Characterizing Selection Bias Using Experimental Data

James Heckman
University of Chicago

Jeffrey Smith
University of Michigan

Hidehiko Ichimura
University of College London

Petra Todd
University of Pennsylvania

Based on Econometrica 1998 Article
Econ 312, Spring 2023
2.0 The Evaluation Problem, the Parameter of Interest in this Paper and How Randomization Estimates It
(1) The Model:

Two possible outcomes: Y_{0} and Y_{1}.
$D=1$ treatment, $D=0$ its absence.

$$
\begin{gathered}
Y=D Y_{1}+(1-D) Y_{0} \\
\operatorname{Pr}(D=1 \mid X)=P(X)
\end{gathered}
$$

Parameters of Interest Considered Today

$$
\begin{align*}
& \Delta(X)=E(\Delta \mid X, D=1) \tag{1}\\
&=E\left(Y_{1} \mid X, D=1\right)-E\left(Y_{0} \mid X, D=1\right) \\
& \text { or } \\
& \bar{\Delta}(K)=\int_{K} \Delta(X) d F(X \mid D=1) / \int_{K} d F(X \mid D=1) . \tag{2}
\end{align*}
$$

Method of Comparison Groups:

Assumes

$$
E\left(Y_{0} \mid X, D=1\right) \doteq E\left(Y_{0} \mid X, D=0\right)
$$

Selection bias $B(X)$ for $E(\Delta \mid X, D=1)$:

$$
\begin{equation*}
B(X)=E\left(Y_{0} \mid X, D=1\right)-E\left(Y_{0} \mid X, D=0\right) . \tag{3}
\end{equation*}
$$

3.0 Characterizing Selection Bias

3.1 The Method of Matching

(A-1)

$$
\begin{align*}
& Y_{0} \underline{\|} D \mid X, \quad X \in \chi_{c}, \\
& E\left(Y_{0} \mid X, D=1\right)=E\left(Y_{0} \mid X, D=0\right) \tag{4}\\
& Y_{1 i}-\sum_{j \in\{D=0\}} W_{N_{0} N_{1}}(i, j) Y_{0 j} \tag{5}
\end{align*}
$$

$$
\sum_{j \in\{D=0\}} W_{N_{0} N_{1}}(i, j)=1 \text { for all } i .
$$

Persons matched to i are in A_{i}

$$
A_{i}=\left\{j \in\{D=0\} \mid X_{j} \in C\left(X_{i}\right)\right\} .
$$

Nearest neighbor matching
$C\left(X_{i}\right)=\min _{j}\left\|X_{i}-X_{j}\right\|, j \in\{D=0\}$,
$W_{N_{0} N_{1}}(i, j)=1, j \in A_{i}$
and $W_{N_{0} N_{1}}(i, j)=0$ otherwise.

Caliper matching:

$$
C\left(X_{i}\right)=\left\{X_{j} \mid\left\|X_{i}-X_{j}\right\|<\varepsilon\right\}
$$

Kernel matching:

$$
\begin{aligned}
& W_{N_{0} N_{1}}(i, j)=\frac{G_{i j}}{\sum_{k \in\{D=0\}} G_{i k}} \\
& G_{i k}=G\left(\left(X_{i}-X_{k}\right) / a_{N_{0}}\right), \lim _{N_{0} \rightarrow \infty} a_{N_{0}}=0 \\
& \hat{M}(K)=\sum_{i \in\{D=1\}} \omega_{N_{0} N_{1}}(i)\left[Y_{1 i}-\sum_{j \in\{D=0\}} W_{N_{0} N_{1}}(i, j) Y_{0 j}\right] \text { for } X_{i} \in K
\end{aligned}
$$

Rosenbaum and Rubin (1983)
$(\mathrm{A}-1) \quad Y_{0} \Perp D \mid P(X)$ for $X \in \chi_{c}$,
(A-2) $\quad 0<P(X)<1$ for $X \in \chi_{c}$,
$E\left(Y_{0} \mid P(X), D=1\right)-E\left(Y_{0} \mid P(X), D=0\right)=B(P(X))=0$.
(7)

3.3 Difference-in-Differences

$$
\begin{equation*}
B_{t}(X)-B_{t^{\prime}}(X)=0 \text { for some } t, t^{\prime} \tag{8}
\end{equation*}
$$

4.0 Re-examining the Conventional Measure of Selection Bias

$$
\begin{gathered}
S_{1 X}=\{X \mid f(X \mid D=1)>0\} \text { support } \\
\text { of } X \text { for } D=1
\end{gathered}
$$

$S_{0 X}=\{X \mid f(X \mid D=0)>0\}$ the support of X for $D=0$
$S_{X}=S_{0 X} \cap S_{1 X}$ region of overlap.

$$
\bar{B}_{S_{X}}=\frac{\int_{S_{X}} B(X) d F(X \mid D=1)}{\int_{S_{X}} d F(X \mid D=1)}
$$

Conventional measure of selection bias:

$$
B=E\left(Y_{0} \mid D=1\right)-E\left(Y_{0} \mid D=0\right)
$$

Least squares regression of Y_{0} on D with

$$
Y_{0}=\pi_{0}+\pi_{1} D+\tau,
$$

$$
E(\tau)=0
$$

$\operatorname{plim} \hat{\pi}_{1}=B$.

$$
\begin{gather*}
B=\int_{S_{1, X}} E\left(Y_{0} \mid X, D=1\right) d F(X \mid D=1)- \tag{9}\\
\int_{S_{0, X}} E\left(Y_{0} \mid X, D=0\right) d F(X \mid D=0) .
\end{gather*}
$$

Decompose B: $B=B_{1}+B_{2}+B_{3}$,

$$
\begin{aligned}
B_{1}= & \int_{S_{1 X \backslash S_{X}}} E\left(Y_{0} \mid X, D=1\right) d F(X \mid D=1) \\
& -\int_{S_{0 X} \backslash S_{X}} E\left(Y_{0} \mid X, D=0\right) d F(X \mid D=0) \\
B_{2}= & \int_{S_{X}} E\left(Y_{0} \mid X, D=0\right)[d F(X \mid D=1)-d F(X \mid D=0)] \\
B_{3}= & P_{X} \bar{B}_{S_{X}}
\end{aligned}
$$

$$
P_{X}=\int_{S_{X}} d F(X \mid D=1)
$$

$\bar{B}_{S_{X}}$ is the selection bias

Figure 2: Density of Estimated Probability of Program Participation

For Adult Male Controls and Eligible Nonparticipants

4.2 Our Data

- We use comparison group (nonexperimental) and experimental control group
- Neither sample receives treatment

TABLE 1

DEFINITION OF VARIABLES

Variable Name	Description
Training Center: Corpus Christi, Fort Wayne, Jersey City, Providence.	Indicator variables for the geographic location of the individual.
Race and Ethnicity: black, white, Hispanic.	Indicator variables for the race/ethnicity of the individual. Individuals who reported Asian or "other" were included in the Hispanic category in R but not in Z .
Age: age 22-29, age 30-39, age 40-49, age 50-54.	Indicator variables for the age of the individual calculated using the average age in years of the individual within the quarter of the observation.
Education: less than 10th grade, 10-11th grade, 12th grade, $1-3$ years college, 4 or more years of college.	Indicator variables for the educational attainment of the individual at the time of random assignment or eligibility determination. Missing values are imputed.*
Marital Status: currently married, last married 1-12 months before RA/EL, last married >12 months before RA/EL, single, never married at RA/EL.	Indicator variables for marital status at the time of random assignment or eligibility determination (RA/EL). Missing values are imputed.*
Children less than 6 years of age	Indicator variable for the presence of young children in the household at the time of the baseline interview. Missing values are imputed*.
Calendar Quarter: quarter 1 , quarter 2 , quarter 3 , quarter 4.	Indicator variables for the calendar quarter for the observations. Quarter 1 refers to January, Febuary, and March etc. If an observation overlaps two quarters, then the variable takes on fractional values.
Calendar Year: year 1987, year 1988, year 1989, year 1990.	Indicator variables for the calendar year of the observation. If the observation overlaps two years, then the year indicators take on fractional values.
Local Unemployment Rate (sources: U.S. Department of Labor's publication "Labor Force, Employment, and Unemployment Estimates for States, Labor Market Areas, Counties, and Selected Cities" for the years 1986-1991 provide the unemployment rates. Population weights are obtained from annual total population data available in the U.S. Department of Commerce's Regional Economic Information System (REIS)).	This variable gives the monthly unemployment rate. The data is published at the county and metropolitan levels. We calculate the unemployment rate as a population-weighted average of the unemployment rates of the counties and metropolitan areas served by each of the four training centers in the JTPA data.

TABLE 1 (continued)

 DEFINITION OF VARIABLES| Variable Name | Description |
| :--- | :--- |
| Labor Force Status Transition:
 employed $->$ employed,
 unemployed $->$ employed,
 OLF $->$ employed,
 employed $->$ unemployed,
 unemployed $->$ unemployed,
 OLF $->$ unemployed,
 employed $->$ OLF,
 unemployed $->$ OLF, | The two most recent labor force statuses during the period
 composed of the month of random assignment or
 eligibility determination and the six preceding months define
 a set of nine labor force status patterns. In each case,
 the second status is that in the month of random assignment
 or eligibility determination and the first status
 (if different) is the most recent preceding status.
 Repeated patterns such as "employed -> employed" indicate
 persons in the same labor force status for all seven months. |
| Number of Persons in the Household | Missing values are imputed.* |
| Continuous variable indicating the number of persons | |
| in the individual's household as of the baseline | |
| interview. Missing values are imputed.* | |

* An appendix available upon request from the authors describes the imputation procedure for these variables.

4.3 No Good Way of Determining the Probability of Program Participation \mathbf{P}

A. Minimization of classification error when $\widehat{P}(X)>P_{C}$ is

$$
\begin{aligned}
& \text { used to predict } D=1 \text { and } \widehat{P}(X) \leq P_{C} \text { is used to predict } \\
& D=0 \text {, where } P_{C}=E(D) ; \text { and }
\end{aligned}
$$

B. Statistical significance: For adult males, the two criteria produce the same model.
C. But as noted by Heckman and Navarro (2004) these methods are not guaranteed to pick the right model except under exogeneity conditions.
D. In general, no guide to determine the choice of X, which variables to use? Kitchen sink is usually recommended by statisticians.
E. Danger in this approach: A good predictor of D could also be correlated with U_{1} and U_{0} creating endogeneity problems

Consider bias in estimating models using comparison groups (compare controls with a nonexperimental comparison group).

Figure 3: Local Linear Regression Estimates of Pointwise Bias (B(P)) Adult Males, Best Predictor P Model for The Probability of Program Participation

Average Earnings over Post-Program Six Quarters

4.4 Estimating the Components of Our Decomposition of B

$$
\begin{align*}
& \widehat{B}=\hat{E}\left(Y_{0} \mid D=1\right)-\hat{E}\left(Y_{0} \mid D=0\right)=\hat{B}_{1}+\hat{B}_{2}+\hat{B}_{3} \tag{11}\\
& \hat{B}_{1}=\frac{1}{N_{1}} \sum_{\substack{i \in\{D=1\} \\
P_{i} \in S_{1} P \backslash S_{P}}} Y_{0}\left(P_{i}\right)-\frac{1}{N_{0}} \sum_{\substack{i \in\{D=0\} \\
P_{i} \in S_{0} P \backslash S_{P}}} Y_{0}\left(P_{i}\right)
\end{align*}
$$

$$
\begin{aligned}
& \hat{B}_{2}=\frac{1}{N_{1}} \sum_{\substack{\left.i \in[=1\} \\
P_{i} \in S_{P}\right\}}} \hat{E}\left(Y_{0 i} \mid D_{i}=0, P_{i}\right)-\frac{1}{N_{0}} \sum_{\substack{i \in[D=0\} \\
P_{i} \in S_{P}}} Y_{0}\left(P_{i}\right) \\
& \hat{B}_{3}=\frac{1}{N_{1}} \sum_{\substack{\left.i \in[D=1\} \\
P_{i} \in S_{P}\right\}}}\left[Y_{0}\left(P_{i}\right)-\hat{E}\left(Y_{0 i} \mid D_{i}=0, P_{i}\right)\right]
\end{aligned}
$$

$Y_{0}\left(P_{i}\right)$ is value of $Y_{0 i}$ for person i with probability P_{i}, S_{P}. Evaluate over regions $S_{1 P} \backslash S_{P}, S_{0 P} \backslash S_{P}$.

4.5 Estimates of the Components of B

TABLE 3
DECOMPOSITION OF MEAN SELECTION BIAS FOR THE BEST PREDICTOR MODEL FOR THE PROBABILITY OF PROGRAM PARTICIPATION

Experimental Control and Elig. Nonparticipant (ENP) Samples
Adult Males, 508 Controls and 388 ENPs

Quarter	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Mean Difference (\hat{B})	Non-overlap Support (\hat{B}_{1})	Density Weighting (\hat{B}_{2})	Selection Bias (\hat{B}_{3})	Average Bias $\left(\hat{\bar{B}}_{S_{p}}\right)$	Experimental Treatment Impact	Average Bias ($\hat{\bar{B}}_{S_{P}}$) as a \% of Treatment Impact
Qtr1	-420	190[-45\%]	-627[149\%]	17[-4\%]	29	5	566\%
	(38)	(31)	(32)	(34)	(63)	(30)	
Qtr2	-352	209[-59\%]	-581[165\%]	19[-6\%]	32	37	88\%
	(47)	(41)	(45)	(35)	(65)	(33)	
Qtr3	-343	221[-65\%]	-576[168\%]	12[-3\%]	20	57	35\%
	(55)	(39)	(50)	(43)	(79)	(34)	
Qtr4	-294	234[-80\%]	-568[194\%]	$41[-14 \%]$	68	60	114\%
	(57)	(40$)$	(46)	(42)	(79)	$\text { (} 34 \text {) }$	
Qtr5	-311	232[-75\%]	-576[185%]	33[-10\%]	(54	(44	121\%
	(57)	(40)	(51)	(41)	(77)	(35)	
Qtr6	-334	223[-67\%]	-573[172\%]	16[-5\%]	27	61	44\%
	(63)	(45)	(51)	(44)	(81)	(34)	
Average of 1 to 6	$\begin{gathered} -342 \\ (47) \end{gathered}$	$\begin{gathered} 218[-64 \%] \\ (38) \end{gathered}$	$-584[170 \%]$	$23[-7 \%]$	$\begin{array}{r} 38 \\ (63) \end{array}$	$\begin{array}{r} 44 \\ (14) \end{array}$	87\%

Appendix

5.0 Estimating the Form of the Selection Bias B(X)

$$
\begin{gather*}
Y_{0}=X \beta+U_{0} \\
E\left(Y_{0} \mid X, D=1\right)=X \beta+E\left(U_{0} \mid X, D=1\right) \\
E\left(Y_{0} \mid X, D=0\right)=X \beta+E\left(U_{0} \mid X, D=0\right) \\
Y_{0}=X \beta+E\left(U_{0} \mid X, D=0\right)+B(X) D+\varepsilon \tag{12}\\
B(X)=E\left(U_{0} \mid X, D=1\right)-E\left(U_{0} \mid X, D=0\right) \\
E(\varepsilon \mid X, D)=0 .
\end{gather*}
$$

Bias functions

$$
\begin{gathered}
K_{1 t}\left(P_{i}\right)=E\left(U_{0 i t} \mid D=1, P_{i}\right) \\
K_{0 t}\left(P_{i}\right)=E\left(U_{0 i t} \mid D=0, P_{i}\right),
\end{gathered}
$$

define

$$
\varepsilon_{i t}=U_{0 i t}-D_{i} K_{1 t}\left(P_{i}\right)-\left(1-D_{i}\right) K_{0 t}\left(P_{i}\right)
$$

where $E\left(U_{0 i t}\right)=0$.

Define

$$
Y_{i}=\left(Y_{i 1}, \ldots, Y_{i T}\right), X_{i}=\left(X_{i 1}, \ldots, X_{i T}\right)^{\prime}, K_{j}\left(P_{i}\right)=\left(K_{j 1}\left(P_{i}\right), \ldots, K_{j T}\left(P_{i}\right)\right)^{\prime}
$$

$$
\begin{equation*}
Y_{i}=X_{i} \beta+D_{i} K_{1}\left(P_{i}\right)+(1-D) K_{0}\left(P_{i}\right)+\varepsilon_{i} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
Y_{i}-E\left(Y_{i} \mid P_{i}, D_{i}\right)=\left[X_{i}-E\left(X_{i} \mid P_{i}, D_{i}\right)\right]^{\prime} \beta+\varepsilon_{i} . \tag{14}
\end{equation*}
$$

$\underset{K_{j}, \gamma_{j}}{\arg \min } \sum_{i \in\{D=d\}}\left[c_{i}-K_{j}\left(P_{0}\right)-\gamma_{j}\left(P_{0}\right)\left(\hat{P}_{i}-P_{0}\right)\right]^{2} G\left(\frac{\hat{P}_{i}-P_{0}}{a_{N}}\right)$,
$d \in\{0,1\}\left\{a_{N}\right\}$ is a sequence of smoothing parameters

$$
\begin{gathered}
W_{N_{0} N_{1}}(i, j)=\frac{G_{i j}^{2} \sum_{k \in I_{0}} G_{i k}\left(P_{k}-P_{i}\right)^{2}-\left[G_{i j}\left(P_{j}-P_{k}\right)\right]\left[\sum_{k \in I_{0}} G_{i k}\left(P_{k}-P_{i}\right)\right]}{\sum_{j \in I_{0}} G_{i j}^{2} \sum_{k \in I_{0}} G_{i j}\left(P_{k}-P_{i}\right)^{2}-\left(\sum_{k \in I_{0}} G_{i k}\left(P_{k}-P_{i}\right)^{2}\right)} \\
G_{i k}=G\left(\frac{P_{k}-P_{i}}{a_{N}}\right)
\end{gathered}
$$

Comparisons Using Alternative Estimators

TABLE 18A
COMPARISON OF ESTIMATED MEAN BIAS
UNDER ALTERNATIVE ESTIMATORS OF MEAN PROGRAM IMPACTS \dagger
Quarterly Earnings Expressed in Monthly Dollars
Adult Male, 508 Experimental Controls and 388 Elig. Non-participants

Quarter	Difference in Means (1) $\dagger \dagger$	Nearest Neighbor w/o Common Support (2)	Nearest Neighbor w/ Common Support (3)	Local Linear Matching (4)	Regression Adjusted Local Linear Matching (5)
Qtr1	-418 (38)	221 (56)	123 (67)	33 (59)	39 (60)
Qtr2	-349 (47)	-166 (151)	77 (83)	37 (61)	39 (64)
Qtr3	-337 (55)	-58 (206)	53 (96)	29 (78)	21 (80)
Qtr4	-286 (57)	161 (178)	86 (96)	80 (77)	65 (82)
Qtr5	-305 (57)	167 (196)	87 (100)	64 (77)	50 (83)
Qtr6	-328 (63)	45 (191)	34 (113)	37 (82)	17 (90)
Average of 1 to 6	-337 (47)	62 (127)	77 (80)	47 (60)	39 (64)
As a \% of impact	775\%	142\%	176\%	107\%	88\%

TABLE 18B
COMPARISON OF ESTIMATED MEAN BIAS UNDER ALTERNATIVE ESTIMATORS OF MEAN PROGRAM IMPACTS \dagger

Quarterly Earnings Expressed in Monthly Dollars
Adult Male, 508 Experimental Controls and 388 Elig. Non-participants

Quarter	Difference- w/o Common Support Comfferences	Conditional on P Difference-in-Differences w/ Common Support	Regression-Adjusted Conditional on P Difference-in-Differences w/ Common Support
	$(1) \dagger \dagger$	(2)	(3)
Qtr1	$172(42)$	$97(62)$	$104(63)$
Qtr2	$142(47)$	$77(89)$	$77(92)$
Qtr3	$41(56)$	$90(114)$	$74(114)$
Qtr4	$43(61)$	$112(90)$	$98(91)$
Qtr5	$-54(63)$	$19(95)$	$-5(99)$
Qtr6	$-111(64)$	$4(105)$	$-35(111)$
Average of 1 to 6	39	67	52
	(47)	(71)	(74)
As a \% of impact	89%	153%	120%

TABLE 18C
COMPARISON OF ESTIMATED MEAN BIAS UNDER ALTERNATIVE ESTIMATORS OF MEAN PROGRAM IMPACTS \dagger

Quarterly Earnings Expressed in Monthly Dollars
Adult Males, 508 Experimental Controls and 388 Elig. Nonparticipants

Quarter	Inverse Mills' Ratio w/o Common Support w/o Density Weighting	Inverse Mills' Ratio w/ Common Support w/o Density Weighting	Inverse Mills' Ratio w/ Common Support w/ Density Weighting
Qtr1	$(1) \dagger \dagger$	(2)	(3)
Qtr2	$-610(86)$	$-619(161)$	$-147(176)$
Qtr3	$-514(95)$	$-403(194)$	$3(220)$
Qtr4	$-497(96)$	$-365(190)$	$30(215)$
Qtr5	$-494(97)$	$-421(191)$	$-80(215)$
Qtr6	$-510(98)$	$-441(190)$	$-69(215)$
Average of 1 to 6	$-498(102)$	$-323(196)$	$48(222)$
As a \% of impact	$-521(86)$	$-553(161)$	$-36(37)$

Evidence from a Geographic Mismatch

TABLE 9

EFFECT OF GEOGRAPHY ON ESTIMATED BIAS

 COMPARING CONTROLS AT TWO SITES TO ELIGIBLE NON-PARTICIPANTS AT TWO SITESEarnings in the 18 Months After Random Assignment
Quarterly Earnings Expressed in Monthly Dollars
Elig. Nonparticipant (ENP) Sample at Corpus Christi and Fort Wayne Experimental Control Sample at Jersey City and Providence

Adult Males, 149 Controls and 276 ENPs

Quarter	Difference in Means	Local Linear Matching $\bar{B}_{S_{P}}$	Regression Adjusted Local Linear Matching	Difference-in differences for Local Linear Matching	Difference-in- Regressionces for Local Linear Matching
Qtr1	$-534(53)$	$-203(85)$	$-184(110)$	$-143(111)$	$-135(126)$
Qtr2	$-504(73)$	$-166(107)$	$-154(120)$	$-125(118)$	$-72(130)$
Qtr3	$-515(78)$	$-177(120)$	$-147(127)$	$-73(131)$	$-9(141)$
Qtr4	$-485(78)$	$-200(121)$	$-164(132)$	$-87(141)$	$19(151)$
Qtr5	$-527(72)$	$-272(127)$	$-211(132)$	$-254(160)$	$-136(167)$
Qtr6	$-524(75)$	$-281(110)$	$-189(112)$	$-257(162)$	$-82(165)$
Average of 1 to 6	$-515(63)$	$-216(95)$	$-175(108)$	$-157(110)$	$-69(123)$
As a \% of impact	1183%	497%	402%	360%	159%

