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lnWi = α0 + α1ai + α2y
↑ ↑

age year

α3ei + α4si + α5ci + ui
↑ ↑ ↑

experience schooling vintage (birth cohort)
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Two Identities

ei = ai − si “experience” (1)

y = ai + ci ci = birth year (2)

• Solve out for ci and ai to get estimable combinations.
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• Take the simpler case first:

lnW (a, y , c) = β0 + β1ai
(age)

+ β2yi
(year)

+ β3ci
(cohort)

+ ui

yi = ai + ci ,

where y1 is the current year, and ci is the year of birth.

• Obviously, we get an exact linear dependence:

(β0, β1, β2, β3)
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• Substitute ci = yi − ai .

• lnWi = α0 + β1ai + β2yi + β3 (yi − ai) + ui

= α0 + (β1 − β3) ai + (β2 + β3) yi + ui

can identify only combinations of coefficients.

• In a cross section, yi is the same for everyone. The intercept is

[α0 + (β2 + β3) yi ] .
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• We can estimate (β1 − β3) : age minus cohort effect.

• If β3 > 0, we underestimate true β1.

• Will longitudinal data rescue us?—Not necessarily.

• With panels, yi moves with time. Recall that yi = ai + ci .

• So we still have exact linear dependence. This is true if we have
dummy variables in place of continuous variables (verify). Panel
data will rescue us— if we have no year effects.

Heckman



• We acquire similar problems in models with nonlinear terms:

y = a + c

y 2 = a2 + 2ac + c2

ay = a2 + ac
cy = ca + c2

3 linear dependencies in these set-ups

• Thus when we write

lnW = β0 + β1a + β2y + β3c + β4a
2 + β5ac

+β6ay + β7cy + β8c
2 + β9y

2 + u,

we cannot identify all of the parameters (only 3 second order
parameters are estimable out of 6 total.
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Theorem. In a model with interactions of order k with j variables
and one linear restriction among the j variables, then of the

(
j+k−1

k

)
coefficients of order k, only

(
j+k−2

k

)
are estimable. (Heckman and

Robb, in S. Feinberg and W. Mason, Age, Period and Cohort
Effects: Beyond the Identification Problem, Springer, 1986).

E.g. k = 2, j = 3; 6 coefficients and 3 are estimable, as in the
preceding example.

Theorem. In a model with ℓ restrictions on the j variables, then(
j+k−ℓ−1

k

)
kth order coefficients are estimable (Heckman and Robb,

1986).

Question: Generalize this analysis for the case of polychotomous
variables for age period and cohort effects.
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• Return to the more general case. Substitute out for ci and ai ,
using (1) and (3):

lnWi = α0 + (α2 + α5)y + (α1 + α3 − α5)ei

+ (α1 + α4 − α5)si + ui .

• In a single cross section, y is the same for everyone. The
intercept is then α0 + (α2 + α5)y , where y is year of cross
section.

• Experience coefficient = α1 + α3 − α5 = α3 + (α1 − α5) if later
vintages get higher skills, α5 > 0 and downward bias (e.g.
higher quality of schooling). If there is an aging effect (> 0,
e.g. maturation) cannot separate. Produces upward bias for α3.
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Schooling Coefficient

• α1 + α4 − α5 = α4 + (α1 − α5)

• Vintage (cohort) effects lead to downward bias.

• Age effects, upward bias.

• Observe that from the
experience coefficient− schooling coefficient:

(α1 + α3 − α5)− (α1 + α4 − α5) = α3 − α4.

• Can estimate difference in “returns” to experience net of
schooling.
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• Observe that even if α1=0 (no aging effect), still can’t estimate
these coefficients.

• Is the solution longitudinal data (observations n the same
people over time)—or repeated cross section data
(observations on the same population over time but sampling
different persons)?

• If α2 = 0,(no year effects), we can estimated α5.

• Alternatively, for each ci we can estimate α1 + α3, and hence
we can estimate α5.

• We also know α1 + α4. If α1 = 0, then α3, α4, α5 identified.
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• Observe the weakness in the procedure.

• If year effects are present, we have that there is no gain to
going to longitudinal or repeated cross section data.

• We gain a parameter when we move to the panel or repeated
cross sectional data.
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Solutions in Literature

(1) Redefine vintage (cohort) e.g. vintage fixed over period of years
(e.g. a cohort of Depression babies).

• Then lnW = (α0 + α5c) + α1a + α2y + α3e + α4s + u.

• In single cross section, c and y are fixed.
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• Substitute for e:
e = ai − si

• Then

lnW = [α0 + α5c + α2y ] + (α1 + α3)ai + (α4 − α3)si .

• We can estimate α1 + α3 and α4 − α3, and thus α1 + α4.

• Successive time periods for the same vintage gives us α2

directly [since c doesn’t move].

• If no age effect , we get α3, α4, α2, and from successive vintage
estimations, we get α5.
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(2) If we measure experience, ai ̸= ei + si (non-market breaks), we
get break in linear dependence.

• Cost: better proxies may be endogenous.

• E.g. experience = cumulated hours.

• Results carry over in an obvious way to nonlinear models.
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Example of Interpretive Pitfall

(1) Johnson and Stafford (AER, 1974)

(2) Weiss and Lillard (JPE, 1979)

• Fact: Disparity in real wages between recent Ph.D. entrants
and experienced workers rose in physics and mathematics in the
late 60s and early 70s. Not observed in the social sciences.

• Why?—Johnson-Safford story.

• Supplies of Ph.D.s enlarged by federal grants whil emand for
scientific personnel declined. Wage rigidity at the top end
motivated by specific human capital. Spot market / entrant
market bears the brunt of the burden.
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• Weiss & Lillard: “experience – vintage” interaction (ec).

• Ignore age effect:

lnW (e, c , s, y) = φ0 + φ1e + φ2c + φ3y + φ4s

+φ5e
2 + φ6c

2 + φ7ec

+φ8ey + φ9cy + φ10y
2

• Assume other powers and interactions are zero. Assume
φ10 = 0.

• Johnson-Stafford: φ8 > 0 or φ9 < 0

• Weiss-Lillard: φ7 > 0

• Recall that y = e + s + c .
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• Weiss-Lillard ignore year effects.

• We get Weiss-Lillard by substituting for y :

lnW (e, c , s) = φ0 + (φ1 + φ3)e + (φ3 + φ4)s

+(φ2 + φ3)c + (φ5 + φ8)e
2

+φ8es + (φ7 + φ8 + φ9)ec

+(φ6 + φ8)c
2

• Note that if φ7 = 0 but φ9 > 0, we get ec interaction, but it is
“really” a year effect. If entry level wages fall relative to wages
of experienced workers, the wage / experience profile is steeper
in more recent cross-sections.

Heckman



• Looking at social scientists where no interaction appears favors
Johnson-Stafford.

• Moral: auxiliary evidence and theory break the identification
problem.
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Cohort vs. Cross-Section Internal Rate of Return

• Take a cohort rate of return.

(1) Y h
a,c is the earnings of a high school graduate of cohort c at

age a.

(2) Y d
a,c is the earnings of a droupout of cohort c at age a.

(3) ρc = IRRc (cohort internal rate of return).

(4)
A∑

a=0

Y h
a,c − Y d

a,c

(1 + ρc)
a = 0.
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• The cross-section consists of a set of member of different
cohorts.

• Start with c = 1 as the youngest age group and proceed.

• At a point in time, we have a = 0 =⇒ c = 1; c + a = t..

• The cross-section internal rate of return is

A∑
a=0

(
Y h
a,1−a − Y d

a,1−a

)
(1 + ρt)

a = 0,

where A+ 1 is the maximum age in the population.
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• When can ρc = ρt?

• This can occur if the environment is stationary.

• With steady growth in differentials, it cannot help explain
ρc = ρt .

• The case

∆h,d
a,c = Y h

a,c − Y d
a,c (3)

∆h,d
a,c+j =

(
∆h,d

a,c

)
(1 + g)j

will not work.

• With constant growth, g cannot explain ρt = ρc (!) :

c = 0, 1 t = a + c .
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• Consider a model with 2 cohorts, focus on cohort c = 0. ρc is
the root of

0 = Y h
0,0 − Y d

0,0 +
Y h
1,0 − Y d

1,0

1 + ρc
.

• Cross-section at t = 1, when cohort c enters, is

0 = Y h
0,0 − Y d

0,0 +
Y h
1,−1 − Y d

1,−1

1 + ρt
text.

• In general, ρc ̸= ρt . More generally, for cohort c̄ , the
benchmark cohort, ρc̄ is the IRR that solves

A∑
a=0

(
Y h
a,c̄ − Y d

a,c̄

)
(1 + ρc̄)

a = 0.
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• Cross section in year t = c̄ produces the equation

A∑
a=0

(
Y h
a,c̄−a − Ya,c̄−a

d
)

(1 + ρt)
a = 0,

where ρt is the root.

• If growth rates across cohorts are benchmarked against c̄ , we
obtain

A∑
a=0

(
Y h
a,c̄ − Y d

a,c̄

)
(1 + g)−a

(1 + ρt)
a = 0

A∑
a=0

(
Y h
a,c̄ − Y d

a,c̄

)
[(1 + ρt) (1 + g)]a

= 0,

so clearly ρt < ρc .
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• Suppose that there are no cohort effects but that there are
smooth time effects, say, 1 + φ.

• Then the cohort rate of return is calculated as the root of the
following equation in which the choice of a cohort c̄ as a
benchmark is innocuous:

A∑
a=0

(
Y h
a,c̄ − Y d

a,c̄

)
(1 + φ)a

(1 + ρc̄)
a = 0

• The cross-section rate at time t = c̄ is

A∑
a=0

(
Y h
a,c̄ − Y d

a,c̄

)
(1 + ρt)

a = 0, t = c̄ ,

where clearly if φ > 0, then ρc̄ > ρt .
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• Better notation—distinguish outcomes at age a, cohort c ,
period t:

Y h
a,c,t ; Y d

a,c,t

∆h,d
a,c,t = Y h

a,c,t − Y d
a,c,t .

• No cohort effects means Y j
a,c,t = Y j

a,−,t ∀c . “–” sets the
argument to a constant.
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Pure Time Effects

• Take cohort c = 0 at time t:

A∑
a=0

(
Y h
a,0,t+a − Y d

a,0,t+a

)
(1 + ρc)

a = 0

• Cross section at t = 0 for c = 0:

A∑
a=0

(
Y h
a,−a,t − Y d

a,−a,t

)
(1 + ρt)

a = 0, t = 0

• No time effects means Y j
a,c,t = Y j

a,c,− ∀t.
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• A model with pure cohort effects and no time effects writes, for
cohort c̄ ,

A∑
a=0

(
Y h
a,c̄,− − Y d

a,c̄,−
)

(1 + ρc̄)
a = 0.

• This defines a cohort rate of return.

• The cross-section at time t = c̄ writes

A∑
a=0

(
Y h
a,c̄,c̄+a − Y d

a,c̄,c̄+a

)
(1 + g)c̄

(1 + ρc̄)
a = 0.

• So if g > 0, then ρc̄ > ρt (t = c̄).
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• A model with pure time effects (1 + φ) writes, for time t = c̄ ,
the cohort return for entry cohort c̄ as

A∑
a=0

(
Y h
a,c̄,c̄+a − Y d

a,c̄,c̄+a

)
(1 + g)c̄

(1 + ρc̄)
a = 0text.

• Benchmarking on the c = 0 cohort,

A∑
a=0

(
Y h
a,c̄,c̄ − Y d

a,c̄,c̄

)
(1 + φ)a (1 + g)c̄

(1 + ρc̄)
a = 0.
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• The cross-section return at time c̄ is

A∑
a=0

(
Y h
a,c̄−a,c̄ − Y d

a,c̄−a,c̄

)
(1 + ρt)

a = 0,

where Y h
a,c̄−a,c̄ = Y h

a,c∗,c̄ for all c∗, t = c̄ , if there are only pure
time effects.

Heckman



• Suppose we have both time and cohort effects. Then we have
that the cross-section is

A∑
a=0

(
Y h
a,c̄−a,c̄ − Y d

a,c̄−a,c̄

)
(1 + ρt)

a = 0.

• These can be written at time t = c̄ as

A∑
a=0

(
Y h
a,c̄,c̄ − Y d

a,c̄,c̄

)
(1 + g)c̄−a

(1 + ρt)
a = 0.

• Thus, if the cohort rate (1 + g)c̄−a = (1 + φ)a (1 + g)c̄ for all
c̄ , we can get the result.
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• This requires that

1 + g =
1

1 + φ
⇒ g =

−φ

1 + φ
.

• This seems to characterize the IRR for high school vs. dropouts.
Cohort growth rate factor is the inverse of the time rate.
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