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1. A Brief Review of Hypothesis Testing and Its Uses
Common Phrase:
Chicago Economics test Models
What are Valid Tests?

e Key Distinction: ex ante vs. ex post inference

- ——
Classical likelihood
inference principle;

Bayesian
inference
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® P values and pure significance tests (R.A. Fisher)—focus on
null hypothesis testing.

¢ Neyman-Pearson tests—focus on null and alternative
hypothesis testing.

® Both involve an appeal to long run trials. They adopt an ex
ante position (justify a procedure by the number of times it is
successful if used repeatedly).
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2. Pure Significance Tests
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® Focuses exclusively on the null hypothesis

Let (Y1,..., Yn) be observations from a sample.
Let t(Y1,..., Yn) be a test statistic.
If

@ We know the distribution of t(Y’) under Hp, and

@® The larger the value of t(Y'), the more the evidence against
Ho,
Then

Pobs = PF(T 2 tobs . Ho)
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® Then a high value of P,y is evidence against the null
hypothesis.

® Observe that under the null P value is a uniform (0, 1) variable.

* For random variable with density (absolutely continuous with
Lebesgue measure) Z = Fx(X) is uniform for any X given
that Fx is continuous.

® Prove this. It is automatic from the definition.

® P value — probability that T would occur given that Hp is a
true state of affairs.

® F test or t test for a regression coefficient is an example.
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®  © The higher the test statistic, the more likely we reject.
® |Ignores any evidence on alternatives.
® R.A. Fisher liked this feature because it did not involve
speculation about other possibilities than the one realized.
® P values make an absolute statement about a model.
® Questions to consider:

@ How to construct a ‘best’ test? Compare alternative tests.
Any monotonic transformation of the “t" statistic produces
the same P value.

® Pure significance tests depend on the sampling rule used to
collect the data. This is not necessarily bad.

©® How to pool across studies (or across coefficients)?
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2.1 Bayesian vs. Frequentist vs. Classical Approach
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® |ISSUES:

@ In what sense and how well do significance levels or “P" values
summarize evidence in favor of or against hypotheses?

® Do we always reject a null in a big enough sample? Meaningful
hypothesis testing—Bayesian or Classical—requires that
“significance levels” decrease with sample size;

©® Two views: 5 = 0 tests something meaningful vs. 3 =0 only
an approximation, shouldn't be taken too seriously.
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©® How to quantify evidence about model? (How to incorporate
prior restrictions?) What is “strength of evidence?"

® How to account for model uncertainty: “fishing,” etc.

® First consider the basic Neyman-Pearson structure- then switch
over to a Bayesian paradigm.
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e Useful to separate out:

@ Decision problems.
® Acts of data description.

e This is a topic of great controversy in statistics.
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Question: In what sense does increasing sample size always lead
to rejection of an hypothesis?
* If null not exactly true, we get rejections (The power of test
— 1 for fixed sig. level as sample size increases)

Example to refresh your memory about Neyman-Pearson
Theory.

Take one-tail normal test about a mean:
What is the test?

Hy : )_(NN(uo,az/T)
Ha = X~ N (pa,0%/T)

e Assume o2 is known.
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® For any ¢ we get

X — Ho C—Ho | _ a(c)
/02T /62T
® (We exploit symmetry of standard normal around the origin).

* For a fixed «, we can solve for ¢ ().

c(a) = po — ﬁdfl ().
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® Now what is the probability of rejecting the hypothesis under
alternatives? (The power of a test).

® et up be the alternative value of p,.
® Fix ¢ to have a certain size. (Use the previous calculations)

)_(_,UA C— Ha
Pr
<\/02/T ~ \/02/T>

X—pa po — pta — =071 (@)
(o/VT) (o/VT)

= Pr

® We are evaluating the probability of rejection when we allow j4
to vary.
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® Thus

. . X_NA Ho — HA 11 a
- F (a/ﬁ)>(a/ﬁ) v

= « when g = pa

® If pua > po, this probability goes to one.
® This is a consistent test.
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® Now, suppose we seek to test Hp : o > k.
® Use ~

X > k, fixed k
o If pg is true: _

X — k —

Ho > Ho

(#) (&)
¢ The distribution becomes more and more concentrated at .
® We reject the null unless 1o = k.
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¢ Parenthetical Note:

e Observe that if we measure X with the slightest error and the
errors do not have mean zero, we always reject Hy for T big
enough.
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Design of Sample size

Suppose that we fix the power = .
Pick c(«).
What sample size produces the desired power?

We postulate the alternative = g + A.
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Pr X_NA Mo — KA
((g/ﬁ) > (0/\//;> o (a))




® Minimum T needed to reject null at specified alternative.

® Has power of 3 for “effect” size A/o.

® Pick sample size on this basis: (This is used in sample design)
® What value of 3 to use?

® QObserve that two investigators with same « but different
sample size T have different power.

® This is often ignored in empirical work.
® Why not equalize the power of the tests across samples?
® Why use the same size of test in all empirical work?
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3. Alternative Approaches to Testing and Inference
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3.1 Classical Hypothesis Testing

Heckman Hypothesis Testing Part |



©® Appeals to long run frequencies.

® Designs an ex ante rule that on average works well. e.g. 5% of
the time in repeated trials we make an error of rejecting the
null for a 5% significance level.

©® Entails a hypothetical set of trials, and is based on a long run
justification.
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(4) Consistency of an estimator is an example of this mindset. E.g.,
Y =XB+U

E (U | X) # 0; OLS biased for 5.
Suppose we have an instrument:

Cov(Z,U)=0 Cov(Z,X)#0
Cov (X, U)
Var(X)
i Gy = 5+ oo (55 =
—_—

=0

plim Bors = 8 +

® Because Cov (Z,U) =0.
® Assuming Cov (Z,X) # 0.
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® Another consistent estimator

@ Use OLS for first 10199 observations
® Then use /V.

¢ Likely to have poor small sample properties.

® But on a long run frequency justification, its just fine.
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3.2 Examples of why some people get very unhappy about
classical testing procedures

Classical inference: ex ante

Likelihood and Bayesian statistics: ex post
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Example 1.
(Sample size: T = 2)

(X1, X2) Xy 1L X5.
1
Py (X =0 —1) = Py(X = o +1) = 5
® One possible (smallest) confidence set for 6y is

1 .
_ ) 3 (X1 4+ X3) if X1 #X;
ﬂ%&%{ Xi—1 if X1=X
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e Thus 75% of the time C (Xi, X2) contains 6y (75% of repeated
trials it covers 6p). (Verify this)

® Yet if X; # Xo, we are certain that the confidence interval
exactly covers the true value 100% of the time it is right.

® FEx post or conditional inference on the data, we get the exact
value.
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Example 2.
(D.R. Cox)

® You have data, say on DNA from crime scenes.

® You can send data to New York or California labs. Both labs
seem equally good.

® Toss a coin to decide which lab analyzes data.

® Should the coin flip be accounted for in the design of the test
statistic?
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Example 3.

® Test Hy: 0 =—1vs. Hy:0 =1, X ~ N(0,.25)
® Consider rejection region: Reject if X > 0.
e |f we observe X = 0, we would have oo = .0228

e Size is .0228; power under alternative is .9772. Consistent test;
unbiased test. Looks good.

® |f we reverse roles of null and alternative, it would also look
good.

Heckman Hypothesis Testing Part |



Example 3
X~ N(u,0.25); Ho:p=-1;Hg:pu=1.
Test : Reject Hy if X > 0.

= = — 06 o)
—— olle o) |

051

031

Probability Density Function

0.1F

Lo
&

X, my =1, g1, o?=025

In the case of 0 being observed: Power = ¢ = 0.0228
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Example 4.

Likelihood Principle vs. Classical Inference

X € {1,2,3}; we have two possible models (nulls and
alternatives): “0" and “1.”

1 2 3 < values random
variables can assume

Py | .009 .001 .99
P, | .001 989 .01

Consider the following test:

Accepts Py when X = 3 and accepts P; otherwise
(a=.01 and B = .99 high power).

Unbiased and consistent test.
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® |f we observe X =1 we reject Hp.
® But the likelihood ratio in favor of “0" is
.009
2 _9
.001
¢ Likelihood principle: alternative inferential criterion.
[ ]

All of the sample information is in likelihood.
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Example 5.
(Likelihood Principle)

1 2 3
Py | .005 .005 .99
P, | .0051 .9489 .01

Reject “0" when X =1,2

Power = .99, Size = .01.

® |Is it reasonable to pick “1” over “0" when X =1 is observed?
(Likelihood ratio not strongly supporting the hypothesis)
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Example 6.

(Lindley and Phllips; American Statistician, August, 1976):
Irrelevance of Stopping Rules in the Likelihood Principle and
in Bayesian Analysis.

Consider an experiment.

We draw 12 balls from an urn. The urn has an infinite number
of balls.

0 = probability of black.
(1 — ) = probability of red.
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® Null hypothesis: Red and black are equally likely on each trial
and trials are independent.

Pr(X is black) = (;2) X (1—0)>%.

® Suppose that we draw 9 black balls and 3 red balls.
® What is the evidence in support of the hypothesis that 6 = %?
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e Consider a critical region X = {9,10, 11,12} to reject null of
9:%(/‘,0,9:%)

a = Pr(X e{9,10,11,12})

GG () (G e

® We do not reject Hy using o = .05.

® Would reject if we chose o = .10

® This sampling distribution assumes that 10 black and 2 reds is
a possibility.

® |t is based on a counterfactual space of what else could occur
and with what possibility.
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Consider an alternative sampling rule.

Draw balls until 3 red balls are observed and then stop.

So 10 blacks and 2 reds on a trial of 12 observations not
possible as they were before.

Distribution of X, (X in this experiment) is
Xo+2 3

02 (16

(Mo )ra-o

Prove this (negative binomial).
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e Use same rejection region X, = {9,10,11,12,13,...}
ie., if Xo > 9, reject

* Note:
Pr(X € {9,10,11,12,13,...}) = 3.25%
* Now “significant.” Reject null of 6 = %
® In both cases 9 black and 3 red on a single trial.
® They are the same for a Bayesian (will show below).

They have the same m/e independent of stopping rule
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¢ In computing P values and significance levels, you need
to model what didn’t occur.

® Depends on the stopping rule and the hypothetical admissible
sample space.
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3.3 Likelihood Principle

e All of the information is in the sample.

® Look at the likelihood as best summary of the sample.
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Likelihood Approach

¢ Recall from your previous lectures of asymptotics that under
the regularity conditions Q1(#) is a valid criterion:

Qr(d)

b 0Qr
ecause —
00

Qr
Q(b)

1 A , 2
Q(0o) + 5(0 = bo) o Qr

2000 |, (0= o) + oe(1)

0 for all 9A;
For likelihood L :

In £(0)
-
In E(eo)

T
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® |n terms of the information matrix, for the likelihood case

Qr(A) = Q(00) — (8 — 00) I, (A — 60) + 0p(1)

1
2

® So we know that as T — oo, the normalized likelihood £
converges to a normal, e.g.,

1
X~ N(p,T) = exp | =5 (X = )T (X = p)

(2m) T}
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[
k 1 P
InN(p, X) = —klIn(27) — > In|¥| — E(X — ) T7HX = p).
® So the likelihood is converging to a normal-looking criterion

and has its mode at 6,.

The most likely value is at the MLE estimator (mode of
likelihood is 6y).

In the example of 9 black and 3 red, we have same 90 for either
stopping rule: likelihood ignores constants.
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Bayesian Principle

Use prior information in conjunction with sample information.

Place priors on parameters.

Classical Method and Likelihood Principle sharply separate
parameters from data (random variables).

The Bayesian method does not.

All parameters are random variables.
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® Bayesian and Likelihood approach both use likelihood.
® Likelihood: Use data from experiment.
® Evidence concentrates on 6.

¢ For both Bayesians and likelihood principle inference:
irrelevance of stopping rules.

® Bayesian: Use data from experiment plus prior.
® Bayesian Approach postulates a prior p (6).
® This is a probability density of 6.
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® Compute using posterior (Bayes Theorem):

posterior prior
m(0[X)=TL(©O|X)p(0)
likelihood

® Where T is a constant defined so posterior integrates to 1.

® Get some posterior independent of constants (and therefore
sampling rule).
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Definetti’'s Thm:

® Let X; denote a binary variable X; € {0,1}, X; i.i.d.

* PriX;=1)=4¢

* Pr(X;=0)=1-40

e Let p(r,s) = probability of r “1s” and s “0s": total number of
balls (r + s) drawn.

® If series is exchangeable

)= [ (7)o orpras

r

® Therefore, there exists a heterogeneity distribution.

® For some p(#) > 0 (this is just the standard Hausdorff moment
problem).
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Conjugate Priors

® For this problem a natural “conjugate” prior is

93_1(1 o Q)b—l
<0<
p(0) B(2.b) 0<6<1
a = b=1, uniform
a
E p—
() a+b
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The Beta Probability Density Function
Beta 1

Beta Probability Density Function

0 0.2 0.4 0.6 0.8 1
0 of Beta(,a,b), a=0.1

BetaPDF(0,a,b) = %; a=0.1;
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The Beta Probability Density Function
Beta 2

Beta Probability Density Function

0 0.2 0.4 0.6 0.8 1
6 of Beta(®,a,b), a=0.5

BetaPDF(0,a,b) = “—{=0""; a = 0.5,

Heckman Hypothesis Testing Part |



The Beta Probability Density Function

Beta 3
10 T T T T
—— b=0.1
9 —==b=05
....... b_
8+ ——b=2
——-b=3
A\ bos
— b=10

Beta Probability Density Function
(&)

.6 0.8 1

0 0.2 0.4 0
0 of Beta@ab), a=1

BetaPDF(0,a,b) = & —0=0""". , _ 1,
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The Beta Probability Density Function
Beta 4

oo

S~own =00

©
coooooo
5

Beta Probability Density Function

0 0.2 0.4 0.6 0.8 1
6 of Beta(®,ab), a=2

BetaPDF(0,a,b) = %; a=2;
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The Beta Probability Density Function
Beta 5

oo

S~own =00

©
T
coooooo
o

Beta Probability Density Function
o
4

0 0.2 0.4 0.6 0.8 1
0 of Beta(®,ab), a=3

BetaPDF(0,a,b) = %; a=3;
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The Beta Probability Density Function
Beta 6

Beta Probability Density Function
(&)
T

0 0.2 0.4 0.6 0.8 1
6 of Beta(®,ab),a=5

BetaPDF(0,a,b) = % a=5;
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The Beta Probability Density Function
Beta 7

Beta Probability Density Function
(&)
T

0 0.2 0.4 0.6
6 of Beta(®,ab),a=10

BetaPDF(0,a,b) = % a = 10;
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Beta Probability Density Function

The Beta Probability Density Function
Beta 8

0 0.2

0.4 .6
0 of Betapab) a=1

BetaPDF(6,a,b) = £ 0=0"",

Heckman

B(ab)

The Beta Probability Density Function
Beta 9

BetaPDF(0,a,b) = . 0=0""

Bab)

Hypothesis Testing

03 o mamasia)
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The Beta Probability Density Function The Beta Probability Density Function
Beta 10 Beta 11

Beta Probability Density Function
m

0.2
1 6 of Betap,a,b) ; (a = 2) 0 3 25 b (a=2)

0 of Betapab) a=2

BetaPDF(0,a,b) = %; a=2; BetaPDF(0,a,b) = %; be[0.5,3];
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The Beta Probability Density Function

Beta 8
10 T T T T
b=1
9 b=2 |4
- b=3
8h ——b=4 |4
——=-b=5
2 S N b=6 ||
—— b=10

Beta Probability Density Function

0 0.2 0.4 0.6 0.8 1
0 of Beta@,a,b), a=1

BetaPDF(0,a,b) = %; (a=1);
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The Beta Probability Density Function
Beta 9

05 o

BetaPDF(6,a,b) = “ =077 b € [0.5,3];
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The Beta Probability Density Function

Beta 10
10 T T T T
b=1
9t ——=b=2 |
------- b=3
8t ——b=4 |
—-—-b=5
Y D oo |
- b =10
6 i
50 1

Beta Probability Density Function

0.4 0.6
6 of Betap,a,b), a=2

BetaPDF(8,a,b) = “— (=07 4 =2,
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The Beta Probability Density Function
Beta 11

0.4 f 05

0.2 15
0 of Betap,a,b) ; (a = 2) 0 3 2.5 b (a=2)

BetaPDF(6,a,b) = =0 € [0.5,3];
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Bayesian Posterior Density
® Posterior

7(0 | X) = 70" (1 — 0)° 62"1(1 — 0)1,

o o g

TV TV
likelihood prior

where X is the data and 7 is a normalizing constant to make
density normalize to one:

T/@r(l — 001 - 0)"rdo =1
® Observe crucially that the normalizing constant is the same for

both sampling rules we discussed in the red ball and black ball
problem.
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——
® Why? Because we choose 7 to make 7(6 | X) integrate to one.
® Mean of posterior with prior a, b

a-t+r
(a+r)+(b+5s)

E posterior(e) —_

* Notice: The constants that played such a crucial role in
the sampling distribution play no role here. They vanish
in defining the constant 7.

at+r—1

f =
mode of 0 (Grr—1)+(b+s—1)

e Likelihood corresponds to (r + s) trials with r red and s black.

® Prior corresponds to (a+ b — 2) trials with (a — 1) red and
(b—1) black.
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Empirical Bayes Approach

e Estimate “Prior”.
¢ Go to Beta-Binomial Example.

B 1 (r-ir-s) 9r(1 o 9)593—1(1 _ 9)b—1
p(r,s) = /0 Bz D) do.

® Now 0 is a heterogeneity parameter distributed B (a, b).

(T)Bla+r—1,b+s—1)
B(a+ b)

Heckman Hypothesis Testing Part |



e Estimate a and b as parameters from a string of trials with r
reds and s blacks. 6 is a person-specific parameter.

e Similar idea in the linear regression model Y; = X;3; + ¢;.
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Random Coefficient Regression
® We can identify means and variances of (.
Yi=XiBi+e X AL (Bi,e)

Bi=pB+ U E(UnUiiy) = Zu
e Assume ¢; 1L 5;; X; AL ;.

Y, = X;3 + (XiU; + €1)
—_————

E [l/,2 | X,] = O'g —f-X;ZUXi,
® Use squared OLS residuals to identify ¥ given X.
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e Notice: We can extend the model to allow
Bi =9Z + U;

and identify ® (Hierarchical model).
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® Digression: Take the Classical Normal Linear Regression
Model

Y =XB+ U, Ul X, E(UU) = o?1

OLS B=(X'X)'X'Y  Var(f) = o*(X'X)"L.

® Assume o2 known. Take a conjugate prior on 3.
B~ N (B,0%(C)Y)

® Posterior is normal:

/Bposterior ~

N ((C-I- (X'X)_1>—1 (CB + (X'X)B) 702((: -I-X'X)_l)
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® Thus, we can think of the prior as a sample of observations
with the “(X'X)" matrix being C and the “sample” OLS from
prior being .
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Compare to

el

OLSis  (X*X*+X'X)™ (X*X*b* + X'Xb),

b* = (X¥X*) I XYY*, b= (X'X)TX'Y.

(Prove this.)

In other words see, e.g., Robert (Bayesian choice) for more
general case where 02 is unknown (gamma prior).
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® To compute evidence on one hypothesis vs. another hypothesis
use posterior odds ratio
Pr(Hy | X)  Pr(X | Hy) Pr(Hy)
Pr(Ho | X)  Pr(X | Hy) Pr(Ho)

® Hypotheses are restrictions on the prior (e.g. different values of

(a, b))
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Classical Approach

Bayesian Approach

Assumption regarding experiment Events independent,
given a probability

Interpretation of probability Relative frequency;
applies only to repeated events

Statistical inferences Based on sampling distribution;
sample space or stopping rule
must be specified

Estimates of parameters Requires theory of estimation

Intuitive judgement Used in setting significance levels,
in choice of procedure, and in other
ways

Events form exchangeable sequences

Degrees of belief;
applies both to unique
and to sequences of events

Based on posterior distribution;
prior distribution must be assessed
Descriptive statistics of the posterior

distribution

Formally incorporated in the
prior distribution

Source: Lindley, D.V. and Phillips, L.D. (1976). “Inference for a Bernoulli Process (A Bayesian View).” American Statistician 30(3):

112-119
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Bayesian Testing
Point null vs. Point Alternative test

® Think of a regression model Y = X1 + U; vs. Y = X5y + Uy
® 2 Hypotheses: H;, Hy

Posterior odds ratio Bayes factor Prior odds ratio

Pr(Hi | Y)  Pr(Y|Hy) Pr(Hy)
Pr(Ho | Y) — Pr(Y | Hy) Pr(Hp)
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® “Predictive density”:

f(Y | H,) ://2f(y | H,',ﬁ,'70',-2) f(ﬂ,',O’,?) dﬂ,’dO’,’

Likelihood Prior density
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¢ Evidence supports the higher posterior probability model.
e Example:

Y, ~ N(u0°) Y ~ N (p;0%/T)
Hy : pwo=0,0=
Hl . ,LL1:1,0':1

Ho : Y ~N(0,1/T)

H : Y~N(1,1/T)

Heckman Hypothesis Testing Part |



® Typical Neyman-Pearson Rule:

Reject Hy if Y > ¢
Accept Hyif Y < ¢
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® Type 1 and Type 2 errors:

a(c) = Pr(\:/>c|,u:0)
B(c) = Pr(Y<c|u=1)

* Example: ¢ = 0.5, a = = 0.31 (show this).
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Bayes Approach

f (Y| Ho) Pr (Ho)

Pr(Ho| V) = F(Y)
B f(\_/ | Ho) Pr (Ho)
(VI Ho) Pr(Ho) + £ (V | F) Pr(Hh)
o f(\_/|H1) Pr(H)
") TP+ (7| )
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Pr(Ho | Y f (Y | Ho) Pr(Ho)

Pr(H | Y f (Y | Hy) Pr(H)
o [T (7) 4 T(V 1) {iiﬁﬂ?ﬂ
exp% [T\_/z —2TY 4+ T — T\_/z] [E:g:ﬁ”

k7279 (2
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e Recall 02 =1 under null and alternatives.

Pr(Ho | Y) Pr (Ho) T
(m) = ()t 2 029

T - Pr (H,
5 (1—-2Y)+1n <P: EH?;> > 0 (If true accept Hyp)
Pr(Ho)
L (G
I S U GOV B 7
5 + T >

e As T gets big cut off changes with sample size unless
Pr(Ho) = Pr(H.) = 1

® Notice that this is different from the classical statistical rule of
a fixed cutoff point.
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Point Null vs. Composite Alternative

* Same set up as in previous case: Y ~ N (u,02/T).

® Hy:pu=0vs. Hy:p#0. 02 is unspecified, but common
across models.
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e Turn Bayes Crank. Likelihood factor:

fr (Y; u,o?l)
fr (Y 0,020

e Relative likelihoods

J {2%2 Ve (v - “)ZH
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® What value of p is best supported by data?

¢ Recall the likelihood approach: (Focuses on outcomes that are
most likely.)

T -
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Relative Likelihood for the Model

£ =exp(oy [V~ (V — 1))

18 T T T T

——op(lY *- (Y- 0 TA267)
16 + u|

Relative Likelihood

06 [ 4

04 1

o i i i i i
3 2 -1 0 1 2 3 4 5
WiY=1 6=1T=1
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® P value approach uses absolute likelihood — not relative
likelihood.

In what sense is it most likely? Likelihood approach:

e Evaluate at null of ;= 0 and we get:
N2
T V2 . T /2 1 Y
ﬁ—exp{—r‘eY}—l—rﬂY—l—E 0_2
—_——
t2 for u=0

This is an expression of support for the hypothesis: ;1 = 0.

Thus a big “t" value leads to rejection of the null.

But this approach does not worry about the alternative.
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Frequency Theory or Sampling Approach.

¢ Look at sampling distributions of model
e Test statistic Y : centered at ;1 =0

a(c)=Pr(Y >c|u=0)

eg. Y > 1.96% we reject.

® p value: knife-edge value is the value that occurred—value that
favors null? At any level less than ¢, null hypothesis is not
rejected.
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Sampling Distribution of ¥ (Two sided Test)

05 B

1/2 P-Value
02

0.1
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Significance level: is what occurred unlikely?

Relative likelihood computes evidence of one hypothesis relative
to another (null vs. alternative).

Support for one hypothesis vs. support for another.

® Suppose we allocate positive probability to null.
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® Otherwise the probability of a point null = 0.

s if u=0
P(u){ (1—m)fy (uIO,(h*)_l) if u#0

N0, %)
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® Point mass:

Pr(H | Y)  foofu (Y 10%/T)P(n)du
Pr(Ho | Y) fu (Y| u=0,02/T)
aonl(F2) e [ (7 w5 g
T (\/#7) exp [_ (\7)2%]
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¢ Complete the square in the numerator and integrate out u

¢ Side manipulations: Look at numerator

T _ _ 2
(Y2 = 2uY + 412) — %h*

exp —T‘Q
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® Complete the square to reach:

. TY? . h*+ T\ , 2TY
P02 *P 2 o2 ) T 2 M

:(h* ) é\ﬂrexp — ("_Y)

NI~|

(F+m) |
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® Then integrate out the 1 (using a conjugate prior) and we get
(cancelling terms):

~
Bayes factor
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1
1—7 1 2 t2 1
= exp = | ——==
T 1 + h*'[(;z p 2 1 + 0—27[_-,*

* Notice that the higher (%) = “t", the more likely we reject
T
Ho.
_ Pr(Hi | Y)
® However, as T — oo, for fixed “t"”, we get == —0
Pr (HO | Y)

Notice “t”=ﬁ% for = 0; this is Op (1).
.. we support Hy (“Lindley Paradox”)
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® Bayesians use sample size to adjust “critical region” or rejection
region.

® In classical case, we have that with « fixed, the power of the
test goes to 1. (It overweights the null hypothesis.)

® Issue: which weighting of v and [ is better?
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