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Two ldentities

e = a; — S “experience” (1)

y=a+c ¢; = birth year (2)

® Solve out for ¢; and a; to get estimable combinations.



® Take the simpler case first:

InW(a,y,c) = Bo+bai+ Bayi + Bsci +u;
(age) (year)  (cohort)

yi = ai+¢,

where y; is the current year, and ¢; is the year of birth.

® Obviously, we get an exact linear dependence:

(Bo, Br, B2, B3)



® Substitute ¢; = y; — a;.

° InW; = ag+ Brai + Poyi + B3 (i — ai) + u;
= oo+ (Br— B3) ai + (B2 + B3) yi + uj

can identify only combinations of coefficients.

® In a cross section, y; is the same for everyone. The intercept is

[co + (B2 + B3) yil -



® We can estimate (51 — [33) : age minus cohort effect.

If 53 > 0, we underestimate true ;.

Will longitudinal data rescue us? — Not necessarily.

With panels, y; moves with time. Recall that y; = a; + ¢;.

So we still have exact linear dependence. This is true if we have
dummy variables in place of continuous variables (verify). Panel
data will rescue us—if we have no year effects.



® We acquire similar problems in models with nonlinear terms:
y=a+c

y? = a® + 2ac + c?
ay = a2 + ac 3 linear dependencies in these set-ups
cy = ca+ c?
® Thus when we write

InW = Bo+ Bra+ Bay + Bsc + Baa® + Bsac
+Bsay + Brcy + Bsc® + Boy” + u,

we cannot identify all of the parameters (only 3 second order
parameters are estimable out of 6 total.



Theorem. In a model with interactions of order k with j variables
and one linear restriction among the j variables, then of the (Hll‘(_l)
coefficients of order k, only (“*7%) are estimable. (Heckman and
Robb, in S. Feinberg and W. Mason, Age, Period and Cohort
Effects: Beyond the Identification Problem, Springer, 1986).

E.g. k =2, j = 3; 6 coefficients and 3 are estimable, as in the

preceding example.

T_heorem. In a model with £ restrictions on the j variables, then
(”kzz_l) kth order coefficients are estimable (Heckman and Robb,
1986).

Question: Generalize this analysis for the case of polychotomous
variables for age period and cohort effects.



® Return to the more general case. Substitute out for ¢; and a;,
using (1) and (3):

InW, = ag+ (a2 + as)y + (a1 + az — as)e;
+ (051 + g — 055)5,' + u;.

® In a single cross section, y is the same for everyone. The
intercept is then g + (an + as)y, where y is year of cross
section.

® Experience coefficient = a1 + a3 — a5 = a3 + (g — as) if later
vintages get higher skills, as > 0 and downward bias (e.g.
higher quality of schooling). If there is an aging effect (> 0,
e.g. maturation) cannot separate. Produces upward bias for a3,



Schooling Coefficient

* artag—as =ag+ (a1 — as)

Vintage (cohort) effects lead to downward bias.

Age effects, upward bias.

Observe that from the
experience coefficient — schooling coefficient:

(1 +az —as) — (a1 + s — as5) = az — aa.

e Can estimate difference in “returns” to experience net of
schooling.



® Observe that even if a;=0 (no aging effect), still can't estimate
these coefficients.

® Is the solution longitudinal data (observations n the same
people over time) —or repeated cross section data
(observations on the same population over time but sampling
different persons)?

e If ap = 0,(no year effects), we can estimated as.

¢ Alternatively, for each ¢; we can estimate a; + a3, and hence
we can estimate as.

® We also know oy + au. If a3 =0, then a3 a4 as identified.



® QObserve the weakness in the procedure.

e If year effects are present, we have that there is no gain to
going to longitudinal or repeated cross section data.

® We gain a parameter when we move to the panel or repeated
cross sectional data.



Solutions in Literature

® Redefine vintage (cohort) e.g. vintage fixed over period of years
(e.g. a cohort of Depression babies).

® Then In W = (ag + asc) + ara + azy + aze + aus + u.

¢ In single cross section, ¢ and y are fixed.



® Substitute for e:
ée=a;— S

® Then

InW = [aO + asC + 042_)/] + (011 + 053)3,' + (044 — 063)5,'.

® We can estimate o + a3 and a4 — a3, and thus a; + aq.

® Successive time periods for the same vintage gives us a;
directly [since ¢ doesn't move].

® If no age effect , we get as, a4, an, and from successive vintage
estimations, we get as.



® If we measure experience, a; # €; + s; (non-market breaks), we
get break in linear dependence.

¢ Cost: better proxies may be endogenous.
e E.g. experience = cumulated hours.

® Results carry over in an obvious way to nonlinear models.



Example of Interpretive Pitfall

® Johnson and Stafford (AER, 1974)
® Weiss and Lillard (JPE, 1979)
¢ Fact: Disparity in real wages between recent Ph.D. entrants

and experienced workers rose in physics and mathematics in the
late 60s and early 70s. Not observed in the social sciences.

® Why? — Johnson-Safford story.
® Supplies of Ph.D.s enlarged by federal grants whil emand for
scientific personnel declined. Wage rigidity at the top end

motivated by specific human capital. Spot market / entrant
market bears the brunt of the burden.



® Weiss & Lillard: “experience—vintage" interaction (ec).
® Ignore age effect:

InW(e,c,s,y) = wo+ @i1e+ @ac+ @3y + 45
+p5e® + pec? + prec
+pgey + pacy + p1oy°

Assume other powers and interactions are zero. Assume
Y10 = 0.

Johnson-Stafford: g > 0 or w9 < 0

Weiss-Lillard: @7 >0

® Recall that y = e+ s+ c.



¢ Weiss-Lillard ignore year effects.
* We get Weiss-Lillard by substituting for y:

InW(e,c,s) = @o+ (p1+ p3)e+ (g3 + pa)s
+(p2 + 03)c + (s + ws)€?
+pges + (g7 + ps + pg)ec
+(i06 + p8)C”

® Note that if o7 = 0 but g > 0, we get ec interaction, but it is
“really” a year effect. If entry level wages fall relative to wages
of experienced workers, the wage / experience profile is steeper
in more recent cross-sections.



® Looking at social scientists where no interaction appears favors
Johnson-Stafford.

® Moral: auxiliary evidence and theory break the identification
problem.



Cohort vs. Cross-Section Internal Rate of Return

® Take a cohort rate of return.

(1) Yafjc is the earnings of a high school graduate of cohort ¢ at
age a.

(2] Ya‘{c is the earnings of a droupout of cohort ¢ at age a.

® pc = IRR. (cohort internal rate of return).

A
e a,c a,c
e aC .
Z ( +pc)a



The cross-section consists of a set of member of different
cohorts.

Start with ¢ = 1 as the youngest age group and proceed.

At a point in time, we have a=0=—=c=1;, c+a=t..

The cross-section internal rate of return is

i (Ya’jl—a - Yao,ll—a) -0
(1+pe)’ '

a=0

where A + 1 is the maximum age in the population.



.
® When can p. = p;?

® This can occur if the environment is stationary.

® With steady growth in differentials, it cannot help explain

Pc = Pt
® The case
A = Y -V (3)
Al = (A3 (1+e)

will not work.
® With constant growth, g cannot explain p; = p. (!):
c=0,1 t=a+c.



¢ Consider a model with 2 cohorts, focus on cohort ¢ = 0. p. is
the root of

Yh o Yd
0= Yoho - Yodo + =0
5 ) 1 + pC
e Cross-section at t = 1, when cohort ¢ enters, is
h d

Y, — Yio
t

® In general, p. # p:. More generally, for cohort C, the
benchmark cohort, pz is the IRR that solves

A Yh—Yd)

Z (1+ p2)°

a=



® Cross section in year t = € produces the equation

A _ a)
Z aca ac :Oy
(1+p:)°

a=0

where p; is the root.

e If growth rates across cohorts are benchmarked against ¢, we
obtain

. Yd)(1+g)7°
; 1+Pt) =0

A Yh—Yd) B
;[1+pt Y(1+g)]"

so clearly p: < pc.



® Suppose that there are no cohort effects but that there are
smooth time effects, say, 1 + .

® Then the cohort rate of return is calculated as the root of the
following equation in which the choice of a cohort € as a
benchmark is innocuous:

XA: (YalZE - Y:E) (1 + (P)a

=0
g (1+pe)’
® The cross-section rate at time t = C is
A h d
(Ya c Ya c) —¢

Z (i+Pt); -0 '

a=0
where clearly if ¢ > 0, then pz > p;.



® Better notation —distinguish outcomes at age a, cohort c,

period t:
h . yd
a,c,tr a,c,t
hd _ \h d
Aa,c,t - Ya,c,t_ Ya,c,t'
* No cohort effects means Y, ., = Y, _, Vc. "~ sets the

argument to a constant.



Pure Time Effects

® Take cohort ¢ = 0 at time t:

i (YaIZO,tJra - Yac,IO,tJra) -0

a=0 (1+pC)

® Cross section at t = 0 for ¢ = 0:

A yh _ yd
Z ( a,—a,t a‘;—a,t) _ 07 t=0
(1+p:)

a=0

* No time effects means Y‘.{;c’t = YEJ,”C,_ Vt.



® A model with pure cohort effects and no time effects writes, for

cohort ¢,
d

A Yacf)
az 1+pc =0

® This defines a cohort rate of return.

® The cross-section at time t = C writes

EA: acc+a - Yadc c+a> (1 + g)E —0

—o 1 + pC)

e Soif g >0, then pz > p; (t = ).



® A model with pure time effects (1 + ) writes, for time t = ¢,
the cohort return for entry cohort ¢ as

i (Yalje,aa - Yac,/E,EJra) (1+ g)E

- = Otext.
(1+ pe)

a=0

® Benchmarking on the ¢ = 0 cohort,




® The cross-section return at time C is

i (Ya,ZE—a,E - Ya‘{E—a,E) 0
(14 pe)? -

a=0

h h * _ =
where Y- .= Y] . . forall ¢*, t = ¢, if there are only pure

time effects.



® Suppose we have both time and cohort effects. Then we have
that the cross-section is

A . Yd— _)
Z a c—a,Cc a;c—a,c -0
(14 pe)

a=

® These can be written at time t = C as

Yahc c Yadc c) (1 + g)E—a

( _
Z (14 pe)’ =0

a=0

e Thus, if the cohort rate (1+g)° 2 = (14 ¢)? (1 + g)° for all
C, we can get the result.



® This requires that

1

® This seems to characterize the IRR for high school vs. dropouts.
Cohort growth rate factor is the inverse of the time rate.



