Exploiting Incentives of the Moving to Opportunity Experiment

Rodrigo Pinto

University of Chicago

Motivation

- Substantial literature has shown the importance of neighborhood effects on the economic well-being of its residents. Durlauf (2012); Chetty, Hendren, Kline, Saez (2014); Galiani, Murphy, Pantano (2015) Durlauf and Seshadri (2018); Chetty and Hendren (2018a, 2018b);
- Moving to Opportunity (MTO) is a primary housing experiment
- MTO randomly assigned vouchers for poor families to move from high-poverty neighborhoods to lower poverty areas
- Noncompliance: about 50% of families did not use the voucher
- Influential literature evaluates MTO via ITT/TOT effects Kling, Liebman, and Katz (2007); Chetty, Hendren, Katz (2016); Ludwig et al. (2013)

Little or No impact on adult economic outcomes

Summary

- Goal Use voucher random assignment to evaluate neighborhood effects
- Key Idea Exploit the information on incentives of MTO design
- How?
- Stylized model extends LATE framework to Multiple choices
- Exploit MTO incentives using revealed preference analysis
- Contributions
- Address the problem of noncompliance
- Decompose TOT parameters into neighborhood effects
- Revisit Adult Economic Outcomes
- TOT effects are not significant, but neighborhood effects are
- Reconcile MTO with some of recent literature of neighborhood effects

MTO: Voucher Assignments and Neighborhood Choices

Voucher Assignment

Voucher Incentives

Voucher
Compliance

Neighborhood
Decision

1.3 Stylised Model

- Neighborhood Choices:
- $T=t_{h}$, high-poverty (Housing Projects)
- $T=t_{m}$, medium-poverty (Remaining Neighborhoods)
- $T=t_{l}$, low-poverty (Poverty $\leq 10 \%$ in 1990)
- Voucher Groups: Three Assignment Groups
- $Z=z_{c}$, control group (No Voucher)
- $Z=z_{8}$, Section 8 Voucher (No geographical restriction)
- $Z=z_{e}$, experimental Voucher (Poverty $\leq 10 \%$ in 1990)
- Incentive Matrix (In) describes the MTO incentives

	Incentive Matrix			
Vouchers	Z	t_{h}	t_{m}	t_{l}
Control	z_{c}	0	0	0
Section 8	z_{8}	0	1	1
Experimental	z_{e}	0	0	1

MTO Identification Problem

- Response variable: Unobserved vector of counterfactual choices

$$
\boldsymbol{S}_{i}=\left[\begin{array}{c}
T\left(z_{c}\right) \\
T\left(z_{8}\right) \\
T\left(z_{e}\right)
\end{array}\right] \quad \begin{aligned}
& t_{h}, t_{m} \text { or } t_{l} \\
& t_{h}, t_{m} \text { or } t_{l} \\
& t_{h}, t_{m} \text { or } t_{l}
\end{aligned}
$$

- 27 Possible Response-types (Strata)

Vouchers	Z	Neighborhood Counterfact.	Response-types						
			s_{1}	S_{2}	S_{3}	S_{4}	S_{5}	\cdots	S_{27}
Control	z_{C}	$T_{i}\left(z_{c}\right)$	t_{h}	t_{h}	t_{h}	t_{h}	t_{m}	\ldots	t_{1}
Section 8	z_{8}	$T_{i}\left(z_{8}\right)$	t_{h}	t_{h}	t_{m}	t_{m}	t_{1}		t_{1}
Experimental	z_{e}	$T_{i}\left(z_{e}\right)$	t_{h}	t_{m}	t_{m}	t_{1}	t_{1}		t_{1}

- Identification: Need to eliminate some of the 27 response-types

Connection with the LATE Model

- Binary Model: $Z \in\left\{z_{0}, z_{1}\right\}, T \in\left\{t_{0}, t_{1}\right\}$
- Response variable: 2×1 unobserved vector

4 Response-types

$\boldsymbol{S}=$		Never-takers	Compliers	Always-takers	Defiers
	$T\left(z_{0}\right)$	t_{0}	t_{0}	t_{1}	t_{1}
	$T\left(z_{1}\right)$	t_{0}	t_{1}	t_{1}	t_{0}

- Identification:
(1) Monotonicity $\mathbf{1}\left[T_{i}\left(z_{0}\right)=t_{1}\right] \leq \mathbf{1}\left[T_{i}\left(z_{1}\right)=t_{1}\right]$
(2) Eliminates Defiers
(3) Identifies $L A T E=E\left(Y\left(t_{1}\right)-Y\left(t_{0}\right) \mid\right.$ Compliers $)$

Typical Monotonicity Assumptions are Not Sufficient

	Incentive Matrix			
Vouchers	Z	t_{h}	t_{m}	t_{l}
Control	z_{c}	0	0	0
Section 8	z_{8}	0	1	1
Experimental	z_{e}	0	0	1

(1) If voucher changes from control z_{c} to experimental z_{e}, then family is induced to relocate to low-poverty neighborhoods t_{1} :

$$
\mathbf{1}\left[T_{i}\left(z_{c}\right)=t_{l}\right] \leq \mathbf{1}\left[T_{i}\left(z_{e}\right)=t_{l}\right]
$$

(2) If voucher changes from control z_{c} to Section $8 z_{8}$, then family is induced to relocate to either low t_{l} or medium t_{m} :
(3) If voucher changes from experimental z_{e} to Section $8 z_{8}$, then family is induced to relocate to medium t_{m} poverty:

Three rules eliminate 13 Response-types out of 27 , but No identification.

Exploiting Incentives Using Revealed Preferences

- Identification Strategy:
(1) Incentives + Behavior Assumptions $=$ Choice Restrictions
(2) Choice Restrictions \Rightarrow Eliminate Response-types
(3) Elimination of Response-types \Rightarrow Identification
- Assuming WARP and that treat choice as a normal good:
(1) If family i chooses t (instead of t^{\prime}) under z
(2) And the change $z \rightarrow z^{\prime}$ incentivizes t more (as much as) t^{\prime}
(3) Then family i does not choose t^{\prime} under z^{\prime}
- Example: $T_{i}\left(z_{c}\right)=t_{l} \Rightarrow T_{i}\left(z_{8}\right) \neq t_{h}$

$$
T_{i}(z)=t, \ln \left(z^{\prime}, t^{\prime}\right)-\ln \left(z, t^{\prime}\right) \leq \boldsymbol{\operatorname { l n }}\left(z^{\prime}, t\right)-\boldsymbol{\operatorname { l n }}(z, t) \Rightarrow T_{i}\left(z^{\prime}\right) \neq t^{\prime}
$$

Incentives + Revealed Preferences $\Rightarrow \mathbf{7}$ Choice Restrictions

- Subsume the previous monotonicity relations
- Eliminate 20 out of the 27 response-types
- Enable the identification of a range of causal parameters

The Response Matrix

- 7 Choice Restrictions eliminate 20 of the 27 Response-types

$$
\mathbf{R}=\left[\begin{array}{ccccccc}
s_{1} & s_{2} & s_{3} & s_{4} & s_{5} & s_{6} & s_{7} \\
\left.\left[\begin{array}{ccccccc}
t_{h} & t_{m} & t_{l} & t_{h} & t_{h} & t_{m} & t_{h} \\
t_{h} & t_{m} & t_{l} & t_{m} & t_{l} & t_{m} & t_{m} \\
t_{h} & t_{m} & t_{l} & t_{l} & t_{l} & t_{l} & t_{h}
\end{array}\right] \begin{array}{l}
T_{i}\left(z_{c}\right) \\
T_{i}\left(z_{8}\right) \\
T_{i}\left(z_{e}\right)
\end{array}, \begin{array}{l}
\text { and }
\end{array}\right)
\end{array}\right.
$$

- \boldsymbol{s}_{1} - Always-takers, high-poverty neighborhoods t_{h}
- \boldsymbol{s}_{2} - Always-takers, medium-poverty neighborhoods t_{m}
- \boldsymbol{s}_{3} - Always-takers, low-poverty neighborhoods t_{m}
- \boldsymbol{s}_{4} - Full compliers
- \boldsymbol{s}_{5} - Partial compliers $\left(t_{h}, t_{l}\right)$
- \boldsymbol{s}_{6} - Partial compliers $\left(t_{m}, t_{l}\right)$
- $\boldsymbol{s}_{7}-$ Partial compliers $\left(t_{h}, t_{m}\right)$

Unordered Monotonicity

- Identification depends only on properties of the response matrix \boldsymbol{R}
- Unordered Monotonicity (Heckman and Pinto, 2018) holds

Unordered Monotonicity: $\forall z, z^{\prime} \in \operatorname{supp}(Z)$ and $\forall t \in \operatorname{supp}(T)$:

$$
\begin{aligned}
& \mathbf{1}\left[T_{i}(z)\right.=t] \\
& \text { or } \mathbf{1}\left[T_{i}\left(z^{\prime}\right)=t\right] \forall i \\
& \text { or }=t]
\end{aligned}
$$

- Which means that choices are nested

Unordered Monotonicity \Rightarrow Choices are Nested

Consider choice t_{l} Low-poverty neighborhood:

$$
\mathbf{R}=\overbrace{\left[\begin{array}{ccccccc}
s_{1} & s_{2} & s_{3} & s_{4} & s_{5} & s_{6} & s_{7} \\
t_{h} & t_{m} & t_{l} & t_{h} & t_{h} & t_{m} & t_{h} \\
t_{h} & t_{m} & t_{l} & t_{m} & t_{l} & t_{m} & t_{m} \\
t_{h} & t_{m} & t_{l} & t_{l} & t_{l} & t_{l} & t_{h}
\end{array}\right]}^{l} l \begin{aligned}
& \text { Support of Response Variable } S \\
& z_{c} \\
& z_{8} \\
& z_{e}
\end{aligned}
$$

$$
\text { for } \begin{aligned}
t_{l}, z_{c} & \rightarrow s_{3} \\
z_{8} & \rightarrow s_{3}, s_{5} \\
z_{e} & \rightarrow s_{3}, s_{5}, s_{4}, s_{6}
\end{aligned}
$$

Nested Choices \Rightarrow Identification and Estimation

- D_{z}, D_{t} are binary indicators
- Comparison $z_{8}-z_{c}$ for t_{l} gives \boldsymbol{s}_{5} :

$$
\begin{aligned}
P\left(\boldsymbol{S}=\boldsymbol{s}_{5}\right) & =P\left(T=t_{l} \mid Z=z_{8}\right)-P\left(T=t_{l} \mid Z=z_{c}\right) \\
E\left(Y\left(t_{l}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{5}\right) & =\frac{E\left(Y D_{t_{l}} \mid Z=z_{8}\right)-E\left(Y D_{t_{l}} \mid Z=z_{c}\right)}{E\left(D_{t_{l}} \mid Z=z_{8}\right)-E\left(D_{t_{l}} \mid Z=z_{c}\right)}
\end{aligned}
$$

- 2SLS estimation of $E\left(Y\left(t_{l}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{5}\right)$.

$$
\begin{aligned}
\text { First Stage } D_{t_{l}} & =\gamma_{1} D_{z_{8}}+\gamma_{2} D_{z_{c}}+\epsilon \\
\text { Second Stage } Y \cdot D_{t_{l}} & =\beta_{0}+\beta_{l V} D_{t_{l}}+\epsilon
\end{aligned}
$$

- Accounting for X : extend Abadie (2003) κ for multiple choices

Median-Poverty Neighborhood Choice t_{m} is also Nested

$$
\begin{aligned}
& \text { Support of Response Variable } S \\
& \left.\mathbf{R}=\left[\begin{array}{ccccccc}
t_{h} & t_{m} & t_{l} & t_{h} & t_{h} & t_{m} & t_{h} \\
t_{h} & t_{m} & t_{l} & t_{m} & t_{l} & t_{m} & t_{m} \\
t_{h} & t_{m} & t_{l} & t_{l} & t_{l} & t_{l} & t_{h}
\end{array}\right] \begin{array}{c}
z_{c} \\
z_{8} \\
z_{e}
\end{array}\right\}
\end{aligned}
$$

$$
\text { for } \begin{aligned}
& t_{m}, z_{e} \\
& \rightarrow \boldsymbol{s}_{2} \\
& z_{c} \rightarrow \boldsymbol{s}_{2}, \boldsymbol{s}_{6} \\
& z_{8} \rightarrow \boldsymbol{s}_{2}, \boldsymbol{s}_{6}, \boldsymbol{s}_{4}, \boldsymbol{s}_{7}
\end{aligned}
$$

High-Poverty Neighborhood Choice t_{h} is also Nested

$$
\begin{aligned}
& \text { Support of Response Variable } S \\
& \begin{array}{lllllll}
s_{1} & s_{2} & s_{3} & s_{4} & s_{5} & s_{6} & s_{7}
\end{array} \\
& \left.\mathbf{R}=\left[\begin{array}{lllllll}
t_{h} & t_{m} & t_{l} & t_{h} & t_{h} & t_{m} & t_{h} \\
t_{h} & t_{m} & t_{l} & t_{m} & t_{l} & t_{m} & t_{m} \\
t_{h} & t_{m} & t_{l} & t_{l} & t_{l} & t_{l} & t_{h}
\end{array}\right] \begin{array}{c}
z_{c} \\
z_{8} \\
z_{e}
\end{array}\right\} \\
& \text { for } t_{h}, z_{8} \rightarrow \boldsymbol{s}_{1} \\
& z_{e} \rightarrow \boldsymbol{s}_{1}, \boldsymbol{s}_{7} \\
& Z_{C} \rightarrow \boldsymbol{s}_{1}, \boldsymbol{S}_{7}, \boldsymbol{s}_{4}, \boldsymbol{S}_{5}
\end{aligned}
$$

Main Identification Results

(1) All Response-type Probabilities are identified

$$
\mathbf{P}\left(S=s_{1}\right), \ldots, \mathbf{P}\left(S=s_{7}\right)
$$

(2) Baseline Variables $\mathbf{E}(X \mid \boldsymbol{S}=s)$ are identified for all $s \in \operatorname{supp}(S)$

$$
E\left(X \mid S=s_{1}\right), \ldots, E\left(X \mid S=s_{7}\right)
$$

(3) The following Counterfactual Outcomes are identified:

High Pov. $Y\left(t_{h}\right)$	Med. Pov. $Y\left(t_{m}\right)$	Low Pov. $Y\left(t_{l}\right)$
$\mathbf{E}\left(Y\left(t_{h}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{1}\right)$	$\mathbf{E}\left(Y\left(t_{m}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{2}\right)$	$\mathbf{E}\left(Y\left(t_{l}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{3}\right)$
$\mathbf{E}\left(Y\left(t_{h}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{7}\right)$	$\mathbf{E}\left(Y\left(t_{m}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{6}\right)$	$\mathbf{E}\left(Y\left(t_{l}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{5}\right)$
$\mathbf{E}\left(Y\left(t_{h}\right) \mid S \in\left\{\boldsymbol{s}_{4}, \boldsymbol{s}_{5}\right\}\right)$	$\mathbf{E}\left(Y\left(t_{m}\right) \mid S \in\left\{\boldsymbol{s}_{4}, \boldsymbol{s}_{7}\right\}\right)$	$\mathbf{E}\left(Y\left(t_{l}\right) \mid S \in\left\{\boldsymbol{s}_{4}, \boldsymbol{s}_{6}\right\}\right)$

Disentangling $E\left(Y\left(t_{l}\right) \mid S=s_{4}\right)$ and $E\left(Y\left(t_{l}\right) \mid S=s_{6}\right)$

Marginal Treatment Response $E\left(Y\left(t_{l}\right) \mid U_{t_{l}}=u\right)$

Disentangling $E\left(Y\left(t_{l}\right) \mid S=s_{4}\right)$ and $E\left(Y\left(t_{l}\right) \mid S=s_{6}\right)$

$E\left(Y\left(t_{l}\right) \mid U=u\right)$

Marginal Treatment Response $E\left(Y\left(t_{l}\right) \mid U_{t_{l}}=u\right)$

Where do the Properties of the MTO Response Matrix come from?

MTO Group		Incentive Matrix		
Assignment	Z-values	t_{h}	t_{m}	t_{l}
Control	z_{c}	0	0	0
Section 8	z_{8}	0	1	1
Experimental	z_{e}	0	0	1

MTO has Monotonic Incentives:
Incentives increase across $z_{c} \rightarrow z_{e} \rightarrow z_{8}$ for all t

What does the TOT estimate?

Response Matrix R

Voucher	Z	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	s_{7}
Control	$Z=z_{c}$	t_{h}	t_{l}	t_{m}	t_{h}	t_{h}	t_{m}	t_{h}
Section 8	$Z=z_{8}$	t_{h}	t_{l}	t_{m}	t_{m}	t_{l}	t_{m}	t_{m}
Experimental	$Z=z_{e}$	t_{h}	t_{l}	t_{m}	t_{l}	t_{l}	t_{l}	t_{h}

$$
\operatorname{TOT}\left(z_{e}, z_{c}\right)=\left(E\left(Y \mid Z=z_{e}\right)-E\left(Y \mid Z=z_{c}\right)\right) \cdot \frac{1}{\mathbf{P}\left(\text { Compliers } \mid Z=z_{e}\right)},
$$

$$
\begin{aligned}
& \operatorname{TOT}\left(z_{e}, z_{c}\right)= \\
& \left(\frac{\mathbf{E}\left(Y\left(t_{l}\right)-Y\left(t_{h}\right) \mid S \in\left\{s_{4}, s_{5}\right\}\right) \mathbf{P}_{\left\{s_{4}, s_{5}\right\}}+\mathbf{E}\left(Y\left(t_{l}\right)-Y\left(t_{m}\right) \mid S=s_{6}\right) \mathbf{P}_{s_{6}}}{\mathbf{P}_{\left\{s_{4}, s_{5}\right\}}+\mathbf{P}_{s_{6}}}\right) \\
& \quad \cdot\left(1-\mathbf{P}\left(S=s_{2} \mid S \in\left\{s 2, s_{4}, s_{5}, s_{6}\right\}\right)\right)
\end{aligned}
$$

Figure 1 1: Response-type Probabilities

Pre-intervention Averag. by Response-types

Response-types	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	s_{7}
Control $\left(z_{c}\right)$	t_{h}	t_{m}	t_{l}	t_{h}	t_{h}	t_{m}	t_{h}
Section $8\left(z_{8}\right)$	t_{h}	t_{m}	t_{l}	t_{m}	t_{l}	t_{m}	t_{m}
Experimental $\left(z_{e}\right)$	t_{h}	t_{m}	t_{l}	t_{l}	t_{l}	t_{l}	t_{h}

Family

Disable Household Member	$\mathbf{0 . 2 1}$	0.13	0.14	0.13	0.14	0.16	0.12
Household size is 2 or smaller	0.19	0.14	$\mathbf{0 . 4 4}$	0.22	0.24	0.32	0.16
No teens (ages 13-17)	0.55	0.70	0.63	$\mathbf{0 . 7 2}$	0.54	0.55	0.54

Neighborhood

Victim last 6 months (baseline)	0.39	0.38	$\mathbf{0 . 5 6}$	0.43	0.47	0.45	0.42
Chat with neighbor	0.51	0.51	$\mathbf{0 . 3 6}$	0.46	$\mathbf{0 . 7 0}$	0.56	0.66

Welfare/economics

Car Owner	$\mathbf{0 . 1 3}$	0.20	$\mathbf{0 . 2 8}$	0.21	0.25	0.05	0.14
Completed high school	0.35	0.38	$\mathbf{0 . 5 8}$	0.35	0.35	0.46	0.38

A. Income of the Head of the Family Mean

(1) Control group: Low-poverty \times High-poverty $=$ US \$ 4.81k
(2) Experimental group: Low-poverty \times High-poverty $=$ US $\$ 2.51 \mathrm{k}$
(3) Section 8 group:

Low-poverty \times High-poverty $=$ US $\$ 0.67 \mathrm{k}$

Income Head of Household - Always Takers s_{1}, s_{2}, s_{3}

Income Head of HH : s_{5}-compliers $\left(t_{h} \leftrightarrow t_{l}\right)$

C. Counterfactual Outcomes for \boldsymbol{s}_{5}-Compliers

Income Head of HH : $s_{7}\left(t_{h} \leftrightarrow t_{m}\right)$ and $s_{6}\left(t_{m} \leftrightarrow t_{l}\right)$

Income Head of Household - Full Compliers s_{4}

Income Head of HH - Neigh. Effects Full Compliers s_{4}

TOT $\left(z_{e}, z_{c}\right)$ Analysis of Income Head of HH

	TOT $(2 S L S)$	Treat. Eff.	Estimate	$P(\boldsymbol{S})$
est.	$\mathbf{1 . 2 1 9}$	$E\left(Y\left(t_{l}\right)-Y\left(t_{h}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{4}\right)$	$\mathbf{1 . 4 9 0 * *}$	0.310
s.e.	(0.791)	$E\left(Y\left(t_{l}\right)-Y\left(t_{h}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{5}\right)$	3.237	0.052
		$E\left(Y\left(t_{l}\right)-Y\left(t_{m}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{6}\right)$	-0.705	0.087
TOT (via T.Effs)				
		$\mathbf{1 . 1 9 1}$		

$\operatorname{TOT}\left(z_{e}, z_{c}\right)$ via 2SLS, $Y=\beta_{0}+\beta C+\gamma_{X} X+\epsilon$ for all the participants assigned to either experimental z_{e} or control group z_{c}. Compliance C instrumented by site \times voucher assignment z_{e}. All estimates use MTO weighting and controlled for baseline variables X. Robust standard errors.

Income Above Poverty Line - Full Compliers s_{4}

Income Above Poverty Line - Effects Full Compliers s_{4}

Treatment Effects on Household Income Above Poverty Line

$\operatorname{TOT}\left(z_{e}, z_{c}\right)$ Analysis of Household Income Above Poverty Line

	TOT (2SLS)	Treat. Eff.	Estimate	$P(\boldsymbol{S})$	
est.	$\mathbf{0 . 0 3 3}$	$E\left(Y\left(t_{l}\right)-Y\left(t_{h}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{4}\right)$	$\mathbf{0 . 0 8 6} * * *$	0.310	
s.e.	(0.037)	$E\left(Y\left(t_{l}\right)-Y\left(t_{h}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{5}\right)$	0.015	0.052	
p-val	0.376	$E\left(Y\left(t_{l}\right)-Y\left(t_{m}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{6}\right)$	-0.128	0.087	
TOT (via T.Effs)					
	$\mathbf{0 . 0 3 5}$				

$\operatorname{TOT}\left(z_{e}, z_{c}\right)$ via 2SLS, $Y=\beta_{0}+\beta C+\gamma_{X} X+\epsilon$ for all the participants assigned to either experimental z_{e} or control group z_{c}. Compliance C instrumented by site \times voucher assignment z_{e}. All estimates use MTO weighting and controlled for baseline variables X.

Robust standard errors.

Employed and No Welfare - Effects Full Compliers s_{4}

Treatment Effects on Employed and Not on Welfare

$\operatorname{TOT}\left(z_{e}, z_{c}\right)$ Analysis of Employed and Not on Welfare

	TOT $(2 S L S)$	Treat. Eff.	Estimate	$P(\boldsymbol{S})$
est.	$\mathbf{0 . 0 6 5}$	$E\left(Y\left(t_{l}\right)-Y\left(t_{h}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{4}\right)$	$\mathbf{0 . 0 8 0}$ **	0.320
s.e.	0.040	$E\left(Y\left(t_{l}\right)-Y\left(t_{h}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{5}\right)$	0.196	0.048
		$E\left(Y\left(t_{l}\right)-Y\left(t_{m}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{6}\right)$	-0.060	0.083
	TOT (via T.Effs)	$\mathbf{0 . 0 6 2}$		

$\operatorname{TOT}\left(z_{e}, z_{c}\right)$ via 2SLS, $Y=\beta_{0}+\beta C+\gamma_{X} X+\epsilon$ for all the participants assigned to either experimental z_{e} or control group z_{c}. Compliance C instrumented by site \times voucher assignment z_{e}. All estimates use MTO weighting and controlled for baseline variables X. Robust standard errors.

Employed - Effects Full Compliers s_{4}

Treatment Effects on Employment

$\operatorname{TOT}\left(z_{e}, z_{c}\right)$ Analysis of Employed

	TOT (2SLS)	Treat. Eff.	Estimate	$P(\boldsymbol{S})$
est.	$\mathbf{0 . 0 5 8}$	$E\left(Y\left(t_{l}\right)-Y\left(t_{h}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{4}\right)$	$\mathbf{0 . 0 5 7}$	0.314
s.e.	(0.040)	$E\left(Y\left(t_{l}\right)-Y\left(t_{h}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{5}\right)$	0.109	0.051
		$E\left(Y\left(t_{l}\right)-Y\left(t_{m}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{6}\right)$	0.040	0.084
	TOT (via T.Effs)	$\mathbf{0 . 0 5 7}$		

$\operatorname{TOT}\left(z_{e}, z_{c}\right)$ via 2SLS, $Y=\beta_{0}+\beta C+\gamma_{X} X+\epsilon$ for all the participants assigned to either experimental z_{e} or control group z_{c}. Compliance C instrumented by site \times voucher assignment z_{e}. All estimates use MTO weighting and controlled for baseline variables X. Robust standard errors.

Neighborhood Poverty - Effects Full Compliers s_{4}

Treatment Effects on Neighborhood Poverty

TOT $\left(z_{e}, z_{c}\right)$ Analysis of Neighborhood Poverty

	TOT $(2 S L S)$	Treat. Eff.	Estimate	$P(\boldsymbol{S})$
est.	$-\mathbf{3 0 . 6 0 * * *}$	$E\left(Y\left(t_{l}\right)-Y\left(t_{h}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{4}\right)$	$\mathbf{- 3 5 . 2 5 * * *}$	0.311
s.e.	(1.240)	$E\left(Y\left(t_{l}\right)-Y\left(t_{h}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{5}\right)$	-28.917	0.066
		$E\left(Y\left(t_{l}\right)-Y\left(t_{m}\right) \mid \boldsymbol{S}=\boldsymbol{s}_{6}\right)$	-22.798	0.078
TOT (via T.Effs)				
		$\mathbf{- 3 0 . 1 1}$		

$\operatorname{TOT}\left(z_{e}, z_{c}\right)$ via 2SLS, $Y=\beta_{0}+\beta C+\gamma_{X} X+\epsilon$ for all the participants assigned to either experimental z_{e} or control group z_{c}. Compliance C instrumented by site \times voucher assignment z_{e}. All estimates use MTO weighting and controlled for baseline variables X. Robust standard errors.

