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Following Heckman, Urzúa, and Vytlacil (2006, 2008) and
Heckman and Vytlacil (2007b), consider the following model
with multiple choices and associated multiple outcome states.

Let J denote the agent’s choice set, where J contains a finite
number of elements.

For example, J enumerates possible schooling states (e.g.,
GED, high school dropout, high school graduate). The value to
the agent of choosing j ∈ J is

Rj(Zj) = ϑj(Zj)− Vj , (1.1)

where Zj are the agent’s observed characteristics that affect the
utility from choosing j , and Vj is the unobserved shock to the
agent’s utility from choice j .
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We sometimes write Rj for Rj(Zj) to simplify notation.

Let Z denote the random vector containing all unique elements
of {Zj}j∈J .
We write Rj(Z ) for Rj(Zj), leaving implicit the condition that
Rj(·) only depends on the elements of Z that are contained in
Zj .

Let Dj be a variable indicating whether the agent would choose
j if confronted with choice set J :

Dj =

{
1 if Rj ≥ Rk ∀ k ∈ J
0 otherwise.

Array the Dj into a vector D.

Heckman and Urzúa What Simple IV Can and Cannot Identify



Choice Model Interpreting IV in Unordered Case Standard IV An Example

Let Y be the outcome that would be observed if the agent
faced choice set J , defined as

Y =
∑

j∈J
DjYj ,

where Yj is a potential outcome observed only if option j is
chosen.

Yj is determined by

Yj = µj(Xj ,Uj),

where Xj is a vector of the agent’s observed characteristics and
Uj is an unobserved random vector.

Let X denote the random vector containing all unique elements
of {Xj}j∈J .
(Z ,X ,D,Y ) is assumed to be observed by the analyst.
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Define RJ as the maximum obtainable value given choice set
J :

RJ = maxj∈J {Rj}
=

∑
j∈JDjRj .

(1.2)

This is the traditional representation of the decision process
that if choice j is optimal, choice j is better than the “next
best” option:

Dj = 1 ⇐⇒ Rj ≥ RJ\j .

Heckman, Urzúa, and Vytlacil (2006, 2008) and Heckman and
Vytlacil (2007b) show that this simple, well-known,
representation is the key intuition for understanding how
instrumental variables estimate the effect of a given choice
versus the “next best” alternative.
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IV is a weighted average of the effects for people induced into a
choice from different margins.

Analogous to the definition of RJ , we define RJ (z) to be the
maximum obtainable value given choice set J when
instruments are fixed at Z = z ,

RJ (z) = max
j∈J

{Rj(z)}.
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Proofs and Derivations

Link
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Interpreting Local Instrumental Variables in the Unordered
Case

We define local instrumental variables (LIV) using a variable
that shifts people toward (or against) choice j by operating
only on Rj(Zj).

LIV identifies an average marginal return to j vs. the next best
alternative across persons.

However, without further assumptions, LIV will not decompose
the average marginal return into its component parts
corresponding to the effects for persons induced into j from
each of the possible origin states.
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To see this, consider a three outcome case, J = {1, 2, 3}.
For concreteness, we pursue the education example previously
stated and let 1 be GED, 2 be high school dropout, and 3 be
high school graduate.

Our results are more general but the three outcome case is easy
to exposit.
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In this section, we assume that Z1,Z2,Z3 are disjoint sets of
regressors so Z = (Z1,Z2,Z3) but they are not necessarily
statistically independent.

We can easily relax this assumption but it simplifies the
notation.

We condition on X and keep it implicit throughout the analysis
of this paper.
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In this notation,

E (Y | Z ) = E

[
3∑

j=1

YjDj

∣∣∣∣∣Z
]

(2.1)

= E (Y1D1 | Z ) + E (Y2D2 | Z ) + E (Y3D3 | Z ) .

E (Y |Z ) and its components can be estimated from data on
(Y ,Z ).

IV is based on (2.1). From (1.2), choices are generated by the
following inequalities:

D1 = 1 (R1 ≥ R2,R1 ≥ R3)

D2 = 1 (R2 ≥ R1,R2 ≥ R3)

D3 = 1 (R3 ≥ R1,R3 ≥ R2) .
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We define the marginal change in Y with respect to Z1.

IV methods are based on such types of variation.

The local instrumental variable estimator using Z1 as an
instrument is the sample analogue of

∂E(Y |Z)
∂Z1

∂ Pr(D1=1|Z)
∂Z1

∣∣∣∣∣
Z=z

= LIV(z),

where LIV is a function of z .

In the case of three choices, there are two margins from which
persons can be attracted into or out of choice 1 by Z1.
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From local variations in Z1, one can recover the following
combinations of parameters from the data on Y1D1:data on Y1D1:

∂E (Y1D1 | Z = z)

∂Z1

=
∂

∂Z1

∫ ∫ ϑ1(Z1)−ϑ2(Z2)

−∞

∫ ϑ1(Z1)−ϑ3(Z3)

−∞
y1fY1,V1−V2,V1−V3 (y1, v1 − v2, v1 − v3) d (v1 − v3) d (v1 − v2) dy1

∣∣∣∣∣
Z=z

=
∂ϑ1 (Z1)

∂Z1

∣∣∣∣
Z1=z1



∫
y1

∫ ϑ1(z1)−ϑ3(z3)
−∞ fY1,V1−V2,V1−V3 (y1, ϑ1 (z1)− ϑ2 (z2) , v1 − v3) d (v1 − v3) dy1

+
∫
y1

∫ ϑ1(z1)−ϑ2(z2)
−∞ fY1,V1−V2,V1−V3 (y1, v1 − v2, ϑ1 (z1)− ϑ3 (z3)) d (v1 − v2) dy1


 .

(3.2)

By similar reasoning, we can recover the following combination of parameters from the data on

Y2D2:

∂E (Y2D2 | Z = z)

∂Z1

=
∂

∂Z1

∫
y2

∫ ϑ2(Z2)−ϑ1(Z1)

−∞

∫ ϑ2(Z2)−ϑ3(Z3)

−∞
fY2,V2−V1,V2−V3(y2, v2 − v1, v2 − v3) d (v2 − v3) d (v2 − v1) dy2

∣∣∣∣∣
Z=z

=
−∂ϑ1 (Z1)

∂Z1

∣∣∣∣
Z1=z1

[∫
y2

∫ ϑ2(z2)−ϑ3(z3)

−∞
fY2,V2−V1,V2−V3(y2, ϑ2(z2)− ϑ3(z1), v2 − v3)d (v2 − v3) dy2

]
.

(3.3)

From data on Y3D3, we obtain the following combination of parameters:

∂E (Y3D3 | Z1 = z)

∂Z1

=
−∂ϑ1 (Z1)

∂Z1

∣∣∣∣
Z1=z1

∫
y3

∫ ϑ3(z3)−ϑ2(z2)

−∞
fY3,V3−V1,V3−V2 (y3, ϑ3 (z3)− ϑ1 (z1) , v3 − v2) d (v3 − v2) dy3 .

(3.4)

Agents induced into 1 come from 2 and 3. There are two margins:

(R1 = R2) and (R1 ≥ R3) (margin of indifference between 1 and 2),

and

(R1 = R3) and (R1 ≥ R2) (margin of indifference between 1 and 3).
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From data on Y3D3, we obtain the following combination of
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Agents induced into 1 come from 2 and 3.

There are two margins:

(R1 = R2) and (R1 ≥ R3) (margin of indifference between 1 and 2),

and

(R1 = R3) and (R1 ≥ R2) (margin of indifference between 1 and 3).

Unaided, IV does not enable analysts to identify the returns at
each of the different margins.

Instead, it identifies a weighted average of returns.

It does not identify the density of persons at the various
margins, i.e., the proportion of people induced into (or out of)
1 from each possible alternative state by a change in the
instrument.
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Collecting terms and rewriting in more easily interpretable
components, which generalize the MTE developed for a two
choice model to a multiple choice unordered model:

(
∂E(Y |Z)

∂Z1

)
(

∂ϑ1
∂Z1

)
∣∣∣∣∣∣∣
Z=z

=



Generalization of MTE for persons indifferent
between 1 and 2, where choice 3 is dominated︷ ︸︸ ︷

[E (Y1 − Y2 | R1 (z1) = R2 (z2) , R1 (z1) ≥ R3 (z3))] Pr (R1 (z1) = R2 (z2) , R1 (z1) ≥ R3 (z3))
+ [E (Y1 − Y3 | R1 (z1) = R3 (z3) , R1 (z1) ≥ R2 (z2))]︸ ︷︷ ︸
Generalization of MTE for persons indifferent
between 1 and 3, where choice 2 is dominated

Pr (R1 (z1) = R3 (z3) , R1 (z1) ≥ R2 (z2))


.
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This is a weighted return to alternative 1 for persons coming
from two separate margins: alternative 1 versus alternative 2,
and alternative 1 versus alternative 3, i.e., the return to people
induced into 1 from their next best choice.

The weights are the proportion of people induced into 1 from
each margin.

This combination of parameters can be identified from IV.

The components of the sum cannot be identified by IV without
further assumptions.

Note that it is possible that a group at one margin gains while
a group at another margin loses.

IV only estimates a net effect, which might be zero.
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Notice that from representation (2.1) and the assumption that
the Zj (jϵJ ) are distinct, pairwise monotonicity, an extension
of the monotonicity assumption invoked by Imbens and Angrist
(1994) for the binary choice case, is satisfied.

In the context of a model with multiple choices, pairwise
monotonicity means the same pattern of flow between any two
states is experienced by everyone.

Thus, as Zj increases, there is a flow from i to j but not from j
to i (or vice versa). From (1.1), changing Z1 induces all
persons to move in the same direction (i.e., from 1 to 2 or 2 to
1 but not both, and from 1 to 3 or 3 to 1 but not both).
Pairwise monotonicity does not rule out the possibility that a
change in an instrument causes people to move in the direction
from j to i but to move away from the direction from k to i for
j ̸= k , and j , k ̸= i .
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By the chain rule, the derivative of Pr (D1 = 1 | Z ) is:
∂ Pr (D1 = 1 | Z = z)

∂Z1
=

∂ϑ1

∂Z1

∣∣∣∣
Z1=z1

[
Pr (R1 (z1) = R2 (z2) ,R1 (z1) ≥ R3 (z3))

+Pr (R1 (z1) = R3 (z3) ,R1 (z1) ≥ R2 (z2))

]
.

We can define LIV in terms of the preceding ingredients as

LIV(z) =

(
∂E(Y |Z)

∂Z1

)
(

∂ Pr(D1=1|Z)
∂Z1

)
∣∣∣∣∣∣∣∣
Z=z

=

[
E (Y1 − Y2 | R1 (z1) = R2 (z2) , R1 (z1) ≥ R3 (z3))ω12
+E (Y1 − Y3 | R1 (z1) = R3 (z3) , R1 (z1) ≥ R2 (z2))ω13

]
. (2.5)

The combination of terms can be identified by LIV from the
data on (Y ,D,Z ).
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The IV weights are:

ω12 =
Pr (R1 (z1) = R2 (z2) ,R1 (z1) ≥ R3 (z3))[
Pr (R1 (z1) = R2 (z2) ,R1 (z1) ≥ R3 (z3))
+Pr (R1 (z1) = R3 (z3) ,R1 (z1) ≥ R2 (z2))

](2.6)

(2.7)

and

ω13 =
Pr (R1 (z1) = R3 (z3) ,R1 (z1) ≥ R2 (z2))[
Pr (R1 (z1) = R2 (z2) ,R1 (z1) ≥ R3 (z3))
+Pr (R1 (z1) = R3 (z3) ,R1 (z1) ≥ R2 (z2))

] .(2.8)

Heckman and Urzúa What Simple IV Can and Cannot Identify



Choice Model Interpreting IV in Unordered Case Standard IV An Example

The weights can be identified from a structural discrete choice
analysis.

They cannot be identified by an unaided instrumental variable
analysis.

Thus it is not possible to identify the component parts of (3.3)
by LIV alone, i.e., one cannot separately identify the
generalized MTEs:

E (Y1 − Y2 | R1 (z1) = R2 (z2) ,R1 (z1) ≥ R3 (z3))

and

E (Y1 − Y3 | R1 (z1) = R3 (z3) ,R1 (z1) ≥ R2 (z2)) ,

unless one invokes “identification at infinity” arguments.
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Using a structural model, one can estimate the components of
(2.5) and determine the flow into (or out of) state 1 from all
sources.

We illustrate this point in Section 5. First we consider what
standard IV estimates.
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What does standard IV estimate?

To see what standard IV estimates, consider the following
linear-in-schooling model of earnings that receives much
attention in the literature in labor economics.

Let Y denote log earnings and write S as years of schooling.
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The model writes
Y = α + βS + U (3.1)

where

S =
3∑

j=1

jDj , (3.2)

and Y is defined as in Section 2. It is interpreted in this section
as an approximation to the general model presented in
Section 2.

S is assumed to be correlated with U , and β is a random
variable that may be statistically dependent on S .
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The discrete choice model of Section 2 does not, in general,
imply (3.1).

Indeed, there is much empirical evidence against model (3.1).
An analysis of what IV estimates when linearity in S is imposed
as an approximation, even though it may be inappropriate, is an
interesting exercise because linearity is so often invoked.
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Suppose Z1 is a valid instrument.

We now interpret what

∆IV
Z1

=
Cov(Z1,Y )

Cov(Z1, S)
(3.3)

estimates.

We do this by decomposing ∆IV
Z1

into components analogous to
the decomposition produced by Heckman et al. (2006, 2008)
and Heckman and Vytlacil (2007b).
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The Appendix presents the derivation of the following
decomposition of IV into our pairwise generalization of MTE
for the unordered case:

Indeed, there is much empirical evidence against model (4.1).24 An analysis of what IV estimates

when linearity in S is imposed as an approximation, even though it may be inappropriate, is an

interesting exercise because linearity is so often invoked.

Suppose Z1 is a valid instrument. We now interpret what

∆IV
Z1

=
Cov(Z1, Y )

Cov(Z1, S)
(4.3)

estimates. We do this by decomposing ∆IV
Z1

into components analogous to the decomposition pro-

duced by Heckman, Urzua, and Vytlacil (2006, 2008) and Heckman and Vytlacil (2007b). The

Appendix presents the derivation of the following decomposition of IV into our pairwise general-

ization of MTE for the unordered case:

∆IV
Z1

=
Cov(Z1, Y )

Cov(Z1, S)
= (4.4)




∫∞
−∞

∫∞
−∞

Generalized MTE (2→ 1) not identified from LIV︷ ︸︸ ︷
E (Y1 − Y2 | V2 − V1 = v2 − v1, ϑ2 (z2)− ϑ3 (z3) ≥ V2 − V3)

×ηϑ2(Z2)−ϑ3(Z3),V2−V1
(ϑ2 (z2)− ϑ3 (z3) , v2 − v1)

︸ ︷︷ ︸
weight identified from discrete

choice analysis

d (v2 − v1) d (ϑ2 (z2)− ϑ3 (z3))




+




∫∞
−∞

∫∞
−∞

Generalized MTE(3→ 1) not identified from LIV︷ ︸︸ ︷
E (Y1 − Y3 | V3 − V1 = v3 − v1, ϑ3 (z3)− ϑ2 (z2) ≥ V3 − V2)

×ηϑ3(Z3)−ϑ2(Z2),V3−V1
(ϑ3 (z3)− ϑ2 (z2) , v3 − v1)

︸ ︷︷ ︸
weight identified from discrete

choice analysis

d (v3 − v1) d (ϑ3 (z3)− ϑ2 (z2))




∫∞
−∞

∫∞
−∞

[
−ηϑ2(Z2)−ϑ3(Z3),V2−V1

(ϑ2 (z2)− ϑ3 (z3) , v2 − v1)
]

︸ ︷︷ ︸
weight identified from discrete

choice analysis

d (ϑ2 (z2)− ϑ3 (z3)) d (v2 − v1)

+2
∫∞
−∞

∫∞
−∞

[
−ηϑ3(Z3)−ϑ2(Z2),V3−V1

(ϑ3 (z3)− ϑ2 (z2) , v3 − v1)
]

︸ ︷︷ ︸
weight identified from discrete

choice analysis

d (v3 − v1) d (ϑ3 (z3)− ϑ2 (z2)) .

IV identifies a weighted average of gains to state 1 compared to the next best alternative which

may be 2 or 3. The two terms of the decomposition are defined as generalized MTEs and are

weighted averages of the gain of moving from state 2 to state 1 for persons on the margin of

24See Heckman, Lochner, and Todd (2006) for discussions of this model and various justifications for it. Heckman,
Layne-Farrar, and Todd (1996) present evidence against linearity of the earnings function in terms of years of
schooling.
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IV identifies a weighted average of gains to state 1 compared to
the next best alternative which may be 2 or 3.

The two terms of the decomposition are defined as generalized
MTEs and are weighted averages of the gain of moving from
state 2 to state 1 for persons on the margin of indifference
between 1 and 2 and for whom 2 is a better choice than 3 (the
first term) and the gain of moving from 3 to 1 for persons on
the margin of indifference between 1 and 3 and for whom 3 is a
better choice than 2 (the second term).
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In the Appendix, we derive the weights on the generalized
MTEs and show that they do not sum to 1 even when
normalized by the denominator.

The mathematical reason for this result is simple.

The weights in the numerator do not sum to the weights in the
denominator.

The second term in the denominator receives twice as much
weight as the corresponding term in the numerator.
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This is a consequence of the definition of S (3.2), which plays
no role in the numerator term.

Thus, IV applied to the general model produces an arbitrarily
weighted sum of generalized MTEs with weights that do not
sum to 1, and which, in general, places more weight on the first
generalized MTE term than on the second term, compared to
the weights placed on the corresponding terms in the
denominator.

Using IV alone, we cannot decompose (4.4) into its component
parts, even though the weights can be identified from discrete
choice analysis.
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The Mincer Model

The Mincer (1974) model is a specialization of the general
model discussed in Section 2 of this paper that justifies the
precise functional form of equation (3.1). For this case, the
weights in (4.4) in the numerator and denominator are the
same.

The Mincer model is formulated in terms of log earnings for
Y1,Y2, and Y3:

Y2 = ln (1 + g) + Y1,

Y3 = ln (1 + g) + Y2 = 2 ln(1 + g) + Y1,

where g is a growth factor for income that varies in the
population.

Earnings at each schooling level depend on two parameters:
(g ,Y1).
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In this case, letting α = ln(1 + g),

4.1 The Mincer Model

The Mincer (1974) model is a specialization of the general model discussed in Section 2 of this

paper that justifies the precise functional form of equation (4.1).29 For this case, the weights in

(4.4) in the numerator and denominator are the same. The Mincer model is formulated in terms

of log earnings for Y1, Y2, and Y3:

Y2 = ln (1 + g) + Y1,

Y3 = ln (1 + g) + Y2 = 2 ln(1 + g) + Y1,

where g is a growth factor for income that varies in the population. Earnings at each schooling

level depend on two parameters: (g, Y1). In this case, letting α = ln(1 + g),

∆IV
Z1

=
Cov(Z1, Y )

Cov(Z1, S)
(4.6)

=





∫∞
−∞

∫∞
−∞E (α | V2 − V1 = v2 − v1, ϑ2 (z2)− ϑ3 (z3) ≥ V2 − V3)

×ηϑ2(Z2)−ϑ3(Z3),V2−V1
(ϑ2 (z2)− ϑ3 (z3) , v2 − v1) d (v2 − v1) d (ϑ2 (z2)− ϑ3 (z3))




+



∫∞
−∞

∫∞
−∞E (α | V3 − V1 = v3 − v1, ϑ3 (z3)− ϑ2 (z2) ≥ V3 − V2)

×2ηϑ3(Z3)−ϑ2(Z2),V3−V1
(ϑ3 (z3)− ϑ2 (z2) , v3 − v1) d (v3 − v1) d (ϑ3 (z3)− ϑ2 (z2))






×



∫∞
−∞

∫∞
−∞ ηϑ2(Z2)−ϑ3(Z3),V2−V1

(ϑ2 (z2)− ϑ3 (z3) , v2 − v1) d (v2 − v1) d (ϑ2 (z2)− ϑ3 (z3))

+2
∫∞
−∞

∫∞
−∞ ηϑ3(Z3)−ϑ2(Z2),V3−V1

(ϑ3 (z3)− ϑ2 (z2) , v3 − v1) d (v3 − v1) d (ϑ3 (z3)− ϑ2 (z2))



−1

.

In this case, the weights now sum to 1. The weights for the numerator term now are the same

as the weights for the denominator term. But again, unaided IV does not identify the component

parts of the term bundled in IV — the mean gains at each margin.30,31

29See Heckman, Lochner, and Todd (2006) for a discussion of the Mincer Model and the powerful body of evidence
against it. Card (2001) provides one justification for functional form 4.1.

30An anonymous referee has correctly expressed the concern that in the case of an income-maximizing Mincer
model under perfect certainty, the general unordered model would not apply. Indeed, the decision problem is not well
defined. If g > r, the opportunity cost of funds, agents would choose the maximum amount of schooling. If g < r,
the agent chooses no schooling. If g = r, the agent is indifferent to all levels of schooling. Thus, for our analysis to
apply to the Mincer earnings equation, we have to assume that choices involve some combination of psychic costs,
tuition, uncertainty or the like. The model of Keane and Wolpin (1997) is one of many frameworks that would justify
an unordered choice model but could be consistent with a Mincer earnings equation. See Heckman, Lochner, and
Todd (2006). We thank the referee for emphasizing this point to us.

31Decomposition (4.6) for an ordered choice model is presented in Heckman, Urzua, and Vytlacil (2006) and
Heckman and Vytlacil (2007b).
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In this case, the weights now sum to 1.

The weights for the numerator term now are the same as the
weights for the denominator term.

But again, unaided IV does not identify the component parts of
the term bundled in IV — the mean gains at each margin.
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An Example

It is instructive to summarize our analysis with an example.

Consider a 3 choice model with associated outcomes.

This corresponds to the GED, high school dropout and high
school graduate example that we have used throughout the
paper.

Under conditions presented in Heckman and Vytlacil (2007a,
Appendix B), the structural model is nonparametrically
identified.

A key assumption in their proof is the “identification at
infinity” assumption previously discussed.
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This assumes the ability to vary (Z1,Z2,Z3) freely and the
existence of limit sets such that fixing any two of (Z1,Z2,Z3),
one makes the Rj associated with Zj arbitrarily small.

Heckman and Vytlacil (2007b) show that if one augments the
IV assumptions with the same identification at infinity
assumptions used in structural models, one can use IV in the
limit to identify the components of (3.5). In the limit sets, one
can identify

E (Y1 − Y2|R1(z1) = R2(z2)) (4.1)

and
E (Y1 − Y3|R1(z1) = R3(z3)) (4.2)

by setting Z3 and Z2 respectively to limit set values.
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Essentially one can use the limit sets to make a three choice
model into a two choice model, and the standard results for the
two choice model apply.

Under these assumptions, and additional mild regularity
assumptions, using structural methods, one can identify the
distributions of (Y1,Y2) and (Y1,Y3) so that one can identify
distributions of treatment effects, Y2 − Y1 and Y3 − Y1, in
addition to the mean parameters identified by IV.

One can also identify the proportion of people induced into 1
from each alternative state using variation in the instrument.
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Consider the model with the parameters presented in Table 1.

This is a discrete choice model with associated outcome
variables.

The Zj , j = 1, . . . , 3, are assumed to be scalar and mutually
independent.

They are normally distributed so they satisfy large support
(“identification at infinity”) conditions.

Table 2 shows how a change in Z1, which increases it by .75
standard deviations, shifts people across categories.

This corresponds to making GED attainment easier.
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Table 1. Potential Outcomes, Choice Model and Parameterizations

Outcomes Choice Model

Yj = αj + Uj with j ∈ J = {1, 2, 3} Dj =





1 if Rj ≥ Rk ∀ j ∈ J

0 otherwise

Y =
∑

j∈J YjDj Rj = γjZj − Vj with j ∈ J

Parameterization

(U1, U2, U3, V1, V2, V3) ∼ N (0,ΣUV ) , (Z1, Z2, Z3) ∼ N (µZ ,ΣZ)

ΣUV =




0.64 0.16 0.16 0.024 −0.32 0.016

0.16 1 0.20 0.020 −0.30 0.010

0.16 0.20 1 0.020 −0.40 0.040

0.024 0.020 0.020 1 0.6 0100

−0.32 −0.30 −0.40 0.6 1 0.2

0.016 0.01 0.040 0100 0.2 1




, µZ = (1.0, 0.5, 1.5) and ΣZ=




1 0 0

0 1 0

0 0 1




[
α1 α2 α3

]
= [ 0.3 0.1 0.7 ],

[
γ1 γ2 γ3

]
= [ 0.2 0.3 0.1 ]
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The estimates reported in Table 2 can be obtained from a
structural discrete choice model.

The percentage initially in 1 (GED) increases from 33.17% to
38.8%.

The percentage in 2 (dropout) decreases from 29.11% to
25.91%.

The percentage in 3 (graduating high school) declines from
37.72% to 35.29%.
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Table 2. Transition Matrix Obtained from the Change in the Instrument Z1

The Instrument Increases by 0.75 Standard Deviation

New Value of Instrument

(Z̃ = Z1 + 0.75)

D1 = 1 D2 = 1 D3 = 1 Total

Original Value D1 = 1 33.17% 0% 0% 33.17%

of Instrument D2 = 1 3.20% 25.91% 0% 29.11%

(Z1) D3 = 1 2.43% 0% 35.29% 37.72%

Total 38.80% 25.91% 35.29% 100%
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The IV estimate is -.032.

(See the base of Table 3) This is the only number produced by
an IV analysis using Z1 as an instrument that changes within
the specified range.

The structural analysis in Table 3 shows that the net effect
produced by the change in Z1 is composed of 2 terms.

It arises from a gain of .199 for the switchers 2 → 1 (dropout
to GED) and a loss of .336 (3 → 1) (graduate to GED).
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Table 3. Marginal Gains Identified from the Change in the Instrument Z1

The Instrument Increases by 0.75 Standard Deviation

Gains to Switchers Fraction of Population Switching

From 2 to 1 0.199 3.20%

From 3 to 1 -0.336 2.43%

Overall (IV estimate) -0.032 5.63%

IV Estimate:

E
[
Y |Z̃1

]
− E [Y |Z1] = 3.20

3.20+2.43 × 0.199− 2.43
3.20+2.43 × 0.336 = −0.032
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Figure 1 shows what can be identified from the structural
model.

It plots the distributions of gains for persons going from 2 to 1
and from 3 to 1 as well as the overall distribution of gains to
the switchers.

Persons switching from 3 to 1 are harmed in gross terms by the
policy that changes Z1, while those who switch from 2 to 1
gain in gross terms.

In utility terms, (Rj), people are better off.

In terms of gross gains, about 56.8% of the people who switch
from 2 to 1 are better off while 39.3% of the people who switch
from 3 to 1 are better off.

Overall, 49.2% are better off in gross terms even though the IV
estimate is slightly negative.
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Figure 1. Distribution of Gains in Outcomes Induced by the Change in the Instrument Z1

The Instrument Increases by 0.75 Standard Deviation

˙  Average Gain for
Switchers From 2 to 1

 Average Gain for ˙
Switchers From 3 to 1

˙  IV Estimate
0

.1
.2

.3
.4

D
en

sit
y

4 2 0 2 4
Difference in Outcomes

From Sector 2 to Sector 1 From Sector 3 to Sector 1 Overall Distribution

Fraction of Gross Gainers by Source

% Gross Gainers from 2 to 1 56.8%

% Gross Gainers from 3 to 1 39.3%

% Gross Gainers from all Sources 49.2%
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If one seeks to understand the distributional effects of the
policy associated with a change Z1, the structural analysis is
clearly much more revealing.

The IV estimate, which is a mean gross gain aggregating over
origin states, does not capture the rich information about
choices afforded by a structural analysis.

However, it does identify the average gain to the program
compared to the next-best alternatives.

If that is the object of interest, linear IV is the right tool to use.
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Appendix
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Summary and Discussion A. Derivation of the Standard IV Estimator References

Following the analysis in Heckman et al. (2006, 2008) and
Heckman and Vytlacil (2007b), we assume:

(A-1) The distribution of ({Vj}j∈J ) is continuous.
(A-2) {(Vj ,Uj)}j∈J is independent of Z conditional on X .

(A-3) E | Yj | < ∞ for all j ∈ J .

(A-4) Pr(Dj = 1 | X ) > 0 for all j ∈ J .
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Summary and Discussion A. Derivation of the Standard IV Estimator References

In addition, we assume an exclusion restriction that requires
some additional notation.

Let Z [−l ] denote all elements of Z except for the lth
component.

We assume

(A-5) For each j ∈ J , their exists at least one element of Z , say Z [l ],
such that the distribution of ϑj(Zj) conditional on (X ,Z [−l ]) is
continuous.
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Summary and Discussion A. Derivation of the Standard IV Estimator References

With these assumptions, one can generalize the analysis of
Heckman and Vytlacil (1999, 2001, 2005) to the unordered
case.

Assumptions (A-1) and (A-2) imply that Rj ̸= Rk (with
probability 1) for j ̸= k , so that argmaxj∈J {Rj} is unique (with
probability 1). Assumption (A-2) assures the existence of an
instrument.

Assumption (A-3) is required for mean treatment parameters to
be well defined.

It also allows one to integrate to the limit and to produce
well-defined means.
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Summary and Discussion A. Derivation of the Standard IV Estimator References

Assumption (A-4) requires that at least some individuals
participate in each choice for all X .

Assumption (A-5) imposes the requirement that one be able to
independently vary the index for the given value function.

It imposes a type of exclusion restriction, that for any j ∈ J , Z
contains an element such that (i) it is contained in Zj ; (ii) it is
not contained in any Zk for k ̸= j , and (iii) ϑj(·) is a nontrivial
function of that element conditional on all other regressors.
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Summary and Discussion A. Derivation of the Standard IV Estimator References

In a series of papers, Heckman and Vytlacil (1999, 2001, 2005,
2007b), develop the method of local instrumental variables
(LIV) to estimate the marginal treatment effect (MTE) for the
case of binary choices.

We now define and interpret the MTE and LIV in the case of
general unordered choices.
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Return to Text
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Summary and Discussion

The choice between using IV or a more structural approach for
a particular problem should be made on the basis of Marschak’s
Maxim: use minimal assumptions to answer well-posed
economic questions.

Most IV studies do not clearly formulate the economic question
being answered by the IV analysis.

The probability limit of the IV estimator is defined to be the
object of interest.
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Summary and Discussion A. Derivation of the Standard IV Estimator References

In the binary outcome case, even if Z is a valid instrument, if Z
is a vector, and analysts use only one component of the vector
as an instrument, and do not condition on the other
components of Z , the weights on the MTE can be negative
over certain ranges.

The practice of not conditioning on the other instruments is
common in the literature.

IV can estimate the wrong sign for the true causal effect.

Recent analyses show how to improve on this practice and to
design functions of standard instrumental variables that answer
classes of well-posed economic questions.
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Summary and Discussion A. Derivation of the Standard IV Estimator References

We have discussed a model with three or more choices where
there is no particular order among the choices.

Such examples arise routinely in applied economics.

In this case, under conditions specified in this paper, IV
estimates a weighted average of the mean gross gain to persons
induced into a choice state by a change in the instrument
(policy) compared to their next best alternative.

It averages the returns to a destination state over all origin
states.

It does not produce the distribution of gains overall or by each
origin state.
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Again, as in the binary choice case, for vector Z , using one
component of Z as an instrument, and not conditioning on the
other components can produce negative weights so that the
sign of an IV can be opposite to that of the true causal effect
which can be identified by a structural analysis.

Structural methods provide a more complete description of the
effect of the instrument or the policy associated with the
instrument.

They identify mean returns as well as distributions of returns
for agents coming to a destination state from each margin.

They also identify the proportion of people induced into a state
from each origin state.
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Structural methods come at a cost.

Unless distributional assumptions for unobservables are invoked,
structural methods require some form of an “identification at
infinity” assumption.

However, in the general case in which responses to treatment
are heterogeneous, IV requires the same assumption if one
seeks to identify average treatment effects.

An identification at infinity assumption can be checked in any
sample so it does not require imposing a priori beliefs onto the
data.

Heckman, Stixrud, and Urzúa (2006) present an example of
how to test an identification at infinity assumption.

See also the discussion in Abbring and Heckman (2007).
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Many proponents of IV point to the strong distributional and
functional form assumptions required to implement structural
methods.

They ignore recent progress in econometrics that identifies and
empirically implements robust semiparametric and
nonparametric approaches to structural analysis.

Recent developments respond to arguments against the use of
explicit econometric models made by a generation of applied
economists that emerged in the 1980s.

Those arguments are more properly directed against 1980s
versions of structural models that were based on linearity and
normality.

Structural econometricians in the 21st century have listened to
the critics and have perfected their tools to response to the
criticism.
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The appeal to standard IV as a preferred estimator is
sometimes made on the basis of “simplicity and robustness”.
Standard IV is certainly simple to compute although problems
with weak instruments can make it empirically unstable.

Since, in the general case, different instruments identify
different parameters, IV is not robust to the choice of
instrument.

Since the sign of an IV can be different from the true causal
effect, IV may even produce a misleading guide to policy or
inference, so it is not robust.
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The meaning of “simplicity” is highly subjective.

How simple is the economic interpretation of IV?

Certainly decomposition (4.4) is not simple.

The fact that simple IV can estimate wrong signs for true
causal effects should give pause to those who claim that it is
“robust”. The weak instrument literature cautions us against
uncritical claims about the sturdiness of IV estimators.

The ability of different statistical estimators to answer
questions of economic interest, or to show why they cannot be
answered, should drive the choice of empirical techniques for
analyzing data.
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Consider a worst case for structural estimation.

Suppose that application of recently developed procedures for
testing for structural identification reveal that a structural
model is not identified or is only partially identified.

Does this conclusion suggest that IV is a better choice for an
estimator?

That disguising identification problems by a statistical
procedure is preferable to an honest discussion of the limits of
the data?

Heckman and Urzúa What Simple IV Can and Cannot Identify



Summary and Discussion A. Derivation of the Standard IV Estimator References

For underidentified structural models, it is possible to conduct
sensitivity analyses guided by economic theory to explore the
consequences of ignorance about features of the model.

With IV, unaided by structural analysis, this type of exercise is
not possible.

Problems of identification and interpretation are swept under
the rug and replaced by “an effect” identified by IV that is
often very difficult to interpret as an answer to an interesting
economic question.
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A. Derivation of the Standard IV Estimator
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Summary and Discussion A. Derivation of the Standard IV Estimator References

We first study the numerator of ∆IV
Z1

in the text.

Recall that we keep the conditioning on X implicit.

Using Z̃1 = Z1 − Z̄1,

Cov (Y ,Z1) = E
(
Z̃1 (Y1D1 + Y2D2 + Y3D3)

)
.

Using D1 = 1− D2 − D3, we obtain

Cov (Y ,Z1) = E
(
Z̃1 (Y1 + (Y2 − Y1)D2 + (Y3 − Y1)D3)

)

= E
(
Z̃1Y1

)
+ E

(
Z̃1 (Y2 − Y1)D2

)
+ E

(
Z̃1 (Y3 − Y1)D3

)
,

where E
(
Z̃1Y1

)
= 0.

It is natural to decompose this expression using choice “1” as
the base, because Z1 only shifts R1(Z1).
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The final two terms can be written as

A Derivation of the Standard IV Estimator

We first study the numerator of ∆IV
Z1

in the text. Recall that we keep the conditioning on X implicit.

Using Z̃1 = Z1 − Z̄1,

Cov (Y,Z1) = E
(
Z̃1 (Y1D1 + Y2D2 + Y3D3)

)
.

Using D1 = 1−D2 −D3, we obtain

Cov (Y, Z1) = E
(
Z̃1 (Y1 + (Y2 − Y1)D2 + (Y3 − Y1)D3)

)

= E
(
Z̃1Y1

)
+ E

(
Z̃1 (Y2 − Y1)D2

)
+ E

(
Z̃1 (Y3 − Y1)D3

)
,

where E
(
Z̃1Y1

)
= 0. It is natural to decompose this expression using choice “1” as the base,

because Z1 only shifts R1(Z1). The final two terms can be written as

Cov (Y,Z1)

= E
(
Z̃1 (Y2 − Y1) 1 (R2(Z2) ≥ R1(Z1), R2(Z2) ≥ R3(Z3))

)
+ E

(
Z̃1 (Y3 − Y1) 1 (R3(Z3) ≥ R1(Z1), R3(Z3) ≥ R2(Z2))

)

= E
[
Z̃1 (Y2 − Y1) 1

(
(ϑ2 (Z2)− ϑ1 (Z1) ≥ V2 − V1) , (ϑ2 (Z2)− ϑ3 (Z3) ≥ V2 − V3)

)]

+ E
[
Z̃1 (Y3 − Y1) 1

(
(ϑ3 (Z3)− ϑ1 (Z1) ≥ V3 − V1) , (ϑ3 (Z3)− ϑ2 (Z2) ≥ V3 − V2)

)]

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
z̃1 (y2 − y1)

×
(∫ ϑ2(z2)−ϑ1(z1)

−∞

∫ ϑ2(z2)−ϑ3(z3)

−∞
fY2−Y1,V2−V1,V2−V3

(y2 − y1, v2 − v1, v2 − v3) d (v2 − v3) d (v2 − v1) d (y2 − y1)

)

× fZ̃1,ϑ2(Z2)−ϑ1(Z1),ϑ2(Z2)−ϑ3(Z3)
(z̃1, ϑ2 (z2)− ϑ1 (z1) , ϑ2 (z2)− ϑ3 (z3)) d (ϑ2 (z2)− ϑ3 (z3)) d (ϑ2 (z2)− ϑ1 (z1)) dz̃1

+

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
z̃1 (y3 − y1)

×
(∫ ϑ3(z3)−ϑ1(z1)

−∞

∫ ϑ3(z3)−ϑ2(z2)

−∞
fY3−Y1,V3−V1,V3−V2

(y3 − y1, v3 − v1, v3 − v2) d (v3 − v2) d (v3 − v1) d (y3 − y1)

)

× fZ̃1,ϑ3(Z3)−ϑ1(Z1),ϑ3(Z3)−ϑ2(Z2)
(z̃1, ϑ3 (z3)− ϑ1 (z1) , ϑ3 (z3)− ϑ2 (z2)) d (ϑ3 (z3)− ϑ2 (z2)) d (ϑ3 (z3)− ϑ1 (z1)) dz̃1.
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By Fubini’s Theorem, we can simplify the expressions and
obtain for the first term:By Fubini’s Theorem, we can simplify the expressions and obtain for the first term:

∫ ∞

−∞

∫ ∞

−∞
E (Y2 − Y1 | V2 − V1 = v2 − v1, ϑ2 (z2)− ϑ3 (z3) ≥ V2 − V3)

×
{∫ ∞

−∞
z̃1

[(∫ ϑ2(z2)−ϑ3(z3)

−∞
hV2−V1,V2−V3 (v2 − v1, v2 − v3) d (v2 − v3)

)

×
(∫ ∞

v2−v1
fZ̃1,ϑ2(Z2)−ϑ1(Z1),ϑ2(Z2)−ϑ3(Z3) (z̃1, ϑ2 (z2)− ϑ1 (z1) , ϑ2 (z2)− ϑ3 (z3)) d (ϑ2 (z2)− ϑ1 (z1))

)]
dz̃1

}

×d (ϑ2 (z2)− ϑ3 (z3)) d (v2 − v1) . (A.1)

hV2−V1,V2−V3(.) is the joint density of V2−V1, V2−V3. Define the weighting term in braces in (A.1) as

ηϑ2(Z2)−ϑ3(Z3),V2−V1
(ϑ2 (z2)−ϑ3 (z3) , v2−v1). It is necessary to fix both ϑ2 (z2)−ϑ3 (z3) and v2−v1

in forming the weight. This weight can be estimated from a structural discrete choice analysis and

the joint distribution of (Z,D1, D2, D3). The terms multiplying the weight are marginal treatment

effects generalized to the unordered case. (A.1) cannot be decomposed using IV. An alternative

representation of the term in braces, ηϑ2(Z2)−ϑ3(Z3),V2−V1
(ϑ2 (z2)− ϑ3 (z3) , v2 − v1) is

ηϑ2(Z2)−ϑ3(Z3),V2−V1
(ϑ2 (z2)− ϑ3 (z3) , v2 − v1) =

E (Z1 − E (Z1) | ϑ2 (Z2)− ϑ3 (Z3) = ϑ2 (z2)− ϑ3 (z3) , ϑ2 (Z2)− ϑ1 (Z1) ≥ v2 − v1)

× Pr (ϑ2 (Z2)− ϑ3 (Z3) = ϑ2 (z2)− ϑ3 (z3) , ϑ2 (Z2)− ϑ1 (Z1) ≥ v2 − v1) .

An analysis parallel to the preceding one shows that the second term can be written as

∫ ∞

−∞

∫ ∞

−∞
E (Y3 − Y1 | V3 − V1 = v3 − v1, ϑ3 (z3)− ϑ2 (z2) ≥ V3 − V2)

×
{∫ ∞

−∞
z̃1

[(∫ ϑ3(z3)−ϑ2(z2)

−∞
hV3−V1,V3−V2 (v3 − v1, v3 − v2) d (v3 − v2)

)

×
(∫ ∞

v3−v1
fZ̃1,ϑ3(Z3)−ϑ1(Z1),ϑ3(Z3)−ϑ2(Z2) (z̃1, ϑ3 (z3)− ϑ1 (z1) , ϑ3 (z3)− ϑ2 (z2)) d (ϑ3 (z3)− ϑ1 (z1))

)]
dz̃1

}

×d (ϑ3 (z3)− ϑ2 (z2)) d (v3 − v1) . (A.2)

Define the term in braces in (A.2) as the weight ηϑ3(Z3)−ϑ2(Z2),V3−V1
(ϑ3 (z3)− ϑ2 (z2) , v3 − v1).
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hV2−V1,V2−V3(.) is the joint density of V2 − V1, V2 − V3.

Define the weighting term in braces in (A.1) as
ηϑ2(Z2)−ϑ3(Z3),V2−V1

(ϑ2 (z2)− ϑ3 (z3) , v2 − v1).

It is necessary to fix both ϑ2 (z2)− ϑ3 (z3) and v2 − v1 in
forming the weight.
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This weight can be estimated from a structural discrete choice
analysis and the joint distribution of (Z ,D1,D2,D3).

The terms multiplying the weight are marginal treatment
effects generalized to the unordered case.

(A.1) cannot be decomposed using IV.
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An alternative representation of the term in braces,
ηϑ2(Z2)−ϑ3(Z3),V2−V1

(ϑ2 (z2)− ϑ3 (z3) , v2 − v1) is

ηϑ2(Z2)−ϑ3(Z3),V2−V1
(ϑ2 (z2) − ϑ3 (z3) , v2 − v1) =

E (Z1 − E (Z1) | ϑ2 (Z2) − ϑ3 (Z3) = ϑ2 (z2) − ϑ3 (z3) , ϑ2 (Z2) − ϑ1 (Z1) ≥ v2 − v1)

× Pr (ϑ2 (Z2) − ϑ3 (Z3) = ϑ2 (z2) − ϑ3 (z3) , ϑ2 (Z2) − ϑ1 (Z1) ≥ v2 − v1) .
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An analysis parallel to the preceding one shows that the second
term can be written as

By Fubini’s Theorem, we can simplify the expressions and obtain for the first term:

∫ ∞

−∞

∫ ∞

−∞
E (Y2 − Y1 | V2 − V1 = v2 − v1, ϑ2 (z2)− ϑ3 (z3) ≥ V2 − V3)

×
{∫ ∞

−∞
z̃1

[(∫ ϑ2(z2)−ϑ3(z3)

−∞
hV2−V1,V2−V3 (v2 − v1, v2 − v3) d (v2 − v3)

)

×
(∫ ∞

v2−v1
fZ̃1,ϑ2(Z2)−ϑ1(Z1),ϑ2(Z2)−ϑ3(Z3) (z̃1, ϑ2 (z2)− ϑ1 (z1) , ϑ2 (z2)− ϑ3 (z3)) d (ϑ2 (z2)− ϑ1 (z1))

)]
dz̃1

}

×d (ϑ2 (z2)− ϑ3 (z3)) d (v2 − v1) . (A.1)

hV2−V1,V2−V3(.) is the joint density of V2−V1, V2−V3. Define the weighting term in braces in (A.1) as

ηϑ2(Z2)−ϑ3(Z3),V2−V1
(ϑ2 (z2)−ϑ3 (z3) , v2−v1). It is necessary to fix both ϑ2 (z2)−ϑ3 (z3) and v2−v1

in forming the weight. This weight can be estimated from a structural discrete choice analysis and

the joint distribution of (Z,D1, D2, D3). The terms multiplying the weight are marginal treatment

effects generalized to the unordered case. (A.1) cannot be decomposed using IV. An alternative

representation of the term in braces, ηϑ2(Z2)−ϑ3(Z3),V2−V1
(ϑ2 (z2)− ϑ3 (z3) , v2 − v1) is

ηϑ2(Z2)−ϑ3(Z3),V2−V1
(ϑ2 (z2)− ϑ3 (z3) , v2 − v1) =

E (Z1 − E (Z1) | ϑ2 (Z2)− ϑ3 (Z3) = ϑ2 (z2)− ϑ3 (z3) , ϑ2 (Z2)− ϑ1 (Z1) ≥ v2 − v1)

× Pr (ϑ2 (Z2)− ϑ3 (Z3) = ϑ2 (z2)− ϑ3 (z3) , ϑ2 (Z2)− ϑ1 (Z1) ≥ v2 − v1) .

An analysis parallel to the preceding one shows that the second term can be written as

∫ ∞

−∞

∫ ∞

−∞
E (Y3 − Y1 | V3 − V1 = v3 − v1, ϑ3 (z3)− ϑ2 (z2) ≥ V3 − V2)

×
{∫ ∞

−∞
z̃1

[(∫ ϑ3(z3)−ϑ2(z2)

−∞
hV3−V1,V3−V2 (v3 − v1, v3 − v2) d (v3 − v2)

)

×
(∫ ∞

v3−v1
fZ̃1,ϑ3(Z3)−ϑ1(Z1),ϑ3(Z3)−ϑ2(Z2) (z̃1, ϑ3 (z3)− ϑ1 (z1) , ϑ3 (z3)− ϑ2 (z2)) d (ϑ3 (z3)− ϑ1 (z1))

)]
dz̃1

}

×d (ϑ3 (z3)− ϑ2 (z2)) d (v3 − v1) . (A.2)

Define the term in braces in (A.2) as the weight ηϑ3(Z3)−ϑ2(Z2),V3−V1
(ϑ3 (z3)− ϑ2 (z2) , v3 − v1).
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Define the term in braces in (A.2) as the weight
ηϑ3(Z3)−ϑ2(Z2),V3−V1

(ϑ3 (z3)− ϑ2 (z2) , v3 − v1).
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Summary and Discussion A. Derivation of the Standard IV Estimator References

To obtain the denominator for the IV, recall that
S =

∑3
j=1 j Dj .

Substitute D1 = 1− D2 − D3,

3∑

j=1

j Dj = (1− D2 − D3) + 2D2 + 3D3

= 1 + D2 + 2D3.

Then

Cov(S , Z̃1) = E
(
Z̃1D2

)
+ 2E

(
Z̃1D3

)

= E
(
Z̃1 (1 (R2 ≥ R1,R2 ≥ R3))

)
(B.3)

+2E
(
Z̃1 (1 (R3 ≥ R1,R3 ≥ R2))

)
.
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Summary and Discussion A. Derivation of the Standard IV Estimator References

Using reasoning similar to that invoked for the analysis of the
numerator terms, we obtain expressions for the terms
corresponding to the two terms of (A.1) and (A.2).

We obtain for the first term of (B.3)

To obtain the denominator for the IV, recall that S =
∑3

j=1 j Dj . Substitute D1 = 1−D2−D3,

3∑

j=1

j Dj = (1−D2 −D3) + 2D2 + 3D3

= 1 +D2 + 2D3.

Then

Cov(S, Z̃1) = E
(
Z̃1D2

)
+ 2E

(
Z̃1D3

)

= E
(
Z̃1 (1 (R2 ≥ R1, R2 ≥ R3))

)
(A.3)

+2E
(
Z̃1 (1 (R3 ≥ R1, R3 ≥ R2))

)
.

Using reasoning similar to that invoked for the analysis of the numerator terms, we obtain expres-

sions for the terms corresponding to the two terms of (A.1) and (A.2). We obtain for the first term

of (A.3)

∫ ∞

−∞
z̃1

[∫ ∞

−∞

∫ ∞

−∞

∫ ϑ2(z2)−ϑ1(z1)

−∞
fZ̃1,ϑ2(Z2)−ϑ1(Z1),ϑ2(Z2)−ϑ3(Z3) (z̃1, ϑ2 (z2)− ϑ1 (z1) , ϑ2 (z2)− ϑ3 (z3))

×
(∫ ϑ2(z2)−ϑ3(z3)

−∞
hV2−V1,V2−V3 (v2 − v1, v2 − v3) d (v2 − v3)

)
d (v2 − v1)

×d (ϑ2 (z2)− ϑ3 (z3)) d (ϑ2 (z2)− ϑ1 (z1))

]
dz̃1. (A.4)

By Fubini’s Theorem, we obtain:

∫ ∞

−∞

∫ ∞

−∞
z̃1

[∫ ∞

−∞

(∫ ϑ2(z2)−ϑ3(z3)

−∞
hV2−V1,V2−V3 (v2 − v1, v2 − v3) d (v2 − v3)

)

×
(∫ ∞

v2−v1
fZ̃1,ϑ2(Z2)−ϑ1(Z1),ϑ2(Z2)−ϑ3(Z3) (z̃1, ϑ2 (z2)− ϑ1 (z1) , ϑ2 (z2)− ϑ3 (z3))

×d (ϑ2 (z2)− ϑ1 (z1))

)
d (ϑ2 (z2)− ϑ3 (z3))

]
d (v2 − v1) dz̃1 (A.5)

=

∫ ∞

−∞

∫ ∞

−∞
ηϑ2(Z2)−ϑ3(Z3),V2−V1

(ϑ2 (z2)− ϑ3 (z3) , v2 − v1) d (v2 − v1) d (ϑ2 (z2)− ϑ3 (z3)) .
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By Fubini’s Theorem, we obtain:

To obtain the denominator for the IV, recall that S =
∑3

j=1 j Dj . Substitute D1 = 1−D2−D3,

3∑

j=1

j Dj = (1−D2 −D3) + 2D2 + 3D3

= 1 +D2 + 2D3.

Then

Cov(S, Z̃1) = E
(
Z̃1D2

)
+ 2E

(
Z̃1D3

)

= E
(
Z̃1 (1 (R2 ≥ R1, R2 ≥ R3))

)
(A.3)

+2E
(
Z̃1 (1 (R3 ≥ R1, R3 ≥ R2))

)
.

Using reasoning similar to that invoked for the analysis of the numerator terms, we obtain expres-

sions for the terms corresponding to the two terms of (A.1) and (A.2). We obtain for the first term

of (A.3)

∫ ∞

−∞
z̃1

[∫ ∞

−∞

∫ ∞

−∞

∫ ϑ2(z2)−ϑ1(z1)

−∞
fZ̃1,ϑ2(Z2)−ϑ1(Z1),ϑ2(Z2)−ϑ3(Z3) (z̃1, ϑ2 (z2)− ϑ1 (z1) , ϑ2 (z2)− ϑ3 (z3))

×
(∫ ϑ2(z2)−ϑ3(z3)

−∞
hV2−V1,V2−V3 (v2 − v1, v2 − v3) d (v2 − v3)

)
d (v2 − v1)

×d (ϑ2 (z2)− ϑ3 (z3)) d (ϑ2 (z2)− ϑ1 (z1))

]
dz̃1. (A.4)

By Fubini’s Theorem, we obtain:

∫ ∞

−∞

∫ ∞

−∞
z̃1

[∫ ∞

−∞

(∫ ϑ2(z2)−ϑ3(z3)

−∞
hV2−V1,V2−V3 (v2 − v1, v2 − v3) d (v2 − v3)

)

×
(∫ ∞

v2−v1
fZ̃1,ϑ2(Z2)−ϑ1(Z1),ϑ2(Z2)−ϑ3(Z3) (z̃1, ϑ2 (z2)− ϑ1 (z1) , ϑ2 (z2)− ϑ3 (z3))

×d (ϑ2 (z2)− ϑ1 (z1))

)
d (ϑ2 (z2)− ϑ3 (z3))

]
d (v2 − v1) dz̃1 (A.5)

=

∫ ∞

−∞

∫ ∞

−∞
ηϑ2(Z2)−ϑ3(Z3),V2−V1

(ϑ2 (z2)− ϑ3 (z3) , v2 − v1) d (v2 − v1) d (ϑ2 (z2)− ϑ3 (z3)) .
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By parallel logic, we obtain for the second term in B.3:
By parallel logic, we obtain for the second term in A.3:

2

∫ ∞

−∞

∫ ∞

−∞
z̃1

[∫ ∞

−∞

(∫ ϑ3(z3)−ϑ2(z2)

−∞
hV3−V1,V3−V2 (v3 − v1, v3 − v2) d (v3 − v2)

)

×
(∫ ∞

v3−v1
fZ̃1,ϑ3(Z3)−ϑ1(Z1),ϑ3(Z3)−ϑ2(Z2) (z̃1, ϑ3 (z3)− ϑ1 (z1) , ϑ3 (z3)− ϑ2 (z2)) d (ϑ3 (z3)− ϑ1 (z1))

)

× d (ϑ3 (z3)− ϑ2 (z2))

]
d (v3 − v1) dz̃1

= 2

∫ ∞

−∞

∫ ∞

−∞
ηϑ3(Z3)−ϑ2(Z2),V3−V1

(ϑ3 (z3)− ϑ2 (z2) , v3 − v1) d (v3 − v1) d (ϑ3 (z3)− ϑ2 (z2)) .

These terms can be identified from a structural analysis using the joint distribution of (Z,D1, D2, D3).

Collecting results, we obtain decomposition (4.4) in the text if we multiply both the numerator and

denominator by -1.
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These terms can be identified from a structural analysis using
the joint distribution of (Z ,D1,D2,D3).

Collecting results, we obtain decomposition (4.4) in the text if
we multiply both the numerator and denominator by -1.
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Heckman, J. J., S. Urzúa, and E. J. Vytlacil (2006). Understanding
instrumental variables in models with essential heterogeneity.
Review of Economics and Statistics 88(3), 389–432.

Heckman, J. J., S. Urzúa, and E. J. Vytlacil (2008). Instrumental
variables in models with multiple outcomes: The general
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