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1. A Brief Review of Hypothesis Testing and Its Uses
Common Phrase:

Chicago Economics test Models
What are Valid Tests?

• Key Distinction: ex ante︸ ︷︷ ︸
classical
inference

vs. ex post︸ ︷︷ ︸
likelihood
principle;
Bayesian
inference

inference
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• P values and pure significance tests (R.A. Fisher)—focus on
null hypothesis testing.

• Neyman-Pearson tests—focus on null and alternative
hypothesis testing.

• Both involve an appeal to long run trials. They adopt an ex
ante position (justify a procedure by the number of times it is
successful if used repeatedly).
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2. Pure Significance Tests
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• Focuses exclusively on the null hypothesis

• Let (Y1, . . . ,YN) be observations from a sample.

• Let t(Y1, . . . ,YN) be a test statistic.

• If

1 We know the distribution of t(Y˜ ) under H0, and

2 The larger the value of t(Y˜ ), the more the evidence against

H0,

• Then
Pobs = Pr(T ≥ tobs : H0).
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• Then a high value of Pobs is evidence against the null
hypothesis.
• Observe that under the null P value is a uniform (0, 1) variable.
• For random variable with density (absolutely continuous with

Lebesgue measure) Z = FX (X ) is uniform for any X given
that FX is continuous.

• Prove this. It is automatic from the definition.
• P value — probability that T would occur given that H0 is a

true state of affairs.
• F test or t test for a regression coefficient is an example.
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• • The higher the test statistic, the more likely we reject.
• Ignores any evidence on alternatives.
• R.A. Fisher liked this feature because it did not involve

speculation about other possibilities than the one realized.
• P values make an absolute statement about a model.

• Questions to consider:

1 How to construct a ‘best’ test? Compare alternative tests.
Any monotonic transformation of the “t” statistic produces
the same P value.

2 Pure significance tests depend on the sampling rule used to
collect the data. This is not necessarily bad.

3 How to pool across studies (or across coefficients)?
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2.1 Bayesian vs. Frequentist vs. Classical Approach
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• ISSUES:

1 In what sense and how well do significance levels or “P” values
summarize evidence in favor of or against hypotheses?

2 Do we always reject a null in a big enough sample? Meaningful
hypothesis testing—Bayesian or Classical—requires that
“significance levels” decrease with sample size;

3 Two views: β = 0 tests something meaningful vs. β = 0 only
an approximation, shouldn’t be taken too seriously.
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4 How to quantify evidence about model? (How to incorporate
prior restrictions?) What is “strength of evidence?”

5 How to account for model uncertainty: “fishing,” etc.

• First consider the basic Neyman-Pearson structure- then switch
over to a Bayesian paradigm.
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• Useful to separate out:

1 Decision problems.
2 Acts of data description.

• This is a topic of great controversy in statistics.
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• Question: In what sense does increasing sample size always lead
to rejection of an hypothesis?
• If null not exactly true, we get rejections (The power of test
→ 1 for fixed sig. level as sample size increases)

• Example to refresh your memory about Neyman-Pearson
Theory.

• Take one-tail normal test about a mean:

• What is the test?

H0 : X̄ ∼ N
(
µ0, σ

2/T
)

HA : X̄ ∼ N
(
µA, σ

2/T
)

• Assume σ2 is known.
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• For any c we get

Pr

(
X̄ − µ0√
σ2/T

>
c − µ0√
σ2/T

)
= α(c).

• (We exploit symmetry of standard normal around the origin).

• For a fixed α, we can solve for c (α).

c (α) = µ0 −
σ√
T
Φ−1 (α) .
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• Now what is the probability of rejecting the hypothesis under
alternatives? (The power of a test).

• Let µA be the alternative value of µA.

• Fix c to have a certain size. (Use the previous calculations)

Pr

(
X̄ − µA√
σ2/T

>
c − µA√
σ2/T

)

= Pr

 X̄ − µA(
σ/
√
T
) >

µ0 − µA − σ√
T
Φ−1 (α)(

σ/
√
T
)

 .

• We are evaluating the probability of rejection when we allow µA

to vary.
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• Thus

= Pr

 X̄ − µA(
σ/
√
T
) >

µ0 − µA(
σ/
√
T
) − Φ−1 (α)


= α when µ0 = µA

• If µA > µ0, this probability goes to one.

• This is a consistent test.
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• Now, suppose we seek to test H0 : µ0 > k .

• Use
X̄ > k , fixed k

• If µ0 is true:
X̄ − µ0(

σ√
T

) >
k − µ0(

σ√
T

)
• The distribution becomes more and more concentrated at µ0.

• We reject the null unless µ0 = k .
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• Parenthetical Note:

• Observe that if we measure X with the slightest error and the
errors do not have mean zero, we always reject H0 for T big
enough.
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Design of Sample size

• Suppose that we fix the power = β.

• Pick c(α).

• What sample size produces the desired power?

• We postulate the alternative = µ0 +∆.
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Pr

 X̄ − µA(
σ/
√
T
) >

µ0 − µA(
σ/
√
T
) − Φ−1 (α)


= Φ

(
Φ−1 (α) +

µA − µ0
σ√
T

)
= β

Φ−1 (β) = Φ−1 (α) +
µA − µ0

σ√
T

[Φ−1 (β)− Φ−1 (α)](
∆
σ

) =
√
T
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• Minimum T needed to reject null at specified alternative.

• Has power of β for “effect” size ∆/σ.

• Pick sample size on this basis: (This is used in sample design)

• What value of β to use?

• Observe that two investigators with same α but different
sample size T have different power.

• This is often ignored in empirical work.

• Why not equalize the power of the tests across samples?

• Why use the same size of test in all empirical work?
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3. Alternative Approaches to Testing and Inference
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3.1 Classical Hypothesis Testing
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1 Appeals to long run frequencies.

2 Designs an ex ante rule that on average works well. e.g. 5% of
the time in repeated trials we make an error of rejecting the
null for a 5% significance level.

3 Entails a hypothetical set of trials, and is based on a long run
justification.
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(4) Consistency of an estimator is an example of this mindset. E.g.,
Y = Xβ + U

E (U | X ) ̸= 0; OLS biased for β.

Suppose we have an instrument:

Cov (Z ,U) = 0 Cov (Z ,X ) ̸= 0

plim βOLS = β +
Cov (X ,U)

Var (X )

plim βIV = β +
Cov (Z ,U)

Cov (Z ,X )︸ ︷︷ ︸
=0

= β

• Because Cov (Z ,U) = 0.
• Assuming Cov (Z ,X ) ̸= 0.
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• Another consistent estimator

1 Use OLS for first 10100 observations
2 Then use IV.

• Likely to have poor small sample properties.

• But on a long run frequency justification, its just fine.
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3.2 Examples of why some people get very unhappy about
classical testing procedures

Classical inference: ex ante

Likelihood and Bayesian statistics: ex post
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Example 1.

(Sample size: T = 2)

(X1,X2) X1 ⊥⊥ X2.

Pθ0 (X = θ0 − 1) = Pθ (X = θ0 + 1) =
1

2

• One possible (smallest) confidence set for θ0 is

C (X1,X2) =

{
1
2
(X1 + X2) if X1 ̸= X2

X1 − 1 if X1 = X2
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• Thus 75% of the time C (X1,X2) contains θ0 (75% of repeated
trials it covers θ0). (Verify this)

• Yet if X1 ̸= X2, we are certain that the confidence interval
exactly covers the true value 100% of the time it is right.

• Ex post or conditional inference on the data, we get the exact
value.
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Example 2.

(D.R. Cox)

1 You have data, say on DNA from crime scenes.

2 You can send data to New York or California labs. Both labs
seem equally good.

3 Toss a coin to decide which lab analyzes data.

• Should the coin flip be accounted for in the design of the test
statistic?
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Example 3.

• Test H0 : θ = −1 vs. HA : θ = 1; X ∼ N (θ, .25)

• Consider rejection region: Reject if X ≥ 0.

• If we observe X = 0, we would have α = .0228

• Size is .0228; power under alternative is .9772. Consistent test;
unbiased test. Looks good.

• If we reverse roles of null and alternative, it would also look
good.
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Example 3

X ∼ Nμ, 0. 25; H0 : μ = −1;HA : μ = 1.
Test : Reject H0 if X  0.
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Example 4.

Likelihood Principle vs. Classical Inference

• X ∈ {1, 2, 3}; we have two possible models (nulls and
alternatives): “0” and “1.”

1 2 3 ← values random
variables can assume

P0 .009 .001 .99
P1 .001 .989 .01

• Consider the following test:

• Accepts P0 when X = 3 and accepts P1 otherwise

• (α = .01 and β = .99 high power).

• Unbiased and consistent test.
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• If we observe X = 1 we reject H0.

• But the likelihood ratio in favor of “0” is

.009

.001
= 9

• Likelihood principle: alternative inferential criterion.

• All of the sample information is in likelihood.
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Example 5.

(Likelihood Principle)

1 2 3
P0 .005 .005 .99
P1 .0051 .9489 .01

• Reject “0” when X = 1, 2

• Power = .99, Size = .01.

• Is it reasonable to pick “1” over “0” when X = 1 is observed?
(Likelihood ratio not strongly supporting the hypothesis)
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Example 6.

(Lindley and Phllips; American Statistician, August, 1976):
Irrelevance of Stopping Rules in the Likelihood Principle and

in Bayesian Analysis.

• Consider an experiment.

• We draw 12 balls from an urn. The urn has an infinite number
of balls.

• θ = probability of black.

• (1− θ) = probability of red.
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• Null hypothesis: Red and black are equally likely on each trial
and trials are independent.

Pr (X is black) =

(
12

X

)
θX (1− θ)12−X .

• Suppose that we draw 9 black balls and 3 red balls.

• What is the evidence in support of the hypothesis that θ = 1
2
?
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• Consider a critical region X = {9, 10, 11, 12} to reject null of
θ = 1

2
: (H0; θ = 1

2
)

α = Pr (X ∈ {9, 10, 11, 12})

=

{(
12

3

)
+

(
12

2

)
+

(
12

1

)
+

(
12

0

)}(
1

2

)12
.
= 7.5%

• We do not reject H0 using α = .05.

• Would reject if we chose α = .10

• This sampling distribution assumes that 10 black and 2 reds is
a possibility.

• It is based on a counterfactual space of what else could occur
and with what possibility.
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• Consider an alternative sampling rule.

• Draw balls until 3 red balls are observed and then stop.

• So 10 blacks and 2 reds on a trial of 12 observations not
possible as they were before.

• Distribution of X2 (X in this experiment) is(
X2 + 2

X2

)
θX2 (1− θ)3

• Prove this (negative binomial).
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• Use same rejection region X2 = {9, 10, 11, 12, 13, . . .}
i.e., if X2 ≥ 9, reject

• Note:
Pr(X ∈ {9, 10, 11, 12, 13, ...}) = 3.25%

• Now “significant.” Reject null of θ = 1
2
.

• In both cases 9 black and 3 red on a single trial.

• They are the same for a Bayesian (will show below).

• They have the same m/e independent of stopping rule
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• In computing P values and significance levels, you need
to model what didn’t occur.

• Depends on the stopping rule and the hypothetical admissible
sample space.
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3.3 Likelihood Principle

• All of the information is in the sample.

• Look at the likelihood as best summary of the sample.
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Likelihood Approach

• Recall from your previous lectures of asymptotics that under
the regularity conditions QT (θ) is a valid criterion:

QT (θ̂) = Q(θ0) +
1

2
(θ̂ − θ0)

′ ∂2QT

∂θ∂θ′

∣∣∣∣
θ0

(θ̂ − θ0) + oP(1)

because
∂QT

∂θ̂
= 0 for all θ̂;

For likelihood L :

QT =
lnL(θ̂)

T

Q(θ0) =
lnL(θ0)

T
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• In terms of the information matrix, for the likelihood case

QT (θ̂) = Q(θ0)−
1

2
(θ̂ − θ0)

′
Iθ0(θ̂ − θ0) + oP(1)

• So we know that as T →∞, the normalized likelihood L
converges to a normal, e.g.,

X ∼ N (µ,Σ) =
1

(2π)k |Σ|
k
2

exp

[
−1

2
(X − µ)′Σ−1(X − µ)

]
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•

lnN (µ,Σ) = −k ln(2π)− k

2
ln |Σ| − 1

2
(X − µ)′Σ−1(X − µ).

• So the likelihood is converging to a normal-looking criterion
and has its mode at θ0.

• The most likely value is at the MLE estimator (mode of
likelihood is θ0).

• In the example of 9 black and 3 red, we have same θ̂0 for either
stopping rule: likelihood ignores constants.
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Bayesian Principle

• Use prior information in conjunction with sample information.

• Place priors on parameters.

• Classical Method and Likelihood Principle sharply separate
parameters from data (random variables).

• The Bayesian method does not.

• All parameters are random variables.
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• Bayesian and Likelihood approach both use likelihood.

• Likelihood: Use data from experiment.

• Evidence concentrates on θ0.

• For both Bayesians and likelihood principle inference:
irrelevance of stopping rules.

• Bayesian: Use data from experiment plus prior.

• Bayesian Approach postulates a prior p (θ).

• This is a probability density of θ.
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• Compute using posterior (Bayes Theorem):

posterior︷ ︸︸ ︷
π (θ | X ) = T L (θ | X )︸ ︷︷ ︸

likelihood

prior︷︸︸︷
p (θ)

• Where T is a constant defined so posterior integrates to 1.

• Get some posterior independent of constants (and therefore
sampling rule).
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Definetti’s Thm:

• Let Xi denote a binary variable Xi ∈ {0, 1}, Xi i.i.d.

• Pr(Xi = 1) = θ

• Pr(Xi = 0) = 1− θ

• Let p(r , s) = probability of r “1s” and s “0s”: total number of
balls (r + s) drawn.

• If series is exchangeable

p(r , s) =

∫ 1

0

(
r + s

r

)
θr (1− θ)sp(θ)dθ

• Therefore, there exists a heterogeneity distribution.

• For some p(θ) ≥ 0 (this is just the standard Hausdorff moment
problem).
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Conjugate Priors

• For this problem a natural “conjugate” prior is

p(θ) =
θa−1(1− θ)b−1

B(a, b)
0 ≤ θ ≤ 1

a = b = 1, uniform

E (θ) =
a

a + b
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Bayesian Posterior Density

• Posterior

π(θ | X ) = τθr (1− θ)s︸ ︷︷ ︸
likelihood

θa−1(1− θ)b−1︸ ︷︷ ︸
prior

,

where X is the data and τ is a normalizing constant to make
density normalize to one:

τ

∫
θr (1− θ)s θa−1(1− θ)b−1 dθ = 1

• Observe crucially that the normalizing constant is the same for
both sampling rules we discussed in the red ball and black ball
problem.
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• Why? Because we choose τ to make π(θ | X ) integrate to one.

• Mean of posterior with prior a, b

E posterior(θ) =
a + r

(a + r) + (b + s)

• Notice: The constants that played such a crucial role in
the sampling distribution play no role here. They vanish
in defining the constant τ .

mode of θ =
a + r − 1

(a + r − 1) + (b + s − 1)

• Likelihood corresponds to (r + s) trials with r red and s black.

• Prior corresponds to (a + b − 2) trials with (a − 1) red and
(b − 1) black.
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Empirical Bayes Approach

• Estimate “Prior”.

• Go to Beta-Binomial Example.

p(r , s) =

∫ 1

0

(
r+s
r

)
θr (1− θ)sθa−1(1− θ)b−1

B(a + b)
dθ.

• Now θ is a heterogeneity parameter distributed B (a, b).

=

(
r+s
r

)
B(a + r − 1, b + s − 1)

B(a + b)
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• Estimate a and b as parameters from a string of trials with r
reds and s blacks. θ is a person-specific parameter.

• Similar idea in the linear regression model Yi = Xiβi + εi .
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Random Coefficient Regression

• We can identify means and variances of β.

Yi = Xiβi + εi Xi ⊥⊥ (βi , εi)

βi = β̄ + Ui E (U(i)U
′
(i)) = ΣU

• Assume εi ⊥⊥ βi ; Xi ⊥⊥ εi .

Yi = Xi β̄ + (XiUi + εi)︸ ︷︷ ︸
νi

E
[
ν2
i | Xi

]
= σ2

ε + XiΣUX
′
i

• Use squared OLS residuals to identify ΣU given X .
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• Notice: We can extend the model to allow

βi = ΦZi + Ui

and identify Φ (Hierarchical model).
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• Digression: Take the Classical Normal Linear Regression
Model

Y = Xβ + U , U ⊥⊥ X , E (UU ′) = σ2I

OLS β̂ = (X ′X )−1X ′Y Var(β̂) = σ2(X ′X )−1.

• Assume σ2 known. Take a conjugate prior on β.

β ∼ N
(
β̄, σ2(C )−1

)
• Posterior is normal:

βposterior ∼

N
((

C + (X ′X )−1
)−1
(
C β̄ + (X ′X )β̂

)
, σ2(C + X ′X )−1

)
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• Thus, we can think of the prior as a sample of observations
with the “(X ′X )” matrix being C and the “sample” OLS from
prior being β̄.
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• Compare to [
Y ∗

Y

]
=

[
X ∗

X

]
β +

[
U∗

U

]
.

• OLS is (X ∗′X ∗ + X ′X )−1 (X ∗′X ∗b∗ + X ′Xb) ,

b∗ = (X ∗′X ∗)
−1

X ∗′Y ∗, b = (X ′X )
−1

X ′Y .

• (Prove this.)

• In other words see, e.g., Robert (Bayesian choice) for more
general case where σ2 is unknown (gamma prior).
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• To compute evidence on one hypothesis vs. another hypothesis
use posterior odds ratio

Pr(H1 | X )

Pr(H0 | X )
=

Pr(X | H1)

Pr(X | H0)

Pr(H1)

Pr(H0)

• Hypotheses are restrictions on the prior (e.g. different values of
(a, b))
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Bayesian Testing
Point null vs. Point Alternative test

• Think of a regression model Y = Xβ1 + U1 vs. Y = Xβ0 + U0

• 2 Hypotheses: H1,H0

Posterior odds ratio

Pr (H1 | Y )

Pr (H0 | Y )
=

Bayes factor

Pr (Y | H1)

Pr (Y | H0)

Prior odds ratio

Pr (H1)

Pr (H0)
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• “Predictive density”:

f (Y | Hi) =

∫
βi
˜

∫
σ2
i

f
(
Y | Hi , βi , σ

2
i

)
Likelihood

f
(
βi , σ

2
i

)
Prior density

dβi dσi

Heckman Hypothesis Testing Part I



• Evidence supports the higher posterior probability model.

• Example:

Yi ∼ N
(
µ;σ2

)
Ȳ ∼ N

(
µ;σ2/T

)
H0 : µ0 = 0, σ = 1

H1 : µ1 = 1, σ = 1

H0 : Ȳ ∼ N (0, 1/T )

H1 : Ȳ ∼ N (1, 1/T )
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• Typical Neyman-Pearson Rule:

Reject H0 if Ȳ ≥ c

Accept H0 if Ȳ < c
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• Type 1 and Type 2 errors:

α (c) = Pr
(
Ȳ > c | µ = 0

)
β (c) = Pr

(
Ȳ ≤ c | µ = 1

)
• Example: c = 0.5, α = β = 0.31 (show this).
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Bayes Approach

Pr
(
H0 | Ȳ

)
=

f
(
Ȳ | H0

)
Pr (H0)

f
(
Ȳ
)

=
f
(
Ȳ | H0

)
Pr (H0)

f
(
Ȳ | H0

)
Pr (H0) + f

(
Ȳ | H1

)
Pr (H1)

Pr
(
H1 | Ȳ

)
=

f
(
Ȳ | H1

)
Pr (H1)

f
(
Ȳ | H0

)
Pr (H0) + f

(
Ȳ | H1

)
Pr (H1)

Heckman Hypothesis Testing Part I



Pr
(
H0 | Ȳ

)
Pr
(
H1 | Ȳ

) =
f
(
Ȳ | H0

)
Pr (H0)

f
(
Ȳ | H1

)
Pr (H1)

= exp
1

2

[
−T

(
Ȳ
)2

+ T
(
Ȳ − 1

)2] [Pr (H0)

Pr (H1)

]
= exp

1

2

[
TȲ 2 − 2TȲ + T − TȲ 2

] [Pr (H0)

Pr (H1)

]
=

[
exp

1

2

(
T − 2TȲ

)] [Pr (H0)

Pr (H1)

]
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• Recall σ2 = 1 under null and alternatives.

ln

(
Pr
(
H0 | Ȳ

)
Pr
(
H1 | Ȳ

)) = ln

(
Pr (H0)

Pr (H1)

)
+

T

2

(
1− 2Ȳ

)
T

2

(
1− 2Ȳ

)
+ ln

(
Pr (H0)

Pr (H1)

)
> 0 (If true accept H0)

1

2
+

[
ln
(

Pr(H0)
Pr(H1)

)]
T

> Ȳ

• As T gets big cut off changes with sample size unless
Pr(H0) = Pr(H1) =

1
2

• Notice that this is different from the classical statistical rule of
a fixed cutoff point.
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Point Null vs. Composite Alternative

• Same set up as in previous case: Ȳ ∼ N (µ, σ2/T ).

• H0 : µ = 0 vs. HA : µ ̸= 0. σ2 is unspecified, but common
across models.
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• Turn Bayes Crank. Likelihood factor:

fT (Y ;µ, σ2I )

fT (Y ; 0, σ2I )

• Relative likelihoods

LR = exp

[
T

2σ2

[
Ȳ 2 −

(
Ȳ − µ

)2]]
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• What value of µ is best supported by data?

• Recall the likelihood approach: (Focuses on outcomes that are
most likely.)

LR = exp

[
T

2σ2
µ(2Ȳ − µ)

]
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• P value approach uses absolute likelihood – not relative
likelihood.

• In what sense is it most likely? Likelihood approach:

• Evaluate at null of µ = 0 and we get:

L = exp

[
− T

2σ2
Ȳ 2

]
=̇1− T

2σ2
Ȳ 2 = 1− 1

2

 Ȳ√
σ2

T

2

︸ ︷︷ ︸
t2 for µ=0

,

• This is an expression of support for the hypothesis: µ = 0.

• Thus a big “t” value leads to rejection of the null.

• But this approach does not worry about the alternative.
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Frequency Theory or Sampling Approach.

• Look at sampling distributions of model

• Test statistic Ȳ : centered at µ = 0

α (c) = Pr
(
Ȳ > c | µ = 0

)
e.g. Ȳ ≥ 1.96 σ√

T
we reject.

• p value: knife-edge value is the value that occurred—value that
favors null? At any level less than c , null hypothesis is not
rejected.
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• Significance level: is what occurred unlikely?

• Relative likelihood computes evidence of one hypothesis relative
to another (null vs. alternative).

• Support for one hypothesis vs. support for another.

• Suppose we allocate positive probability to null.
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• Otherwise the probability of a point null = 0.

P (µ)


π if µ = 0

(1− π) fN
(
µ | 0, (h∗)−1

)
︸ ︷︷ ︸

µ∼N(0, 1
h∗ )

if µ ̸= 0
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• Point mass:

Pr
(
H1 | Ȳ

)
Pr
(
H0 | Ȳ

) =

∫
µ ̸=0

fN
(
Ȳ | µ, σ2/T

)
P (µ) dµ

fN
(
Ȳ | µ = 0, σ2/T

)
=

(1− π)

π

∫ (
1√
2πσ2

)T
exp
[
−
(
Ȳ − µ

)2 T
2σ2

]
exp
[
− (µ)2h∗

2

]
dµ(

1√
2πσ2

)T
exp
[
−
(
Ȳ
)2 T

2σ2

]
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• Complete the square in the numerator and integrate out µ

• Side manipulations: Look at numerator

exp

[
− T

2σ2
(Ȳ 2 − 2µȲ + µ2)− µ2

2
h∗
]
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• Complete the square to reach:

exp

[
−TȲ 2

2σ2

]
exp−

[(
h∗

2
+

T

2σ2

)
µ2 − 2TȲ

2σ2
µ

]

=

(
h∗ +

T

σ2

)− 1
2 √

2π exp

−1

2

(
TȲ
σ2

)2(
T
σ2 + h∗

)
 .

exp

[
−TȲ 2

2σ2

] (
h∗ + T

σ2

) 1
2

√
2π

·

· exp

−1

2

(
h∗ +

T

σ2

)µ2 −

(
2TȲ
σ2

T
σ2 + h∗

)
µ+

(
TȲ
σ2

T
σ2 + h∗

)2

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• Then integrate out the µ (using a conjugate prior) and we get
(cancelling terms):

P
(
H1 | Ȳ

)
P
(
H0 | Ȳ

) =

[
1− π

π

](
h∗ +

T

σ2

)− 1
2

· exp

[(
TȲ 2

σ2

)(
1

2

)( T
σ2

T
σ2 + h∗

)]

=

[
1− π

π

](
1 +

T

h∗σ2

)− 1
2

exp

( Ȳ
σ√
T

)2(
1

2

)(
1

1 + σ2h∗

T

)
︸ ︷︷ ︸

Bayes factor
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=
1− π

π

(
1

1 + T
h∗σ2

) 1
2

exp

[
t2

2

(
1

1 + σ2h∗

T

)]

• Notice that the higher
(

Ȳ
σ√
T

)
= “t”, the more likely we reject

H0.

• However, as T →∞, for fixed “t”, we get
Pr
(
H1 | Ȳ

)
Pr
(
H0 | Ȳ

) → 0.

• Notice “t”=
√
T Ȳ−µ

σ
for µ = 0; this is OP (1).

• ∴ we support H0 (“Lindley Paradox”)
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• Bayesians use sample size to adjust “critical region” or rejection
region.

• In classical case, we have that with α fixed, the power of the
test goes to 1. (It overweights the null hypothesis.)

• Issue: which weighting of α and β is better?
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