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® This chapter examines different models commonly used to
model probabilistic choice, such as eg the choice of one type of
transportation from among many choices available to the
consumer.

® Section 1 discusses derivation and limitations of conditional
logit models.

® Section 2 discusses probit models and Section 3 discusses the
nested logit (generalized extreme value models), which address
some of the limitations of the conditional logit models.
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The Conditional Logit Model
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® In this section we investigate conditional logit models.

® We discuss its derivation from a random utility model with
Extreme Value Type | distributed shocks.

® The relevant properties of the Extreme Value Type |
distribution are discussed.

® We also derive the conditional logit model from the Luce
axioms.

® We discuss some of the limitations of the conditional logit
models.

Heckman Probabilistic Choice Models



The Extreme Value Type | Distribution
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® Suppose ¢ is independent (not necessarily identical) Extreme
Value Type | random variable.

® Then the CDF of ¢ is:
Pr(e < ¢c) = F(c) =exp(—exp(— (c + })))

where «; is a parameter of the Extreme Value Type | CDF.
¢ Also, by the assumption of independence, we can write:

Fe1, 60, €)= H F(g) = Hexp(— exp (— (e + )))
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® The Extreme Value Type | distribution has two useful features.

e First, the difference between two Extreme Value Type | random
variables is a logit.

® Second, Extreme Value Type Is are closed under maximization,
since (assuming independence):

Pr (ml_ax{s,-} < 5) = f[ Pr(e; <¢)

= Hexp —exp(— (¢ + ay)))

(g
= exp (—exp Zexp a,) (1)
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n
e Consider > exp(—a;).
i=1
® We can solve for « in the following equation:

> exp(—a) = exp(—a)

which implies:

—a = log (i exp(—a;)) .
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® We can then substitute this value of « into equation (1) to get:

Pr (mljax{s,-} < 5) = exp(— (exp(—¢)) exp(—a))
= exp(—exp(—(c+0a)))

which is indeed a Extreme Value Type | random variable.
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Random Utility Model

e An individual with characteristics s has a choice set B; with
element x C B, B is a feasible set.

o We write:
Pr(x|s,B)

as the probability that a person of characteristics s chooses x
from the feasible set.
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® We also suppose that:
U(s,x) = v(s,x)+e(s,x)

where ¢ is independent Extreme Value Type I.

® From our information on Extreme Value Type Is in section 1,
we know that ¢; + v;, (and thus U;), has an Extreme Value
Type | distribution with parameter a; — v;, as shown below:

Fuy(e)=Pr(ei+vi<e) = Pr(ei<e—v)
= exp(—exp(—(e+a; —v)))
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® Let us now suppose that there are two goods and two
corresponding utilities.

e Consumers govern their choices by the obvious decision rule:
choose good one if U; > Us.

® More generally, if there are n goods, then good j will be
selected if U; € argmax {U;}"_,.
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e Specifically, in our two good case:

Pr(1is chosen) = Pr(Uy > Uy) =Pr(e1 +v1 > 2 + )
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® Imposing that ¢ is independent Extreme Value Type |, we can
be much more precise about this probability:

Pr(e1 +vi > e+ va) (2)
= Pr €1+V1_V2>52)

e1tvi—v2
f 81) </ (52)d62> d€1

fler)exp(—exp—(e1+ w1 — va + ) dey

—00
o0

\\

8
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® Observe that F(e1) = exp (—exp — (e1 + 1)), which implies:

fle1) = 81;(;1)
= exp(exp—(e1+ a1)) (exp — (1 + a1))
= exp—(e1+ a1)(exp(—exp—(e1 + a1)))
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¢ Substituting this into equation (2) gives us:

Pr(1is chosen) = / exp — (1 + o) (exp (— exp — (e1 + 1))
exp(—exp—(e1+vi — va + a2)) deg
Z e / (e7<1) el op(—enllow(—a)—exp ~(u —watazll g,
— o0
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1

exp (—ag) +exp—(vi — va + ap)
[e[— exp(—e1)][exp(—a1)—exp —(V1—V2+Oé2)]j|

= exp(—w)
—0o0
exp (—a1)
exp (—a1) +exp— (vi — va + a2)
exp(vi — a1)
exp(v1 — a1) + exp(v2 — )
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® This result generalizes, because the max over (n — 1) choices is
still an Extreme Value Type |, so we can make a two stage
maximization argument, as follows:

Pr(es+wvi >ei+v, i=12---n)

= Pr (61 + vy > ._r121ax (E,’ + V,'))
exp(vi — a1)
exp(vi — a1) +exp(va — az) + -+ - +exp(v, — )

exp()

éexp(\z‘)

where V; = v; — q;.
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® This type of model of probabilistic choice is called a conditional
or multinomial logit model.

¢ The difference between “conditional” and “multinomial” is
simply that in the “conditional” logit case, the values of the
variables (usually choice characteristics) vary across the
choices, while the parameters are common across the choices.
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¢ In the "multinomial” logit case, the values of the variables are
common across choices for the same person (usually individual
characteristics) but the parameters vary across choices.
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® For e.g. we have in the linear v; case, the probability of
individual j making choice i from among m choices is:

exp(B'cyj)
> exp(fcy)
k=1

vector of values of characteristics of choice i as
perceived by individual .
exp(as;)
m
> exp(as))
k=1

vector of individual characteristics for individual J-

Conditional Logit case: Pj = , Where ¢j; is the

Multinomial Logit case: Pj = , Where s; is a
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® Note that we can easily combine the two cases under one
model, as described below:

Generalized case: We can combine the conditional and
multinomial logit models by generalizing either one
of the two types of models. For eg, we could
permit the coefficients in the multinomial logit
case to depend on choice characteristics, ie have:

ap = Cbi‘l' CZIQ
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® Then we get the generalized case, where the probability of
choice i by individual j depends on both individual as well as
choice characteristics (as well as interaction terms):
p . _owlais) _ exp(ds +0cs)
y m m
2 ew(aks) X exp(ds + 0'cys)
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® We could similarly modify the coefficients in the conditional
logit case to obtain the generalized version.
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Derivation of Logit from the Luce Axioms

* We will now show how the conditional logit can be derived from
the random utility model and the Luce Axioms presented below.
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Luce Axioms

Axiom 1: Independence of Irrelevant Alternatives(lIA)
Suppose that x,y € B, s € §.
Then,

Pr(x|s,{x,y})Pr(y|s,B)=Pr(y|s {x,y})Pr(x|s,B)
or, we have:

Pr(x|s,{x,y}) Pr(x]|s,B)

Pr(y|s,{x,y}) Pr(yl|sB)
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® The term on the left is the odds ratio; the ratio of probabilities
of choosing x to y given characteristics s and {x, y}.

® This axiom has been named “Independence of Irrelevant
Alternatives” for an obvious reason — the odds of our choice
are not effected by adding additional alternatives.

¢ Note that this assumes that the additional choices entering in
B affect probability of choosing x in the same manner as they
affect the probability of choosing y; implicitly we are assuming
that the additional choices have equivalent relationship with
choice x and choice y.

® We will see how this assumption is a limitation below.
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Axiom 2: Positivity
This axiom states that the probability of choosing any
one of the choices is strictly greater than zero:

Pr(y|s,B)>0 VyeB
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Derivation of Logit

® With the Luce assumptions set out in the proceeding section,
we can now proceed to our derivation of the logit.

¢ Define P,x =Pr(y | s,{x,y}).
® Then by Axiom 1 above, we know:

(Z2)ptcise-piise) @
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® Summing over y, we get:

Pr(x|sB)) <%> =1

yeB Xy

== Pr(x|s,B) =
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® Again using Axiom 1, for z € B:

() Prclsmy-prvise) (2
(F=)rec1smi=Pricisg) (o)

e Substituting these in equation (3), we get:

Pyz> P,

Pr(z|s,B -
(PYX)_Pr(y|5aB)_ (sz ( | )_ sz (6)

N N sz N PXZ

o) TPTSD (B o gy e
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® Now, in terms of the random utility model , define the mean
utility of a person with characteristics s choosing x from set
{x, z} as:

PXZ

PZX

v(s,x,z) =In

Xz

— 2% = e (v(s,x.2))
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, : Py
* Define a comparable expression for —=.
zy
® Replacing this into equation (6) produces:

Py exp(v(s.y.2))
ny eXp(V(S,X,Z))
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® Then from equation (4), we get:

Pr(x|s,B) =

exp (v(s, x, 2))
1
(soetrm) Syes (0 (v(5.5,2)))
exp (v(s, x, 2))
ZyeB (exp (V(57 Y, Z))) ‘

S o (eXptV(s,y,Z)))
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e Assume additionally, additive separability of v(s, x, z) as
follows:
v(s,x,z) = v(s,x) — v(s,z)
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® Note that this is equivalent to assuming irrelevance of the
benchmark. From this assumption, we get:

exp (v(s, x) — v(s, z))
> yes (exp (v(s,y) — v(s,2)))
exp v(s, x) exp (—v(s, z))
exp (—v(5,2)) (X2, cq %P (v(5.))
exp v(s, x)

= S aen(v(sy) 7)

which gives the multinomial logit.

Pr(x|s,B)
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® McFadden (1974) shows that Luce Axioms and a condition on
e (“Translation Completeness”) produce the Extreme Value
Type | (which he mistakenly referred to as the Weibull).
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Consequences of Independence: Limitations of Logit Models

® We just showed that:

p_ exp(v;)
l >_iexp(vi)
so that:
exp(v;)
p- Sl o o) (2) =
>_iexp(vi)
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® A common specification for v; is v; = z;3. Thus:

oin (2
n () — n(Fj)_
() ~ta-as s 5 = s

J

or, changes in characteristics z; have a common effect on the
ratio of log probabilities.
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® This allows for estimation of the probabilities of purchasing a
new good.

® (One could obtain an estimate of 3 from the existing goods.
This estimate can then be combined with the characteristics,
Znew, Of the new good to estimate the probability of selection,
as in equation 7).
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e Further, from equation (7):

e
Pr(2]{1,2}) = peramp

and:

e
Pr(2{1,2,3})= Firenten - Pr(2]{1,2})
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® This leads us to a restrictive property of the conditional logit
model — we have assumed independence of the ¢;, when in fact,
they may be correlated.
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e This is illustrated by McFadden's famous red bus, blue bus
problem:

® Suppose we are modelling transportation choice and our
alternatives consist of {car, bus, train}.

e If the alternatives are replaced by {car, red bus, blue bus}, then
we have violated our assumption of dissimilar alternatives; if
U, > Ui, then the event Us; > U; is more likely.
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® One can see by the preceding equation that adding more bus
colors continually decreases the probability that car travel is
chosen.

® We can deal with the problem of similar alternatives by using
the nested logit model (Nested Logit) or the random coefficient
probit model.
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Probit: Random Coefficients

® In this section (as above), we make v; a simple linear function
of the choice characteristics alone, we can easily generalize this
to include individual characteristics as well as interactions).

® Then we have, utility from choice i is:
Ui=Zip +ni

where: n; ~ N(0,02), n; 1L Z;, B,m;,V i,].
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* Moreover, (3 is a random variable, with 3 ~ (3,3 ), so that:

Ui=ZB+Z (8- B)+n
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® |t follows that:
Ur—=Up > 0 <= (4 — 25) B+(Z — Z2) (B — B)+(m —12) > 0

U1—U3 Z 0 < (Zl - Z3) B"‘(Zl - Z3) (6 - B)+(771 - 773) > 0.
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e Further:

_ (Ui — Us) (U - W)
Var (Uy — Us) = E{[ _E(Uy - Uy) } l _E(Uy = W) ]}
= E{{(Zn-2)(B-B)+(m —m)
[(Z1 — Z) (B — B) + (m — m2)]}
_ (2= 2)(B-B)B—P)(Z1— Z)
- F { +(m = m2)(m — m2)' }

= (Z1-2)) (L~ 2) + 0]+ 03

(since 01 = 0).




e Similarly:

Var (U — U3) = (41 — 23)25 (Z— 2Z5) + 0% + 03
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® Thus:
COV(Ul — UQ, U, — U3) = (Zl - Z2) Zﬂ (Zl - Z3)/ + O-%
SO:

Z — Z 7. — 7)) 4+ o2
p=Corr(U1—U27U1_U3):( 1 2) Y5 (4 3) + o3
\/Var(Ul - Ug)Var(Ul — U3)

Heckman Probabilistic Choice Models



® We now seek to derive the probability of choosing good 1 in a
three good case:

Pr(l I {17273}) - Pr(Ul - U2 Z 0 and U]_ — U3 2 0)
® From before, we know that:

Ur— U ~ N((Z1— 2)B,Var (U — 1))
Ur—Us ~ N((Z— Z)B,Var (U — Us3)).
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® Thus:

Pr(Ul—UZZOand U1—U320)

_ by \/Var(Ul—Uz)t1+(Z1—Zz)BZO

and Var(U1 — U3)t2 + (Zl — Z3)B > 0 ’

where t; and t, are standard normal.
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® Thus, the above equation reduces to:

Pr <t1 > — (Zl _ Z2)B and tp > — (Zl _ Z3)B >
- \/VaI’(Ul—U2) - \/Var(Ul—U3)

—P( (Z1—2)B L < (Zy - Z5) B )

\/Var U1 U2 a Var(U1 —
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® As t; and t, may be correlated, we integrate over the joint
density to get the probability:

Pr (choosing 1)

b 1 <t12-2,0t1t2+t22>
N 1 D) 1-p2
= —— e dt, | dt:
/_oo / 2\/112 ol e

where:

(4-2)8 o, (L-Z)6

\/Var (U; — U2)7 \/Var (U; — Us3)
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® Now consider adding a third good to the two good case, under

two alternative scenarios.

Case 1: Non-random utility, random coefficients.
If the third good has identical characteristics as
the first, then Z, = Zs.
If there is no stochastic component (no utility
innovation), then 02 = 02 = 02 = 0.
Therefore, in this case:

Pr(1 chosen) = Pr(U; — U, >0and U; — Us >0)
= PI’(Ul — U2 Z 0)
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® Thus, there is no change in the probability of choosing good 1
despite the addition of a third good.

® Again focusing on the two good case, we observe:

Pr(1]{1,2})) = Pr(ls— Us>0)

— pr(n< A2
\/Var(Ul — Ug)
(21—22)6§

1 (Z1-22)%5(21-2) +o3+031L/2 ( t12>
- exp| —— | dt
NG /oo PL™2

which can be evaluated to derive the desired probability.
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cients.
® Here we consider a McFadden-Luce type of set up, where one
imposes »_ 5 = 0.
* Defining 0* = /0% + 03, we observe that the probability of
choosing good 1 in the two-good case is:

1 /(zl ;*22)5 t2 »
—_— e [
V2T o P 2

¢ Adding a third good to the scene with identical characteristics,
(Z>» = Z3), yields the probability for good 1 being purchased as:

21-25)B Z1-25)B
/(1(,*2) /(10*2) 1 exp 1 <t12—2pt1t2+t22)
_— X —_—
—00 —00 27T\/1—p2 2 ]-_,02
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® One can show that, upon evaluation of these integrals, the
probability derived from addition of the third good is less than
the probability in the two good case.

® This leads us to a similar problem as the
multinomial /conditional logit—adding alternatives decreases
the probability of choice, despite the fact that the alternatives
are quite similar.
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® Thus, in the probit case we are able to avoid the limitation of
the logit models with regard to addition of an identical good,
through the covariance structure of the random coefficients.

® As illustrated in case 2, probit models without random
coefficients suffer from the same limitation.
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® Note that while the richer covariance structure is able to
capture the relationship between choices in the probit model,
applications involving many choices are practically limited as
evaluation of higher-order multivariate normal integrals is
difficult (refer discussion in Greene, Section 19.6.2.a).
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Nested Logit: Generalized Extreme Value (GEV) Mode

® Consider a function G(y1,¥», -+ ,yy), where G satisfies:
i. Non-negativity:

G(Y17Y2, e ;,VJ) 2 oV (}/17}/27 e 7.yJ) Z 0.
ii. Homogeneous of degree 1:

G(CW17(¥}/27 o »OZYJ) - aG(y17y27 e 7YJ) .

iii. Derivative property:

kG
Oy10ys -+ - Oy,

v

0 if k even
< 0 if k odd.
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e If G satisfies these conditions, then we get the following
probability:

YiGi(Yh}’z,'" »YJ)
P i ,Y,..., = P,': s
(y | {yl ? yJ}) G(.yla.y27”' ,YJ)

where P; is a probability that can be derived from utility
maximization.
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® We can use the theorem above to derive a special case of the
nested logit model.

® Define:

r 1-0o
exp (—1 & > + exp <—1 £ )
exp(v1) + I ) -9

= exp(v1) + _(eXP(Vz))i + -+ (exp (vJ))l—a} N
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® Observe that 0 = 0 is the ordinary logit model.

® (With G defined in this way, we are assuming that ¢; is
uncorrelated with all of the other ¢;, while the remaining ¢;
may be correlated.

® The parameter o is a kind of measure of correlation between
the remaining ¢; .

Heckman Probabilistic Choice Models



e |t is this correlation structure that would allow the GEV model
to tackle the limitation of the ordinary conditional /multinomial
logit models.

® This function obviously meets the conditions for the GEV
model.
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® For
i. Non-negativity: obvious as 0 < o < 1
ii. Homogeneity:

G (avexp(v1), avexp(wo), - -+, acexp(vy))

1 1 1-0o
—aep(n) + [(@ep(n) 77 4+ (ae ()7 |

= aexp(vi) + [(aﬁ) (exp(V2))ﬁ ot (aﬁ) (exp(vJ))ﬁ]lw

= aexp(v1) + o |:(eXp (12720)) - (exp (1?0 )}1—0
=a (exp(v1)+ [exp (%) bt exp (1 iJU)]l_g>

= aG (exp(v1),exp(v2), - - ,exp(vy))

iii. By inspection, one can see that this derivative property will hold. (It is obvious when
differentiating with respect to exp(vi.

® For other derivatives, the fact that 0 < o < 1 gives the needed alternation in sign.

® Note that y; in the definition of the property is analogous to exp(v; here.)

Heckman Probabilistic Choice Models



® Thus, we can now proceed to derive our probabilities. First,
consider:

Pr(1]{1,2})
r ) = v —0o = % 1%
eV1+(el—2<7)1 e + e“?

which is simply our binomial logit model.
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® Also note that in the three good case:

o = 0-([oo (125) or(27)] ) s
o) (oo (52) v (2] )
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* Now suppose that we eliminate choice 1 (by letting v; — —00).
® Then:

Pr(2]{23) = Tt <102"> [p(lza)+ expl(_iwo)}_g
[exp (ﬁ) + exp(ljg>}
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® QObserve that:

e”t

Pr(1]4{1,2,3}) = " — 1
eVt + (eﬁ + eﬁ>
e
Vs -0
e +¢el—o (1 + ev?:;2>

e”

1 1-0o
ev3 1—0o
eVt 4 ev2 (1 + <—> )
ev2
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® letting 0 — 1, and supposing € > e, we get:

ev3 ev3 i
— ) <l= [ — —0aso—1
ev2 ev2

and thus from equation (8), we have:

eyt

Pr(1]{1,2,3 —_—
r( |{7 ) })—>e"1+e"2

(9)
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e Conversely, if e > "2, just reverse the roles of v, and v3 so:

e"t et

Pr(1]{1,2,3}) — - (10)

eV3 evi + evs
evi ev2 PR
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® Combining equations (9) and (10), we get, as 0 — 1:

et
e + max{ev, en}

Pr(1]{1,2,3}) — (11)
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e Equations (9), (10) & (11) imply that in this GEV model, the
probability of choice 1 on addition of a choice 3 identical to
choice 2, does not necessarily fall, as was the case in the
ordinary conditional /multinomial logit case.
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e Equations (9) shows that if the added choice 3 is highly
correlated to choice 2 (0 — 1) but yields less utility, then the
probability in the three choice case reduces to the binomial
logit (the probability in the two choice case), with choice 3
dropping out, as one would intuitively expect.
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® What about the probability of choice 2 — how does this change

when we add an identical choice 3 in this GEV model?
e To answer this, consider:

Pr(21{1,2,3})

Vo v3 I 1 oV
v (1= _’z
€ l:( U){exp<1_0)+exp(1_a)} :|1—aexp(1—a)
1—0o
eV1+{exp< 2 )—i—ex s )}
l1—0o o
%) V2 V3 -
oo (125) {or (25) v
3

o —
V2 V:
eVl + J exp + exp
o (25) +oe (+25)
ex|
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® When o = 0, ie when there is no correlation between choice 2
and choice 3, we have ordinary conditional /multinomial logit.

® Suppose v, > vz and 0 — 1.

® By appealing to the result derived in equation (11), we get:
P(21{1,2,3})

(%2)
exp -
= (12)
ex 2 + ex £
P 1—0 P 1—0
l-0o
Vo V3
o (125) + = (125)
Vs V3 l1—0o
expvs+ |exp| —— | +exp
o (725) +oo (725)

Heckman Probabilistic Choice Models




* We know for v, > v3:

1
v3 v3
(e_) <1:>(e )1_U—>O, aso — 1
ev2 ev2

and thus, from equation (12), we get:

exp(v2)

Pr(21]{1,2,3}) — exp(v1) + exp(va)’

aso — 1
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® (One could derive a similar result be assuming that v3 > v,).

® This equation tells us that in the GEV model, if choices 2 and 3
are very similar, if utility from 2 is greater than that from 3,
then choice 3 gets disregarded (same as in Equation 9 earlier),
which agrees with our intuition.
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-
¢ Finally, supposing that v, = vz, we get:

l-0o
G = e+ |exp 2 + exp L
1—0 1—0
v l1-0
= e"l—{—[2exp( 2 )]
1—0

= exp(v1) + 27 exp (n).

Thus:

exp (1) 277

exp(v1) + 217 exp (v2)
exp vo

Pr(2]{1,2,3}) =

27 exp vy + 2exp vp
1 exp(ve)
2 exp(v1) + exp(v2)

= IimlPr(2|{1,2,3}) —
o—
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e This final equation tells us if the characteristics are identical in
the nested logit model, then the probability, in the three choice
case, of choosing one of the two identical choices is equal half
the probability of the two choice case, which is again what is
intuitively expected.

® Thus the nested logit (GEV) model is able to avoid the key
limitation of the conditional /multinomial logit imposed by the
[IA assumption.
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