Duration Models
 Introduction to Single Spell Models

James J. Heckman
University of Chicago

Econ 312, Spring 2023

- The hazard function gives the probability that a spell, denoted by the nonnegative random variable T with distribution $g(t)$, will end at t, given that it has lasted until t :

$$
h(t)=f(t \mid T>t)=\frac{g(t)}{1-G(t)} \geq 0 .
$$

- Integrated hazard function (using $G(0)=0$ to eliminate c):

$$
H(t)=\int_{0}^{t} h(u) d u=-\left.\ln (1-G(t))\right|_{0} ^{t}+c=-\ln (1-G(t)) .
$$

- Working backwards, we can derive g from h :

$$
\begin{aligned}
G(t) & =1-e^{-\int_{0}^{t} h(u) d u}=1-e^{-H(t)}, \\
g(t) & =h(t)[1-G(t)]=h(t) e^{-H(t)}, \\
H(t) & =\int_{0}^{t} h(u) d u .
\end{aligned}
$$

- So the survival function, the probability that the spell lasts until t, i.e., $T \geq t$, is

$$
S(t)=1-G(t)=e^{-H(t)}
$$

- The density and hazard function for T may have a number of qualities. If T has a nondefective duration density, then

$$
\lim _{t \rightarrow \infty} \int_{0}^{t} h(u) d u \rightarrow \infty \Longleftrightarrow S(\infty)=0
$$

- Duration dependence arises when $\frac{\partial h(t)}{\partial t} \neq 0$.
- If $\frac{\partial h(t)}{\partial t}>0(<0)$, then we have positive (negative) duration dependence
- In constructing estimable models, we will often work with the conditional hazard function

$$
h(t \mid x(t), \theta(t))
$$

where the regressor vector $x(t)$ may include

- Entire past: $x_{1}(t)=\int_{\infty}^{t} k_{1}\left(z_{1}(u)\right) d u$
- or future: $x_{2}(t)=\int_{t}^{\infty} k_{2}\left(z_{2}(u)\right) d u$
- or both: $x_{3}(t)=\int_{-\infty}^{\infty} k_{3}\left(z_{3}(u), t\right) d u$ of some variables.
- Associated with the conditional hazard function is the conditional survival function

$$
S(t \mid x(t), \theta(t))=1-G(t \mid x(t), \theta(t))=e^{-\int_{0}^{t} h(u \mid x(u), \theta(u)) d u}
$$

and the conditional density of T

$$
\begin{aligned}
g(t \mid x(t), \theta(t)) & =h(t \mid x(t), \theta(t)) \cdot[1-G(t \mid x(t), \theta(t))] \\
& =h(t \mid x(t), \theta(t)) \cdot e^{-\int_{0}^{t} h(u \mid x(u), \theta(u)) d u}
\end{aligned}
$$

- In these models we will assume
(1) $\theta(t)$ independent of $x(t)$ and $\theta \sim \mu(\theta), x \sim D(x)$
(2) No functional restrictions connecting the conditional distribution of $T \mid \theta, x$ and the marginal distribution of θ, x.
- A common specification of the conditional hazard is the proportional hazard specification:

$$
h(t \mid x(t), \theta(t))=\psi(t) \phi(x(t)) \eta(\theta(t))
$$

$$
\begin{gathered}
\ln h(t \mid x(t), \theta(t))=\ln \psi(t)+\ln \phi(x(t))+\ln \eta(\theta(t)) \\
\quad \psi(t) \geq 0, \quad \phi(x(t))>0, \quad \eta(\theta(t)) \geq 0 \quad \forall t
\end{gathered}
$$

Sampling Plans and Initial Condition Problems

- For interrupted spells, one of the following duration times may be observed:
- time in state up to sampling date $\left(T_{b}\right)$
- time in state after sampling date (T_{a})
- total time in completed spell observed at origin of sample

$$
\left(T_{c}=T_{a}+T_{b}\right)
$$

- Duration of spells beginning after the origin date of the sample, denoted T_{d}, are not subject to initial condition problems.
- The intake rate, $k\left(-t_{b}\right)$, is the proportion of the population entering a spell at $-t_{b}$.
- Assume
- a time homogenous environment, i.e. constant intake rate, $k\left(-t_{b}\right)=k, \forall b$
- a model without observed or unobserved explanatory variables.
- no right censoring, so $T_{c}=T_{a}+T_{b}$
- underlying distribution is nondefective
- $m=\int_{0}^{\infty} x g(x) d x<\infty$
- The proportion of the population experiencing a spell at $t=0$, the origin date of the sample, is

$$
\begin{aligned}
P_{0} & =\int_{0}^{\infty} k\left(-t_{b}\right)\left(1-G\left(t_{b}\right)\right) d t_{b}=k \int_{0}^{\infty}\left(1-G\left(t_{b}\right)\right) d t_{b} \\
& =k\left[\left.t_{b}\left(1-G\left(t_{b}\right)\right)\right|_{0} ^{\infty}-\int t_{b} d\left(1-G\left(t_{b}\right)\right)\right] \\
& =k \int t_{b} g\left(t_{b}\right) d t_{b}=k m,
\end{aligned}
$$

where $1-G\left(t_{b}\right)$ is the probability the spell lasts from $-t_{b}$ to 0 (or equivalently, from 0 to $-t_{b}$).

- So the density of a spell of length t_{b} interrupted at the beginning of the sample $(t=0)$ is

$$
\begin{aligned}
f\left(t_{b}\right) & =\frac{\text { proportion surviving til } t=0 \text { from batch } t_{b}}{\text { total surviving til } t=0} \\
& =\frac{k\left(-t_{b}\right)\left(1-G\left(t_{b}\right)\right)}{P_{0}}=\frac{1-G\left(t_{b}\right)}{m} \neq g\left(t_{b}\right)
\end{aligned}
$$

- The probability that a spell lasts until t_{c} given that it has lasted from $-t_{b}$ to 0 , is

$$
g\left(t_{c} \mid t_{b}\right)=\frac{g\left(t_{c}\right)}{1-G\left(t_{b}\right)}
$$

- So the density of a spell that lasts for t_{c} is

$$
\begin{aligned}
f\left(t_{c}\right) & =\int_{0}^{t_{c}} g\left(t_{c} \mid t_{b}\right) f\left(t_{b}\right) d t_{b} \\
& =\int_{0}^{t_{c}} \frac{g\left(t_{c}\right)}{m} d t_{b}=\frac{g\left(t_{c}\right) t_{c}}{m}
\end{aligned}
$$

- Likewise, the density of a spell that lasts until t_{a} is

$$
\begin{aligned}
f\left(t_{a}\right) & =\int_{0}^{\infty} g\left(t_{a}+t_{b} \mid t_{b}\right) f\left(t_{b}\right) d t_{b} \\
& =\int_{0}^{\infty} \frac{g\left(t_{a}+t_{b}\right)}{m} d t_{b} \\
& =\frac{1}{m} \int_{t_{a}}^{\infty} g\left(t_{b}\right) d t_{b} \\
& =\frac{1-G\left(t_{a}\right)}{m}
\end{aligned}
$$

- So the functional form of $f\left(t_{b}\right) \approx f\left(t_{a}\right)$.
- Some useful results that follow from this model:
(1) If $g(t)=\theta e^{-t \theta}$, then $f\left(t_{b}\right)=\theta e^{-t_{b} \theta}$ and $f\left(t_{a}\right)=\theta e^{-t_{a} \theta}$. Proof:

$$
\begin{aligned}
g(t)=\theta e^{-t \theta} & \rightarrow m=\frac{1}{\theta} \\
G(t)=1-e^{-t \theta} & \rightarrow f\left(t_{a}\right)=\frac{1-G(t)}{m}=\theta e^{-t \theta}
\end{aligned}
$$

(2) $E\left(T_{a}\right)=\frac{m}{2}\left(1+\frac{\sigma^{2}}{m^{2}}\right)$.

- Proof:

$$
\begin{aligned}
E\left(T_{a}\right) & =\int t_{a} f\left(t_{a}\right) d t_{a}=\int t_{a} \frac{1-G\left(t_{a}\right)}{m} d t_{a} \\
& =\frac{1}{m}\left[\left.\frac{1}{2} t_{a}^{2}\left(1-G\left(t_{a}\right)\right)\right|_{0} ^{\infty}-\int \frac{1}{2} t_{a}^{2} d\left(1-G\left(t_{a}\right)\right)\right] \\
& =\frac{1}{m} \int \frac{1}{2} t_{a}^{2} g\left(t_{a}\right) d t_{a}=\frac{1}{2 m}\left[\operatorname{var}\left(t_{a}\right)+E^{2}\left(t_{a}\right)\right] \\
& =\frac{1}{2 m}\left[\sigma^{2}+m^{2}\right]
\end{aligned}
$$

- $E\left(T_{b}\right)=\frac{m}{2}\left(1+\frac{\sigma^{2}}{m^{2}}\right)$.
- Proof: See proof of Proposition 2.
- $E\left(T_{c}\right)=m\left(1+\frac{\sigma^{2}}{m^{2}}\right)$.
- Proof:

$$
\begin{gathered}
E\left(T_{c}\right)=\int \frac{t_{c}^{2} g\left(t_{c}\right)}{m} d t_{c}=\frac{1}{m}\left(\operatorname{var}\left(t_{c}\right)+E^{2}\left(t_{c}\right)\right) \\
\rightarrow E\left(T_{c}\right)=2 E\left(T_{a}\right)=2 E\left(T_{b}\right), E\left(T_{c}\right)>m \text { unless } \sigma^{2}=0
\end{gathered}
$$

- $h^{\prime}(t)>0 \rightarrow E\left(T_{a}\right)=E\left(T_{b}\right)>m$.
- Proof: See Barlow and Proschan.
- $h^{\prime}(t)<0 \rightarrow E\left(T_{a}\right)=E\left(T_{b}\right)<m$.
- Proof: See Barlow and Proschan.

Pitfalls in Using Regression Methods to Analyze Duration Data

(1) Density of duration in a spell (T) for an individual with fixed characteristics Z is $f(t \mid Z)$.
(2) Assume
(1) No time elapses between end of one spell and beginning of another,
(2) No unobserved heterogeneity components,
(3) $f(t \mid Z)=\theta(Z) e^{-\theta(Z) t}, \theta(Z)=\frac{1}{\beta Z}>0$,
(4) At origin, $t=0$, of sample of length K, everyone begins a spell.
(3) The expected length of spell in the population given Z is

$$
E(T \mid Z)=\int_{0}^{\infty} t f(t \mid Z) d t=\frac{1}{\theta(Z)}=\beta Z
$$

(1) The expected length of a spell in a sample frame of length K, however, is

$$
\begin{aligned}
E(T \mid Z, K) & =\int_{0}^{K} t f(t \mid Z) d t+K \int_{K}^{\infty} f(t \mid Z) d t \\
& =\int_{0}^{K} t \theta e^{-\theta t} d t+K \int_{K}^{\infty} \theta e^{-\theta t} d t \\
& =\left[-\left.t e^{-\theta t}\right|_{0} ^{K}+\int_{0}^{K} e^{-\theta t} d t\right]+K\left[\int_{K}^{\infty} \theta e^{-t \theta} d t\right] \\
& =\left[-K e^{-\theta K}+\left.\left(-\frac{1}{\theta} e^{-\theta t}\right)\right|_{0} ^{K}\right]+K\left[-\left.e^{-\theta t}\right|_{K} ^{\infty}\right] \\
& =-K e^{-\theta K}-\frac{1}{\theta} e^{-\theta K}+\frac{1}{\theta}+K e^{-\theta K} \\
& =\beta Z\left(1-e^{-\frac{K}{\beta Z}}\right) \neq \beta Z .
\end{aligned}
$$

- So OLS of T on Z will not estimate β. But as $K \rightarrow \infty$, the selection bias term ($\beta Z e^{-\frac{K}{\beta Z}}$) disappears.
- A widely used method to avoid this bias is to use only completed first spells.
- This results in another sort of selection bias,

$$
\begin{aligned}
E(T \mid Z, K, T<K) & =\frac{\int_{0}^{K} t f(t \mid Z) d t}{\int_{0}^{K} f(t \mid Z) d t} \\
& =\frac{-K e^{-\theta K}-\frac{1}{\theta} e^{-\theta K}+\frac{1}{\theta}}{1-e^{-\theta K}}
\end{aligned}
$$

where recall that

$$
\beta Z=\frac{1}{\theta} .
$$

- As $K \rightarrow \infty$,

$$
E(T \mid Z, K, T<K)=\beta Z .
$$

