Exploiting Incentives of the Moving to Opportunity Experiment

Rodrigo Pinto

University of Chicago

Rodrigo Pinto

Motivation

- Substantial literature has shown the importance of neighborhood effects on the economic well-being of its residents.
 Durlauf (2012); Chetty, Hendren, Kline, Saez (2014); Galiani, Murphy, Pantano (2015) Durlauf and Seshadri (2018); Chetty and Hendren (2018a,2018b);
- Moving to Opportunity (MTO) is a primary housing experiment
- MTO randomly assigned vouchers for poor families to move from high-poverty neighborhoods to lower poverty areas
- Noncompliance: about 50% of families did not use the voucher
- Influential literature evaluates MTO via ITT/TOT effects Kling, Liebman, and Katz (2007); Chetty, Hendren, Katz (2016); Ludwig et al. (2013)

Little or No impact on adult economic outcomes

Summary

- **Goal** Use voucher random assignment to evaluate neighborhood effects
- Key Idea Exploit the information on incentives of MTO design
- How?
 - Stylized model extends LATE framework to Multiple choices
 - Exploit MTO incentives using revealed preference analysis

Contributions

- Address the problem of noncompliance
- Decompose TOT parameters into neighborhood effects
- Revisit Adult Economic Outcomes
- TOT effects are not significant, but neighborhood effects are
- Reconcile MTO with some of recent literature of neighborhood effects

MTO: Voucher Assignments and Neighborhood Choices

- Neighborhood Choices:
 - $T = t_h$, high-poverty (Housing Projects)
 - $T = t_m$, medium-poverty (Remaining Neighborhoods)
 - $T = t_l$, low-poverty (Poverty $\leq 10\%$ in 1990)
- Voucher Groups: Three Assignment Groups
 - $Z = z_c$, control group (No Voucher)
 - $Z = z_8$, Section 8 Voucher (No geographical restriction)
 - $Z = z_e$, experimental Voucher (Poverty $\leq 10\%$ in 1990)
- Incentive Matrix (In) describes the MTO incentives

		Incentive Matrix			
Vouchers	Ζ	t _h	t _m	tı	
Control	Z _c	0	0	0	
Section 8	<i>Z</i> 8	0	1	1	
Experimental	Ze	0	0	1	

MTO Identification Problem

• Response variable: Unobserved vector of counterfactual choices

$$\boldsymbol{S}_{i} = \left[\begin{array}{c} T(z_{c}) \\ T(z_{8}) \\ T(z_{e}) \end{array} \right] \left[\begin{array}{c} t_{h}, t_{m} \text{ or } t_{l} \\ t_{h}, t_{m} \text{ or } t_{l} \\ t_{h}, t_{m} \text{ or } t_{l} \end{array} \right]$$

• 27 Possible Response-types (Strata)

		Neighborhood			Res	ponse	-types	5	
Vouchers	Ζ	Counterfact.	s_1	<i>s</i> ₂	s 3	s 4	s 5		s ₂₇
Control	Zc	$T_i(z_c)$	t _h	t _h	t _h	t _h	tm		t _l
Section 8	<i>z</i> 8	$T_i(z_8)$	t _h	t _h	tm	tm	t _l		tı
Experimental	Ze	$T_i(z_e)$	t _h	tm	tm	tı	t _l	•••	tı

• Identification: Need to *eliminate* some of the 27 response-types

Connection with the LATE Model

- Binary Model: $Z \in \{z_0, z_1\}, T \in \{t_0, t_1\}$
- **Response variable:** 2 × 1 unobserved vector

		4 Response-types				
		Never-takers	Compliers	Always-takers	Defiers	
s _ [$T(z_0)$	t_0	t_0	t_1	t_1	
	$T(z_1)$	t_0	t_1	t_1	t ₀	

Identification:

- **1** Monotonicity $\mathbf{1}[T_i(z_0) = t_1] \le \mathbf{1}[T_i(z_1) = t_1]$
- 2 Eliminates Defiers
- **3** Identifies $LATE = E(Y(t_1) Y(t_0)|Compliers)$

Typical Monotonicity Assumptions are Not Sufficient

		Incentive Matrix			
Vouchers	Ζ	t _h	t _m	t _l	
Control	Z _c	0	0	0	
Section 8	<i>Z</i> 8	0	1	1	
Experimental	Ze	0	0	1	

 If voucher changes from control z_c to experimental z_e, then family is induced to relocate to low-poverty neighborhoods t_i:

$$\mathbf{1}[T_i(z_c) = t_l] \leq \mathbf{1}[T_i(z_e) = t_l]$$

- If voucher changes from control z_c to Section 8 z₈, then family is induced to relocate to *either* low t_l or medium t_m:
- If voucher changes from experimental z_e to Section 8 z₈, then family is induced to relocate to medium t_m poverty:

Three rules eliminate 13 Response-types out of 27, but No identification.

Exploiting Incentives Using Revealed Preferences

Identification Strategy:

- **1** Incentives + Behavior Assumptions = Choice Restrictions
- 2 Choice Restrictions \Rightarrow Eliminate Response-types
- **3** Elimination of Response-types \Rightarrow Identification
- Assuming WARP and that treat choice as a normal good:
 - If family *i* chooses *t* (instead of *t'*) under *z* And the change *z* → *z'* incentivizes *t* more (as much as) *t'* Then family *i* does not choose *t'* under *z'*

• Example:
$$T_i(z_c) = t_l \Rightarrow T_i(z_8) \neq t_h$$

 $T_i(z) = t$, $\ln(z',t') - \ln(z,t') \leq \ln(z',t) - \ln(z,t) \Rightarrow T_i(z') \neq t'$

Incentives + Revealed Preferences \Rightarrow 7 Choice Restrictions

- Subsume the previous monotonicity relations
- Eliminate 20 out of the 27 response-types
- Enable the identification of a range of causal parameters

• 7 Choice Restrictions eliminate 20 of the 27 Response-types

$$\mathbf{R} = \begin{bmatrix} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 \\ t_h & t_m & t_l & t_h & t_h & t_m & t_h \\ t_h & t_m & t_l & t_m & t_l & t_m & t_m \\ t_h & t_m & t_l & t_l & t_l & t_l & t_h \end{bmatrix} \begin{bmatrix} T_i(z_c) \\ T_i(z_8) \\ T_i(z_e) \end{bmatrix}$$

- s_1 Always-takers, high-poverty neighborhoods t_h
- s_2 Always-takers, medium-poverty neighborhoods t_m
- s₃ Always-takers, low-poverty neighborhoods t_m
- s₄ Full compliers
- s_5 Partial compliers (t_h, t_l)
- **s**₆ Partial compliers (*t_m*, *t_l*)
- **s**₇ Partial compliers (*t_h*, *t_m*)

Unordered Monotonicity

- Identification depends only on properties of the response matrix R
- Unordered Monotonicity (Heckman and Pinto, 2018) holds

Unordered Monotonicity: $\forall z, z' \in \text{supp}(Z) \text{ and } \forall t \in \text{supp}(T)$:

$$\mathbf{1}[T_i(z) = t] \le \mathbf{1}[T_i(z') = t] \ \forall \ i$$

or
$$\mathbf{1}[T_i(z) = t] \ge \mathbf{1}[T_i(z') = t] \ \forall \ i,$$

• Which means that choices are nested

Unordered Monotonicity \Rightarrow Choices are Nested

Consider choice t_l Low-poverty neighborhood:

for
$$t_I, z_c \rightarrow s_3$$

 $z_8 \rightarrow s_3, s_5$
 $z_e \rightarrow s_3, s_5, s_4, s_6$

Nested Choices \Rightarrow Identification and Estimation

- D_z, D_t are binary indicators
- Comparison $z_8 z_c$ for t_1 gives s_5 :

$$P(\mathbf{S} = \mathbf{s}_5) = P(T = t_l | Z = z_8) - P(T = t_l | Z = z_c)$$
$$E(Y(t_l) | \mathbf{S} = \mathbf{s}_5) = \frac{E(YD_{t_l} | Z = z_8) - E(YD_{t_l} | Z = z_c)}{E(D_{t_l} | Z = z_8) - E(D_{t_l} | Z = z_c)}$$

• **2SLS** estimation of $E(Y(t_l)|\mathbf{S} = \mathbf{s}_5)$.

First Stage
$$D_{t_l} = \gamma_1 D_{z_8} + \gamma_2 D_{z_c} + \epsilon$$

Second Stage $Y \cdot D_{t_l} = \beta_0 + \beta_{IV} D_{t_l} + \epsilon$

• Accounting for X : extend Abadie (2003) κ for multiple choices

Median-Poverty Neighborhood Choice t_m is also Nested

for
$$t_m, z_e
ightarrow s_2$$

 $z_c
ightarrow s_2, s_6$
 $z_8
ightarrow s_2, s_6, s_4, s_7$

High-Poverty Neighborhood Choice t_h is also Nested

for
$$t_h, \, z_8 o oldsymbol{s}_1$$

 $z_e o oldsymbol{s}_1, oldsymbol{s}_7$
 $z_c o oldsymbol{s}_1, oldsymbol{s}_7, oldsymbol{s}_4, oldsymbol{s}_5$

Main Identification Results

1 All Response-type Probabilities are identified

$$P(S = s_1), ..., P(S = s_7)$$

2 Baseline Variables $\mathbf{E}(X|\mathbf{S} = s)$ are identified for all $s \in \text{supp}(S)$

$$E(X|S = s_1), ..., E(X|S = s_7)$$

3 The following Counterfactual Outcomes are identified:

High Pov. $Y(t_h)$	Med. Pov. $Y(t_m)$	Low Pov. $Y(t_l)$
$E(Y(t_h) \boldsymbol{S}=\boldsymbol{s}_1)$	$\mathbf{E}(Y(t_m) \mathbf{S}=\mathbf{s}_2)$	$\mathbf{E}(Y(t_l) \boldsymbol{S}=\boldsymbol{s}_3)$
$E(Y(t_h) \boldsymbol{S}=\boldsymbol{s}_7)$	$E(Y(t_m) \boldsymbol{S}=\boldsymbol{s}_6)$	$E(Y(t_l) \boldsymbol{S}=\boldsymbol{s}_5)$
$E(Y(t_h) S\in\{\textit{s}_4,\textit{s}_5\})$	$E(Y(t_m) S\in\{s_4,s_7\})$	$E(Y(t_l) S \in \{\mathbf{s}_4, \mathbf{s}_6\})$

Disentangling $E(Y(t_l)|S = s_4)$ and $E(Y(t_l)|S = s_6)$

Marginal Treatment Response $E(Y(t_l)|U_{t_l} = u)$

Disentangling $E(Y(t_l)|S = s_4)$ and $E(Y(t_l)|S = s_6)$

Marginal Treatment Response $E(Y(t_l)|U_{t_l} = u)$

Where do the Properties of the MTO Response Matrix come from?

MTO Group	Incent	ive N	latrix	
Assignment	Z-values	t _h	t _m	tı
Control	Z _C	0	0	0
Section 8	<i>z</i> ₈	0	1	1
Experimental	Ze	0	0	1

MTO has **Monotonic Incentives:** Incentives increase across $z_c \rightarrow z_e \rightarrow z_8$ for all t

What does the TOT estimate?

	Response Matrix R							
Voucher	Ζ	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> 4	<i>S</i> 5	<i>s</i> ₆	S 7
Control	$Z = z_c$	t _h	tı	t _m	th	t _h	t _m	t _h
Section 8	$Z = z_8$	t _h	t _l	t _m	t _m	t _l	t _m	t _m
Experimental	$Z = z_e$	t _h	tı	t _m	t	tı	t	t _h

$$TOT(z_e, z_c) = \left(E(Y|Z = z_e) - E(Y|Z = z_c) \right) \cdot \frac{1}{\mathbf{P}(Compliers|Z = z_e)},$$

$$\begin{aligned} \mathsf{TOT}(z_e, z_c) &= \\ & \left(\frac{\mathsf{E}(Y(t_l) - Y(t_h) | S \in \{s_4, s_5\}) \, \mathsf{P}_{\{s_4, s_5\}} + \mathsf{E}(Y(t_l) - Y(t_m) | S = s_6) \, \mathsf{P}_{s_6}}{\mathsf{P}_{\{s_4, s_5\}} + \mathsf{P}_{s_6}} \right) \\ & \cdot \left(1 - \mathsf{P}(S = s_2 | S \in \{s_2, s_4, s_5, s_6\}) \right), \end{aligned}$$

Figure 1 1: Response-type Probabilities

Pre-intervention Averag. by Response-types

Response-types	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> 4	<i>S</i> 5	<i>s</i> ₆	<i>S</i> ₇
Control (<i>z_c</i>)	t _h	tm	t _l	t _h	t _h	tm	t _h
Section 8 (z_8)	t _h	tm	tı	t _m	tı	t _m	tm
Experimental (z_e)	t _h	t _m	tı	tı	tı	tı	t _h
Family							
Disable Household Member	0.21	0.13	0.14	0.13	0.14	0.16	0.12
Household size is 2 or smaller	0.19	0.14	0.44	0.22	0.24	0.32	0.16
No teens (ages 13-17)	0.55	0.70	0.63	0.72	0.54	0.55	0.54
Neighborhood							
Victim last 6 months (baseline)	0.39	0.38	0.56	0.43	0.47	0.45	0.42
Chat with neighbor	0.51	0.51	0.36	0.46	0.70	0.56	0.66
Welfare/economics							
Car Owner	0.13	0.20	0.28	0.21	0.25	0.05	0.14
Completed high school	0.35	0.38	0.58	0.35	0.35	0.46	0.38

① Control group: Low-poverty \times High-poverty = US \$ 4.81k

2 Experimental group: Low-poverty \times High-poverty = US \$ 2.51k

3 Section 8 group: Low-poverty \times High-poverty = US \$ 0.67k

Income Head of Household - Always Takers s_1, s_2, s_3

Income Head of HH : s_5 -compliers $(t_h \leftrightarrow t_l)$

Income Head of HH : s_7 ($t_h \leftrightarrow t_m$) and s_6 ($t_m \leftrightarrow t_l$)

Income Head of Household - Full Compliers s₄

Income Head of HH - Neigh. Effects Full Compliers s_4

$TOT(z_e, z_c)$ Analysis of Income Head of HH

	TOT (2SLS)	Treat. Eff.	Estimate	P(S)
est.	1.219	$E(Y(t_l) - Y(t_h) \boldsymbol{S} = \boldsymbol{s}_4)$	1.490**	0.310
s.e.	(0.791)	$E(Y(t_l) - Y(t_h) \boldsymbol{S} = \boldsymbol{s}_5)$	3.237	0.052
		$E(Y(t_l) - Y(t_m) \boldsymbol{S} = \boldsymbol{s}_6)$	-0.705	0.087
		TOT (via T.Effs)	1.191	

 $TOT(z_e, z_c)$ via 2SLS, $Y = \beta_0 + \beta C + \gamma_X X + \epsilon$ for all the participants assigned to either experimental z_e or control group z_c . Compliance *C* instrumented by site \times voucher assignment z_e . All estimates use MTO weighting and controlled for baseline variables *X*. Robust standard errors.

Income Above Poverty Line - Full Compliers s₄

Income Above Poverty Line - Effects Full Compliers s₄

$TOT(z_e, z_c)$ Analysis of Household Income Above Poverty Line

	TOT (2SLS)	Treat. Eff.	Estimate	$P(\boldsymbol{S})$
est.	0.033	$E(Y(t_l) - Y(t_h) \boldsymbol{S} = \boldsymbol{s}_4)$	0.086***	0.310
s.e.	(0.037)	$E(Y(t_l) - Y(t_h) \boldsymbol{S} = \boldsymbol{s}_5)$	0.015	0.052
<i>p</i> -val	0.376	$E(Y(t_l) - Y(t_m) \boldsymbol{S} = \boldsymbol{s}_6)$	-0.128	0.087
		TOT (via T.Effs)	0.035	

 $TOT(z_e, z_c)$ via 2SLS, $Y = \beta_0 + \beta C + \gamma_X X + \epsilon$ for all the participants assigned to either experimental z_e or control group z_c . Compliance C instrumented by site \times voucher assignment z_e . All estimates use MTO weighting and controlled for baseline variables X. Robust standard errors.

Employed and No Welfare - Effects Full Compliers s_4

$TOT(z_e, z_c)$ Analysis of Employed and Not on Welfare

	TOT (2SLS)	Treat. Eff.	Estimate	$P(\boldsymbol{S})$
est.	0.065	$E(Y(t_l) - Y(t_h) \boldsymbol{S} = \boldsymbol{s}_4)$	0.080**	0.320
s.e.	0.040	$E(Y(t_l) - Y(t_h) \boldsymbol{S} = \boldsymbol{s}_5)$	0.196	0.048
		$E(Y(t_l) - Y(t_m) \boldsymbol{S} = \boldsymbol{s}_6)$	-0.060	0.083
		TOT (via T.Effs)	0.062	

 $TOT(z_e, z_c)$ via 2SLS, $Y = \beta_0 + \beta C + \gamma_X X + \epsilon$ for all the participants assigned to either experimental z_e or control group z_c . Compliance *C* instrumented by site \times voucher assignment z_e . All estimates use MTO weighting and controlled for baseline variables *X*. Robust standard errors.

Employed - Effects Full Compliers s₄

$TOT(z_e, z_c)$ Analysis of Employed

	TOT (2SLS)	Treat. Eff.	Estimate	P(S)
est.	0.058	$E(Y(t_l) - Y(t_h) \boldsymbol{S} = \boldsymbol{s}_4)$	0.057	0.314
s.e.	(0.040)	$E(Y(t_l) - Y(t_h) \boldsymbol{S} = \boldsymbol{s}_5)$	0.109	0.051
		$E(Y(t_l) - Y(t_m) \boldsymbol{S} = \boldsymbol{s}_6)$	0.040	0.084
		TOT (via T.Effs)	0.057	

 $TOT(z_e, z_c)$ via 2SLS, $Y = \beta_0 + \beta C + \gamma_X X + \epsilon$ for all the participants assigned to either experimental z_e or control group z_c . Compliance C instrumented by site \times voucher assignment z_e . All estimates use MTO weighting and controlled for baseline variables X. Robust standard errors.

Neighborhood Poverty - Effects Full Compliers s₄

$TOT(z_e, z_c)$ Analysis of Neighborhood Poverty

	TOT (2SLS)	Treat. Eff.	Estimate	P(S)
est.	-30.60***	$E(Y(t_l) - Y(t_h) \boldsymbol{S} = \boldsymbol{s}_4)$	-35.25***	0.311
s.e.	(1.240)	$E(Y(t_l) - Y(t_h) \boldsymbol{S} = \boldsymbol{s}_5)$	-28.917	0.066
		$E(Y(t_l) - Y(t_m) \boldsymbol{S} = \boldsymbol{s}_6)$	-22.798	0.078
		TOT (via T.Effs)	-30.11	

 $TOT(z_e, z_c)$ via 2SLS, $Y = \beta_0 + \beta C + \gamma_X X + \epsilon$ for all the participants assigned to either experimental z_e or control group z_c . Compliance *C* instrumented by site \times voucher assignment z_e . All estimates use MTO weighting and controlled for baseline variables *X*. Robust standard errors.