as be used to identify the causal effect of M on Y .

• How? By examining the causal relation of unobserved variables!
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The Mediation Model with IV and Partial Confounding

Consider the following model:

Treatment: T = fT (Z ,VT , ϵT ),

Unobserved Mediator: U = fU(T , ϵU),

Observed Mediator: M = fM(T ,U,VT ,VY , ϵM),

Outcome: Y = fY (M,U,VY , ϵY ),

Independence: VT ,VY , ϵT , ϵU , ϵM , ϵY .
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Mediation Model with IV and Partial Confoundness

VT

T M Y

U

Z

VY

• T and M are endogenous

• T ⊥⊥ M(t) does not hold due to confounder VT ,

• VY and unobserved mediator U invalidate M ⊥⊥ Y (m, t)

• T ⊥⊥ Y (t) does not hold due to VT ,VY .

• Model still generates three sets of IV properties!
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A New IV Condition!

The following statistical relations hold in the mediation model:

Targeted IV Exclusion
Causal Relation Relevance Restrictions

Property 1 for T → Y Z ⧸⊥⊥ T Z ⊥⊥ Y (t)
Property 2 for T → M Z ⧸⊥⊥ T Z ⊥⊥ M(t)
Property 3 for M → Y Z ⧸⊥⊥ M|T Z ⊥⊥ Y (m)|T

• Prop.1: Z is an IV for T → Y .

• Prop.2: Z is also an IV for T → M.

• Prop.1 and Prop.2 simply state that Z is an IV for T

• Prop.3 is the most interesting one:
Z is an IV for M → Y when conditional on T
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The Third Property Z ⊥⊥ Y (m)|T

• Property 3: Z ⧸⊥⊥ M|T and Z ⊥⊥ Y (m)|T

• Z is an instrument for the causal relation of M on Y

• IF (and only if) conditioned on T .

• Z ⊥⊥ Y (m)|T holds, but Z ⊥⊥ Y (m) does not.

• Why?
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Understanding the Property Z ⊥⊥ Y (m)|T

• Z ⊥⊥ Y (m)|T arises from:

1 T is caused by both Z and VT and VT ⊥⊥ Z
2 Conditioning on T induces correlation between Z and VT .
3 Thus, conditioned on T , Z affects M (via VT )
4 VT becomes a new instrument for M → Y

VT

T M Y

U

Z

VY
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Properties of the Mediation Model with Partial
Counfoundness

• Assumption on the causal relations among unobserved variables
generates identification

One instrument used to evaluate THREE causal effects!

E (Y (m, t)− Y (m′, t)) , E (Y (t)− Y (t ′)) , E (M(t)−M(t ′))
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Take Home Message

• Surprisingly SCM and LPO are logically equivalent ( Pearl, 2009,
Chapter 7).

• Every assumption/result in SCM can be translated into LPO and
vice-versa.

• Although equivalent, their tractability differs greatly

• It is difficult to assess independence relations in PO

• The SCM enables you to think outside the box and investigate
novel approaches.
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Interpreting a PO Statement for Another Mediation Model

• Would you guess that the relation M(t) ⊥⊥ (Y (m),T )

• is equivalent to assuming the following DAG?

T M Y

V
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Return to main text
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Appendix B: Further Remarks on Causality
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Part 3: Causal Calculus
What can you gain from additional structure?
A General Method to Examine Complex Models
Merging Statical Theory with Causal Analysis

Pinto and Heckman Causal Analysis 107 / 133



Intro Concepts Languages IV Appendix

Part 3 - Causal Calculus

Selected Literature

• ?
Causal Inference in Statistics: An Overview

• Pearl, J. and Verma, T. (1990).
A Formal Theory of Inductive Causation.

• ?
Causal Analysis after Haavelmo

• Chalak and White (2011) (You must check this one!)
An Extended Class of Instrumental Variables for the Estimation of
Causal Effects

• White and Chalak (2012)
Identification and Identification Failure for Treatment Effects Using
Structural Systems
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How can we use the SMC to identify the Front-door Model?

X = fX (U, ϵT ) U

MX Y

M = fM(X , ϵM)
Y = fY (M,U, ϵY )

Two Counterfactuals:

M(x) = fM(x , ϵM) ⇒ M(x) ⊥⊥ X

Y (m) = fY (m,U, ϵY ) but M ⊥⊥ U|X ⇒ Y (m) ⊥⊥ M|X

Thus the following equalities hold:

• P(M(x)) = P(M|X = x)

• E (Y (m)|X = x) = E (Y |M = m,X = x)
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Identifying the Counterfactual Mean E (Y (x))

U

MX Y

Outcome Y = fY (M,U, ϵy ) generates the following counterfactual:

∴ Y (x) = fY (M(x),U, ϵy ) ⇒ E (Y (x)) =

∫
E (Y (m))dFM(x)(m)

But P(M(x)) = P(M|X = x) and

E (Y (m)|X = x ′) = E (Y |M = m,X = x ′)

⇒ E (Y (m)) =

∫
E (Y |M = m,X = x ′)dFX (x

′)

⇒ E(Y ( x )) =

∫
m

(∫
x ′

E(Y |M = m,X = x ′ )dFX ( x
′ )

)
︸ ︷︷ ︸

E(Y (m))

dF
M|X= x (m)︸ ︷︷ ︸

dFM(x)(m)Pinto and Heckman Causal Analysis 110 / 133
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What about this model?

V1 V2

T M1 M2 M3 Y

V3

• X is endogenous, Y (x) ⧸⊥⊥ X , indeed, ALL variables are endogenous

• No instruments

• Yet, causal effects are identified:

E(Y (t)) =

∫
t′

∫
m1

∫
m2

∫
m3

E(Y |m3,m2,m1,T = t′)

dFM3|m2,m1,T=t(m3)

dFM2|m1,T=t′ (m2)

dFM1|T=t(m1)

dFT (t’)
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And what about this model?

V3 V2

T M Y

V1

V4

X1

X2

E(Y (t)) =

∫
t′

∫
m

∫
x1

E(Y |m, x1,T = t′)dFM|x1,T=t(m)dFX1|T=t′ (x1)dFT (t
′)
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Return to main text
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Appendix C: Some Additional Examples
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Causal Model 1: Revisiting the Front-door Model

Empirical Front-door Model Hypothetical Front-door Model

Observed Variables Observed Variables

T = fT (V , ϵT ) T = fT (V , ϵT )

M = fM(T , ϵM) M = fM(T̃ , ϵM)
Y = fY (V ,M, ϵY ) Y = fY (V ,M, ϵY )

Y = fY (V ,M, ϵY )

Exogenous Variables Exogenous Variables

V V , T̃

Unobserved Variables Unobserved Variables

V = fV (ϵV ) V = fV (ϵV )
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Independence Relations
Hypothetical Front-Door Model

U

M YT

U

M YT

T̃

Useful independence relations in the Front-Door hypothetical model:

1 Y ⊥⊥ T̃ |(M,T )

2 M ⊥⊥ T |T̃

3 T̃ ⊥⊥ T
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General Identification Criteria

• Given a Causal Model represented by a DAG,

• The counterfactual outcome Y (t) is identified if

• There exists a set of observable variable K that bridges

• The conditional independence Y ⊥⊥ T̃ |(T ,K ) into T ⊥⊥ T̃ .

• Moreover, the identification formula for Y (t) can be expressed as
an alternate pattern.
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Example: Causal Model 2

Empirical Model Hypothetical Model

Observed Variables Observed Variables

T = fT (V1,V2, ϵT ) T = fT (V1,V2, ϵT )
M1 = fM1(V3,T , ϵM1) M1 = fM1(V3,T , ϵM1)
M2 = fM2(V2,M1, ϵM2) M2 = fM2(V2,M1, ϵM2)
M3 = fM3(V3,M2, ϵM3) M3 = fM3(V3,M2, ϵM3)
Y = fY (V1,M3, ϵY ) Y = fY (V1,M3, ϵY )

Exogenous Variables Exogenous Variables

V1,V2,V3 V1,V2,V3, T̃
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DAG of Causal Model 2

Directed Acyclic Graph of the Empirical Model

V1 V2

T M1 M2 M3 Y

V3

Directed Acyclic Graph of the Hypothetical Model

T̃ V1 V2

T M1 M2 M3 Y

V3
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Causal Model 2 - Connecting Hypothetical and Empirical

Applying LMC and GA to the hypothetical model generates the following
indep. relations:

Y ⊥⊥ T̃ |( T , M3 ,M2,M1)

M3 ⊥⊥ T |( T̃ , M2 ,M1)

M2 ⊥⊥ T̃ |( T , M1 )

M1 ⊥⊥ T | T̃

T̃ ⊥⊥ T always hold

Observe that:

• The sequence of observed variables M1 → M2 → M3 forms a bridge

• from Y ⊥⊥ T̃ |(T ,M3,M2,M1) (initial relation)

• to T̃ ⊥⊥ T (final relation)
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Causal Model 2 - Connecting Hypothetical and Empirical

Using the two probability rules, we can achieve identification:

Hypothetical Model PH(Y |T̃ = t ) =
∑

t′ ,m3,m2,m1

PH(Y |m3,m2,m1,T = t ′ , T̃ = t )

PH(M3 = m3|m2,m1,T = t ′ , T̃ = t )

PH(M2 = m2|m1,T = t ′ , T̃ = t )

PH(M1 = m1|T = t ′ , T̃ = t )

PH(T = t ′ |T̃ = t )

Empirical Model PE (Y ( t )) =
∑

t′ ,m3,m2,m1

(alternate pattern) PE (Y |m3,m2,m1,T = t ′ )
PE (M3 = m3|m2,m1,T = t )

PE (M2 = m2|m1,T = t ′ )
PE (M1 = m1|T = t )

PE (T = t ′ )
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Return to main text
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Appendix D
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Small Detour: On the Do-Calculus

• Creates a special set of rules that combine:

1 Graphical conditions
2 Conditional independence statements
3 Probability equalities as postulates

In contrast, the hypothetical model framework does not require any tool
outside of standard probability theory, provided we endow the space of
hypotheticals with a probability measure

Major Achievement: The do-calculus is Complete!
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Limitation of the Do-Calculus:
IV model is not Identified

• The necessary assumptions the identify the IV model are
monotonicity/separability conditions

• These are functional form assumptions

• They refer to properties of the structural functions

• Beyond the DAG information
(Causal direction among variables remains the same)

• The do-calculus cannot identify the IV model

• The algorithm simply returns that the IV model is not identified
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Causal Model 2 - Comparison Hypothetical vs Do-Calculus
Eq.

Equation from do-calculus is different, but equivalent:
Hypothetical Model (alternate pattern):

PE (Y (t)) =
∑

m3,m2,m1, t′

PE (Y |m3,m2,m1, t ′ )PE (m3|m2,m1, t )

PE (m2|m1, t ′ )PE (m1| t )PE ( t
′ )

Do-calculus:

PE (Y (t)) =
∑

m1,m2,m3

PE (m1|t)PE (m3|t,m1,m2)·(∑
t′

PE (t
′)PE (m2|t ′,m1)

)
·∑

t′,m′
2

PE (t
′)PE (m

′
2|t ′,m1)PE (Y |t ′,m1,m

′
2,m3)


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Causal Model 3

Empirical Model Hypothetical Model

Observed Variables Observed Variables

X1 = fX1(V2,V3, ϵX1) X1 = fX1(V2,V3, ϵX1)
X2 = fX2(V4,X1, ϵX2) X2 = fX2(V4,X1, ϵX2)

T = fT (V1,V2,V4,X1, ϵT ) T = fT (V1,V2,V4,X1, ϵT )

M = fM(X1,T , ϵM) M = fM(X1, T̃ , ϵM)
Y = fY (V1,V3,X2,M, ϵY ) Y = fY (V1,V3,X2,M, ϵY )

Exogenous Variables Exogenous Variables

V1,V2,V3,V4 V1,V2,V3,V4, T̃

Unobserved Variables Unobserved Variables

V1 = fV1(ϵV1), V2 = fV2(ϵV2), V1 = fV1(ϵV1), V2 = fV2(ϵV2)
V3 = fV3(ϵV3), V4 = fV4(ϵV4) V3 = fV3(ϵV3), V4 = fV4(ϵV4)
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DAG of Empirical Model 3

Directed Acyclic Graph of the Empirical Model

V3 V2

T M Y

V1

V4

X1

X2
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DAG of Hypothetical Model 3

Directed Acyclic Graph of the Hypothetical Model

V3 V2

T M Y

T̃

V1

V4

X1

X2

Y ⊥⊥ T̃ |( T̃ ,X1,M) (3)

M ⊥⊥ T |( T̃ ,X1) (4)

X1 ⊥⊥ T̃ | T̃ (5)Pinto and Heckman Causal Analysis 129 / 133
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Causal Model 3 - Connecting Hypothetical and Empirical

LMC and GA give you the following conditions:

Y ⊥⊥ T̃ |( T , M ,X1)

M ⊥⊥ T |( T̃ , X1 )

X1 ⊥⊥ T̃ | T

T̃ ⊥⊥ T always hold

• The sequence of observed variables M → X1 forms a bridge

• from Y ⊥⊥ T̃ |(T ,X1,M) (initial relation)

• to T̃ ⊥⊥ T (final relation)
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Causal Model 3 - Connecting Hypothetical and Empirical

Using the two probability rules, we can achieve identification:

Hypothetical Model PH(Y |T̃ = t ) =
∑

t′ ,m,x1

PH(Y |m, x1,T = t ′ , T̃ = t )

PH(M = m|x1,T = t ′ , T̃ = t )

PH(X1 = x1|T = t ′ , T̃ = t )

PH(T = t ′ |T̃ = t )

Empirical Model PE (Y ( t )) =
∑

t′ ,m,x1

(alternate pattern) PE (Y |m, x1,T = t ′ )
PE (M = m|x1,T = t )

PE (X1 = x1|T = t ′ )

PE (T = t ′ )
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Causal Model 3 - Do-calculus Identifying Equation

Equation from do-calculus is different, but equivalent:
Using Hypothetical Model (alternate pattern):

PE (Y ( t )) =∑
m,x1, t′

PE (Y |m, x1,T = t ′ )PE (m|x1,T = t )PE (x1|T = t ′ )PE (T = t ′)

Using Do-calculus:

PE (Y (t)) =
∑

x1,x2,m

PE (m|x1,T = t)PE (x2|x1)PE (x1)

·

(∑
t′ PE (Y |x1,T = t ′, x2,m)PE (x2|x1,T = t ′)PE (T = t ′|x1)PE (x1)

)
(
PE (x2|x1)PE (x1)

)
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Return to main text
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