Matching As An Econometric Evaluation Estimator

by James J. Heckman, Hidehiko Ichimura, and Petra Todd
Review of Economic Studies (1998)

James J. Heckman

Econ 312, Spring 2023

1. Introduction

- Matching is a widely-used method of evaluation.
- It is based on the intuitively attractive idea of contrasting the outcomes of programme participants (denoted Y1) with the outcomes of "comparable" nonparticipants (denoted Y0).
- Differences in the outcomes between the two groups are attributed to the programme.
- The estimated gain for each person i in the treated sample is

$$
\begin{equation*}
Y_{1 i}-\sum_{j \in I_{0}} W_{N_{0}, N_{1}}(i, j) Y_{0 j}, \tag{1}
\end{equation*}
$$

- The widely-used evaluation parameter on which we focus in this paper is the mean effect of treatment on the treated for persons with characteristics X

$$
\begin{equation*}
\mathrm{E}\left(Y_{1}-Y_{0} \mid D=1, X\right), \tag{P-1}
\end{equation*}
$$

where $\mathrm{D}=1$ denotes programme participation. Heckman (1997) and Heckman and Smit (1998) discuss conditions under which this parameter answers economically interesting questions.

- For a particular domain \mathcal{H} for X, this parameter is estimated by

$$
\begin{equation*}
\sum_{i e I_{1}} w_{N_{0}, N_{1}}(i)\left[Y_{1 i}-\sum_{j \in I_{0}} W_{N_{0}, N_{1}}(i, j) Y_{0 j}\right] \tag{2}
\end{equation*}
$$

where different values of $w N 0, N 1$ (i) may be used to select different domains ff or to account for heteroskedasticity in the treated sample. Different matching methods are based on different weighting functions $\left\{w_{N 0, N 1}(i)\right\}$ and $\left\{W_{N 0, N 1}(i, j)\right\}$.

- We show that the fundamental identification condition of the matching method for estimating ($\mathrm{P}-1$) is

$$
\mathrm{E}\left(Y_{0} \mid D=1, X\right)=\mathrm{E}\left(Y_{0} \mid D=0, X\right),
$$

whenever both sides of this expression are well defined.

- In order to meaningfully implement matching it is necessary to condition on the support common to both participant and comparison groups S, where

$$
S=\operatorname{Supp}(X \mid D=1) \cap \operatorname{Supp}(X \mid D=0)
$$

and to estimate the region of common support.

2. The Evaluation Problem and The Parameters of Interest

- The selection bias that arises from making this approximation is

$$
B(X)=\mathrm{E}\left(Y_{0} \mid D=1, X\right)-\mathrm{E}\left(Y_{0} \mid D=0, X\right) .
$$

- Averaging the estimators over intervals of X produces a consistent estimator of

$$
\begin{equation*}
M(S)=\mathrm{E}\left(Y_{1}-Y_{0} \mid D=1, X \in S\right), \tag{P-2}
\end{equation*}
$$

with a well-defined $N^{-1 / 2}$ distribution theory where Sis a subset of $\operatorname{Supp}(X \mid D=$ 1).

3. How Matching Solves The Evaluation Problem

- Using the notation of Dawid (1979) let

$$
\begin{equation*}
\left(Y_{0}, Y_{1}\right) \Perp D \mid X, \tag{A-1}
\end{equation*}
$$

denote the statistical independence of (Y0, Y1) and D conditional on X. An equivalent formulation of this condition is

$$
\operatorname{Pr}\left(D=1 \mid Y_{0}, Y_{1}, X\right)=\operatorname{Pr}(D=1 \mid X) .
$$

- This is a non-causality condition that excludes the dependence between potential outcomes and participation that is central to econometric models of self selection. (See Heckman and Honore (1990).)
- Rosenbaum and Rubin (1983), henceforth denoted RR, establish that, when (A-1) and

$$
\begin{equation*}
0<P(X)<1, \tag{A-2}
\end{equation*}
$$

are satisfied, (Yo, Y1) $\operatorname{JLDIP}(\mathrm{X})$, where $\mathrm{P}(\mathrm{X})=\operatorname{Pr}(\mathrm{D}=1 \mathrm{IX})$.

- When the strong ignorability condition holds, one can generate marginal distribution of the counterfactuals

$$
F_{0}\left(y_{0} \mid D=1, X\right) \quad \text { and } \quad F_{1}\left(y_{1} \mid D=0, X\right),
$$

- Note that under assumption (A-1)

$$
\begin{aligned}
\mathrm{E}\left(Y_{0} \mid D=1, X \in S\right) & =\mathrm{E}\left[\mathrm{E}\left(Y_{0} \mid D=1, X\right) \mid D=1, X \in S\right] \\
& =\mathrm{E}\left[\mathrm{E}\left(Y_{0} \mid D=0, X\right) \mid D=1, X \in S\right],
\end{aligned}
$$

so $E\left(Y_{0} \mid D=1, X \in S\right)$ can be recovered from $E\left(Y_{0} \mid D+0, X\right)$ by integrating over X using the distribution of X given $D=1$, restricted to S.

- We can get by with a weaker condition since our objective is construction of the counterfactual $E\left(Y_{0} \mid X, D=1\right)$

$$
\begin{equation*}
Y_{0} \Perp D \mid X, \tag{A-3}
\end{equation*}
$$

which implies that $\operatorname{Pr}\left(Y_{0}<t \mid D=1, X\right)=\operatorname{Pr}\left(Y_{0}<t \mid D=0, X\right)$ for $X \in S$.

- For identification of the mean treatment impact parameter (P-1), an even weaker mean independence condition suffices

$$
\mathrm{E}\left(Y_{0} \mid D=1, X\right)=\mathrm{E}\left(Y_{0} \mid D=0, X\right) \quad \text { for } X \in S .
$$

3. Separability and Exclusion Restrictions

- In many applications in economics, it is instructive to partition X into two notnecessarily mutually exclusive sets of variables, (T, Z), where the T variables determine outcomes

$$
\begin{align*}
& Y_{0}=g_{0}(T)+U_{0}, \tag{3a}\\
& Y_{1}=g_{1}(T)+U_{1}, \tag{3b}
\end{align*}
$$

and the Z variables determine programme participation

$$
\begin{equation*}
\operatorname{Pr}(D=1 \mid X)=\operatorname{Pr}(D=1 \mid Z)=P(Z) . \tag{4}
\end{equation*}
$$

- The evidence reported in Heckman, Ichimura, Smith and Todd (1996a), reveals that the no-training earnings of persons who chose to participate in a training programme, Y_{0}, can be represented in the following way

$$
\mathrm{E}\left(Y_{0} \mid D=1, X\right)=g_{0}(T)+\mathrm{E}\left(U_{0} \mid P(Z)\right),
$$

where Z and T contain some distinct regressors.

- Thus, instead of (A-1) or (A-3), we consider the case where

$$
\begin{equation*}
U_{0} \Perp D \mid X . \tag{A-4a}
\end{equation*}
$$

- Invoking the exclusion restrictions $P(X)=P(Z)$ and using an argument analogous to Rosenbaum and Rubin (1983), we obtain

$$
\begin{aligned}
\mathrm{E}\left\{D \mid U_{0}, P(Z)\right\} & =\mathrm{E}\left\{\mathrm{E}\left(D \mid U_{0}, X\right) \mid U_{0}, P(Z)\right\} \\
& =\mathrm{E}\left\{P(Z) \mid U_{0}, P(Z)\right\}=P(Z)=\mathrm{E}\{D \mid P(Z)\}
\end{aligned}
$$

so that

$$
U_{0} \Perp D \mid P(Z) .
$$

- Under condition (A-4a) it is not necessarily true that (A-1) or (A-3) are valid but it is obviously true that

$$
\left[Y_{0}-g_{0}(T)\right] \Perp D \mid P(Z)
$$

- In order to identify the mean treatment effect on the treated, it is enough to assume that

$$
\mathrm{E}\left(U_{0} \mid D=1, P(Z)\right)=\mathrm{E}\left(U_{0} \mid D=0, P(Z)\right),
$$

instead of (A-4a) or (A-4b).

- In order to place these results in the context of classical econometric selection models, consider the following index model setup

$$
\begin{aligned}
Y_{0} & =g_{0}(T)+U_{0}, \\
D & =1 \quad \text { if } \psi(Z)-v \geqq 0 ; \\
& =0 \quad \text { otherwise. }
\end{aligned}
$$

- If Z and v are independent, then $P(Z)=F_{v}(\psi(Z))$ where $F_{v}(\cdot)$ is the distribution function of v.
- In this case identification condition (A-4b') implies

$$
\begin{equation*}
\mathrm{E}\left[U_{0} \mid D=1, F_{v}(\psi(Z))\right]=\mathrm{E}\left[U_{0} \mid D=0, F_{v}(\psi(Z))\right], \tag{*}
\end{equation*}
$$

or when F_{v} is strictly increasing,

$$
\begin{aligned}
\int_{-\infty}^{\infty} & \int_{-\infty}^{\psi(Z)} U_{0} f\left(U_{0}, v \mid \psi(Z)\right) d v d U_{0} / F_{v}(\psi(Z)) \\
& =\int_{-\infty}^{\infty} \int_{\psi(Z)}^{\infty} U_{0} f\left(U_{0}, v \mid \psi(Z)\right) d v d U_{0} /\left[1-F_{v}(\psi(Z))\right] .
\end{aligned}
$$

If, in addition, $\psi(Z)$ is independent of $\left(U_{0}, v\right)$, and $\mathrm{E}\left(U_{0}\right)=0$, condition (*) implies

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\psi(Z)} U_{0} f\left(U_{0}, v\right) d v d U_{0}=0,
$$

5. Estimating The Mean Effect Of Treatment: Should One Use The Propensity Score Or Not?

Under (A-1') with $S=\operatorname{Supp}(X \mid D=1)$ and random sampling across individuals, if one knew $\mathrm{E}\left(Y_{0} \mid D=0, X=x\right)$, a consistent estimator of ($\mathrm{P}-2$) is

$$
\hat{\Delta}_{X}=N_{1}^{-1} \sum_{i e I_{1}}\left[Y_{1 i}-\mathrm{E}\left(Y_{0} \mid D=0, X=X_{i}\right)\right],
$$

where I_{1} is the set of i indices corresponding to observations for which $D_{i}=1$. If we assume

$$
\mathrm{E}\left(Y_{0} \mid D=1, P(X)\right)=\mathrm{E}\left(Y_{0} \mid D=0, P(X)\right) \text { for } X \in \operatorname{Supp}(P(X) \mid D=1) \text {, }
$$

which is an implication of $(\mathrm{A}-1)$, and $\mathrm{E}\left(Y_{0} \mid D=0, P(X)=p\right)$ is known, the estimator

$$
\hat{\Delta}_{P}=N_{1}^{-1} \sum_{i e I_{1}}\left[Y_{1 i}-\mathrm{E}\left(Y_{0} \mid D=0, P(X)=P\left(X_{i}\right)\right)\right]
$$

is consistent for $\mathrm{E}(\Delta \mid D=1)$.

Theorem 1. Assume:
(i) (A-1') and (A-1") hold for $S=\operatorname{Supp}(X \mid D=1)$;
(ii) $\left\{Y_{1 i}, X_{i}\right\}_{i \in I_{1}}$ are independent and identically distributed;
and
(iii) $0<\mathrm{E}\left(Y_{0}^{2}\right) \cdot \mathrm{E}\left(Y_{1}^{2}\right)<\infty$.

Then $\hat{\Delta}_{X}$ and $\hat{\Delta}_{P}$ are both consistent estimators of $(\mathrm{P}-2)$ with asymptotic distributions that are normal with mean 0 and asymptotic variances V_{X} and V_{P}, respectively, where

$$
V_{X}=\mathrm{E}\left[\operatorname{Var}\left(Y_{1} \mid D=1, X\right) \mid D=1\right]+\operatorname{Var}\left[\mathrm{E}\left(Y_{1}-Y_{0} \mid D=1, X\right) \mid D=1\right]
$$

and

$$
V_{P}=\mathrm{E}\left[\operatorname{Var}\left(Y_{1} \mid D=1, P(X)\right) \mid D=1\right]+\operatorname{Var}\left[\mathrm{E}\left(Y_{1}-Y_{0} \mid D=1, P(X)\right) \mid D=1\right]
$$

- The theorem directly follows from the central limit theorem for iid sampling with finite second moment and for the sake of brevity its proof is deleted.
- Observe that

$$
\mathrm{E}\left[\operatorname{Var}\left(Y_{1} \mid D=1, X\right) \mid D=1\right] \leqq \mathrm{E}\left[\operatorname{Var}\left(Y_{1} \mid D=1, P(X)\right) \mid D=1\right],
$$

because X is in general a better predictor than $P(X)$ but

$$
\left.\operatorname{Var}\left[\mathrm{E}\left(Y_{1}-Y_{0} \mid D=1, X\right) \mid D=1\right] \geqq \operatorname{Var}\left[\mathrm{E} 1\left(Y_{1}-Y_{0}\right) \mid D=1, P(X)\right) \mid D=1\right],
$$

6. Asymptotic Distribution Theory for Kernel-based Matching Estimators

- The general class of estimators of (P-2) that we analyse are of the form

$$
\begin{equation*}
\hat{\Delta}=\frac{N_{1}^{-1} \sum_{i \epsilon I_{1}}\left[Y_{1 i}-\hat{g}\left(T_{i}, \hat{P}\left(Z_{i}\right)\right)\right] I\left(X_{i} \in \hat{S}\right)}{N_{1}^{-1} \sum_{i \epsilon I_{1}} I\left(X_{i} \in \hat{S}\right)} \tag{6}
\end{equation*}
$$

where $I(A)=1$ if A holds and $=0$ otherwise and \hat{S} is an estimator of S, the region of overlapping support, where $S=\operatorname{Supp}\{X \mid D=1\} \cap \operatorname{Supp}\{X \mid D=0\}$.

Definition 1. An estimator $\hat{\theta}(x)$ of $\theta(x)$ is an asymptotically linear estimator with trimming $I(x \in \hat{S})$ if and only if there is a function $\psi_{n} \in \Psi_{n}$, defined over some subset of a finite-dimensional Euclidean space, and stochastic terms $\hat{b}(x)$ and $\hat{R}(x)$ such that for sample size n :
(i) $[\hat{\theta}(x)-\theta(x)] I(x \in \hat{S})=n^{-1} \sum_{i=1}^{n} \psi_{n}\left(X_{i}, Y_{i} ; x\right)+\hat{b}(x)+\hat{R}(x)$;
(ii) $\mathrm{E}\left\{\psi_{n}\left(X_{i}, Y_{i} ; X\right) \mid X=x\right\}=0$;
(iii) $\operatorname{plim}_{n \rightarrow \infty} n^{-1 / 2} \sum_{i=1}^{n} \hat{b}\left(X_{i}\right)=b<\infty$;
(iv) $n^{-1 / 2} \sum_{i=1}^{n} \hat{R}\left(X_{i}\right)=o_{p}(1)$.

A typical estimator of a parametric regression function $m(x ; \beta)$ takes the form $m(x ; \hat{\beta})$, where m is a known function and $\widehat{\beta}$ is an asymptotically linear estimator, with $\hat{\beta}-\beta=n^{-1} \sum_{i=1}^{n} \psi\left(X_{i}, Y_{i}\right)+o_{p}\left(n^{-1 / 2}\right)$. In this case, by a Taylor expansion,

$$
\begin{aligned}
\sqrt{n}[m(x, \hat{\beta})-m(x, \beta)]= & n^{-1 / 2} \sum_{i=1}^{n}[\partial m(x, \beta) / \partial \beta] \psi\left(X_{i}, Y_{i}\right) \\
& +[\partial m(x, \bar{\beta}) / \partial \beta-\partial m(x, \beta) / \partial \beta] n^{-1 / 2} \sum_{i=1}^{n} \psi\left(X_{i}, Y_{i}\right)+o_{p}(1),
\end{aligned}
$$

where $\bar{\beta}$ lies on a line segment between β and $\hat{\beta}$. When $\mathrm{E}\left\{\psi\left(X_{i}, Y_{i}\right)\right\}=0$ and $\mathrm{E}\left\{\psi\left(X_{i}, Y_{i}\right) \psi\left(X_{i}, Y_{i}\right)^{\prime}\right\}<\infty$, under iid sampling, for example, $n^{-1 / 2} \sum_{i=1}^{n} \psi\left(X_{i}, Y_{i}\right)=$ $O_{p}(1)$ and $\operatorname{plim}_{n \rightarrow \infty} \beta=\beta$ so that $\operatorname{plim}_{n \rightarrow \infty}|\partial m(x, \bar{\beta}) / \partial \beta-\partial m(x, \beta) / \partial \beta|=o_{p}(1)$ if $\partial m(x, \beta) / \partial \beta$ is Hölder continuous at β. ${ }^{14}$

Under these regularity conditions

$$
\sqrt{n}[m(x, \hat{\beta})-m(x, \beta)]=n^{-1 / 2} \sum_{i=1}^{n}[\partial m(x, \beta) / \partial \beta] \psi\left(X_{i}, Y_{i}\right)+o_{p}(1) .
$$

(a) Asymptotic linearity of the kernel regression estimator

We now establish that the more general kernel regression estimator for nonparametric functions is also asymptotically linear. Corollary 1 stated below is a consequence of a more general theorem proved in the Appendix for local polynomial regression models used in Heckman, Ichimura, Smith and Todd (1998) and Heckman, Ichimura and Todd (1997). We present a specialized result here to simplify notation and focus on main ideas. To establish this result we first need to invoke the following assumptions.

Assumption 1. Sampling of $\left\{X_{i}, Y_{i}\right\}$ is i.i.d., X_{i} takes values in R^{d} and Y_{i} in R, and $\operatorname{Var}\left(Y_{i}\right)<\infty$.

When a function is p-times continuously differentiable and its p-th derivative satisfies Hölder's condition, we call the function p-smooth. Let $m(x)=\mathrm{E}\left\{Y_{i} \mid X_{i}=x\right\}$.

Assumption 2. $m(x)$ is \bar{p}-smooth, where $\bar{p}>d$.

We also allow for stochastic bandwidths:
Assumption 3. Bandwidth sequence a_{n} satisfies $\operatorname{plim}_{n \rightarrow \infty} a_{n} / h_{n}=\alpha_{0}>0$ for some deterministic sequence $\left\{h_{n}\right\}$ that satisfies $n h_{n}^{d} / \log n \rightarrow \infty$ and $n h_{n}^{2 p} \rightarrow c<\infty$ for some $c \geqq 0$.

This assumption implies $2 \bar{p}>d$ but a stronger condition is already imposed in Assumption $2 .{ }^{15}$

Assumption 4. Kernel function $K(\cdot)$ is symmetric, supported on a compact set, and is Lipschitz continuous.

Assumption 5. Trimming is \bar{p}-nice on S.

In order to control the bias of the kernel regression estimator, we need to make additional assumptions. Certain moments of the kernel function need to be 0 , the underlying Lebesgue density of $X_{i}, f_{X}(x)$, needs to be smooth, and the point at which the function is estimated needs to be an interior point of the support of X_{i}. It is demonstrated in the Appendix that these assumptions are not necessary for \bar{p}-th order local polynomial regression estimator.

Assumption 6. Kernel function $K(\cdot)$ has moments of order 1 through $\bar{p}-1$ that are equal to zero.

Assumption 7. $f_{X}(x)$ is \bar{p}-smooth.

Assumption 8. A point at which $m(\cdot)$ is being estimated is an interior point of the support of X_{i}.

The following characterization of the bias is a consequence of Theorem 3 that is proved in the Appendix.

Corollary 1. Under Assumptions $1-8$, if $K\left(u_{1}, \ldots, u_{d}\right)=k\left(u_{1}\right) \cdots k\left(u_{d}\right)$ where $k(\cdot)$ is a one dimensional kernel, the kernel regression estimator $\hat{m}_{0}(x)$ of $m(x)$ is asymptotically linear with trimming, where, writing $\varepsilon_{i}=Y_{i}-\mathrm{E}\left\{Y_{i} \mid X_{i}\right\}$, and

$$
\begin{gathered}
\psi_{n}\left(X_{i}, Y_{i} ; x\right)=\left(n \alpha_{0} h_{n}^{d}\right)^{-1} \varepsilon_{i} K\left(\left(X_{i}-x\right) /\left(\alpha_{0} h_{n}\right)\right) I(x \in S) / f_{X}(x), \\
\hat{b}(x)=\left(\alpha_{0} h_{n}\right)^{\bar{p}} \cdot\left[f_{X}(x) \cdot \int K(u) d u\right]^{-1} \sum_{s=1}^{\bar{p}}[s!(\bar{p}-s)!]^{-1} \\
\times \sum_{k=1}^{d}\left[\left[\int u_{k}^{\bar{p}} K(u) d u\right]\left[\left[\partial^{s} m(x) /\left(\partial x_{k}\right)^{s}\right] \cdot\left[\partial^{(\bar{p}-s)} f_{X}(x) /\left(\partial x_{k}\right)^{(\bar{p}-s)}\right]\right] I(x \in \hat{S}) .\right.
\end{gathered}
$$

(b) Extensions to the case of local polynomial regression

In the Appendix, we consider the more general case in which the local polynomial regression estimator for $\hat{g}(t, p)$ is asymptotically linear with trimming with a uniformly consistent derivative. The latter property is useful because, as the next lemma shows, if both $\hat{P}(z)$ and $\hat{g}(t, p)$ are asymptotically linear, and if $\partial \hat{g}(t, p) / \partial p$ is uniformly consistent, then $\hat{g}(t, \hat{P}(z))$ is also asymptotically linear under some additional conditions. We also verify in the Appendix that these additional conditions are satisfied for the local polynomial regression estimators.

Let $\bar{P}_{t}(z)$ be a function that is defined by a Taylor's expansion of $\hat{g}(t, \hat{P}(z))$ in the neighbourhood of $P(z)$, i.e. $\hat{g}(t, \hat{P}(z))=\hat{g}(t, P(z))+\partial \hat{g}\left(t, \bar{P}_{t}(z)\right) / \partial p \cdot[\hat{P}(z)-P(z)]$.

Lemma 1. Suppose that:

(i) Both $\hat{P}(z)$ and $\hat{g}(t, p)$ are asymptotically linear with trimming where

$$
[\hat{P}(z)-P(z)] I(x \in \hat{S})=n^{-1} \sum_{j=1}^{n} \psi_{n p}\left(D_{j}, Z_{j} ; z\right)+\hat{b}_{p}(z)+\hat{R}_{p}(z)
$$

$$
[\hat{g}(t, p)-g(t, p)] I(x \in \hat{S})=n^{-1} \sum_{j=1}^{n} \psi_{n g}\left(Y_{j}, T_{j}, P\left(Z_{j}\right) ; t, p\right)+\hat{b}_{g}(t, p)+\hat{R}_{g}(t, p)
$$

(ii) $\partial \hat{g}(t, p) / \partial p$ and $\hat{P}(z)$ are uniformly consistent and converge to $\partial g(t, p) / \partial p$ and $P(z)$, respectively and $\partial g(t, p) / \partial p$ is continuous;
(iii) $\operatorname{plim}_{n \rightarrow \infty} n^{-1 / 2} \sum_{i=1}^{n} \hat{b}_{g}\left(T_{i}, P\left(Z_{i}\right)\right)=b_{g}$ and
$\operatorname{plim}_{n \rightarrow \infty} n^{-1 / 2} \sum_{i=1}^{n} \partial g\left(T_{i}, P\left(Z_{i}\right)\right) / \partial p \cdot \hat{b}_{p}\left(T_{i}, P\left(Z_{i}\right)\right)=b_{g_{p}} ;$
(iv) $\operatorname{plim}_{n \rightarrow \infty} n^{-1 / 2} \sum_{j=1}^{n=1}\left[\partial \hat{g}\left(T_{i}, \bar{P}_{T_{i}}\left(Z_{i}\right)\right) / \partial p-\partial g\left(T_{i}, P\left(Z_{i}\right)\right) / \partial p\right] \cdot \hat{R}_{p}\left(Z_{i}\right)=0$;
(v) $\operatorname{plim}_{n \rightarrow \infty} n^{-3 / 2} \sum_{i=1}^{n=1} \sum_{j=1}^{n}\left[\partial \hat{g}\left(T_{i}, \bar{P}_{T_{i}}\left(Z_{i}\right)\right) / \partial p-\partial g\left(T_{i}, P\left(Z_{i}\right)\right) / \partial p\right]$

- $\psi_{n p}\left(D_{j}, Z_{j} ; Z_{i}\right)=0$.
then $\hat{g}(t, \hat{P}(z))$ is also asymptotically linear where

$$
\begin{aligned}
{[\hat{g}(t, \hat{P}(z))-g(t, P(z))] I(x \in \hat{S})=} & n^{-1} \sum_{j=1}^{n}\left[\psi_{n g}\left(Y_{j}, T_{j}, P\left(Z_{j}\right) ; t, P(z)\right)\right. \\
& \left.+\partial g(t, P(z)) / \partial p \cdot \psi_{n p}\left(D_{j}, Z_{j} ; z\right)\right]+\hat{b}(x)+\hat{R}(x),
\end{aligned}
$$

and $\operatorname{plim}_{n \rightarrow \infty} n^{-1 / 2} \sum_{i=1}^{n} \hat{b}\left(X_{i}\right)=b_{g}+b_{g_{p}}$.

Assumption 9. $K(\cdot)$ is 1-smooth.
Lemma 1 implies that the asymptotic distribution theory of $\hat{\Delta}$ can be obtained for those estimators based on asymptotically linear estimators with trimming for the general nonparametric (in P and g) case. Once this result is established, it can be used with lemma 1 to analyze the properties of two stage estimators of the form $\hat{g}(t, \hat{P}(z))$.

Theorem 2. Under the following conditions:
(i) $\left\{Y_{0 i}, X_{i}\right\}_{i \in I_{0}}$ and $\left\{Y_{1 i}, X_{i}\right\}_{i \in I_{1}}$ are independent and within each group they are i.i.d. and $Y_{0 i}$ for $i \in I_{0}$ and $Y_{1 i}$ for $i \in I_{1}$ each has a finite second moment;
(ii) The estimator $\hat{g}(x)$ of $g(x)=\mathrm{E}\left\{Y_{0_{i}} \mid D_{i}=1, X_{i}=x\right\}$ is asymptotically linear with trimming, where

$$
\begin{aligned}
{[\hat{g}(x)-g(x)] I\{x \in \hat{S}\}=} & N_{0}^{-1} \sum_{i \in I_{0}} \psi_{0 N_{0} N_{1}}\left(Y_{0 i}, X_{i} ; x\right) \\
& +N_{1}^{-1} \sum_{i \in I_{1}} \psi_{1 N_{0} N_{1}}\left(Y_{1 i}, X_{i} ; x\right)+\hat{b}_{g}(x)+\hat{R}_{g}(x)
\end{aligned}
$$

and the score functions $\psi_{d N_{0} N_{1}}\left(Y_{d}, X ; x\right)$ for $d=0$ and 1 , the bias term $\hat{b}_{g}(x)$, and the trimming function satisfy:
(ii-a) $\left.\mathrm{E}\left\{\psi_{d N_{0} N_{1}}\left(Y_{d i}, X_{i} ; X\right) \mid D_{i}=d, X, D=1\right)\right\}=0$ for $d=0$ and 1 , and
$\operatorname{Var}\left\{\psi_{d N_{0} N_{1}}\left(Y_{d i}, X_{i} ; X\right)\right\}=o(N)$ for each $i \in I_{0} \cup I_{1} ;$
(ii-b) $\operatorname{plim}_{N_{1} \rightarrow \infty} N_{1}^{-1 / 2} \sum_{i \in I_{1}} \hat{b}\left(X_{i}\right)=b$;
(ii-c) $\operatorname{plim}_{N_{1} \rightarrow \infty} \operatorname{Var}\left\{\mathrm{E}\left[\psi_{0 N_{0} N_{1}}\left(Y_{0 i}, X_{i} ; X\right) \mid Y_{0 i}, D_{i}=0, X_{i}, D=1\right] \mid D=1\right\}=V_{0}<\infty$
$\operatorname{plim}_{N_{1} \rightarrow \infty} \operatorname{Var}\left\{\mathrm{E}\left[\psi_{1 N_{0} N_{1}}\left(Y_{1 i}, X_{i} ; X\right) \mid Y_{1 i}, D_{i}=1, X_{i}, D=1\right] \mid D=1\right\}=V_{1}<\infty$, and
$\lim _{N_{1} \rightarrow \infty} \mathrm{E}\left\{\left[Y_{1 i}-g\left(X_{i}\right)\right] I\left(X_{i} \in S\right)\right.$.
$\left.\mathrm{E}\left[\psi_{1 N_{0} N_{1}}\left(Y_{1 i}, X_{i} ; X\right) \mid Y_{1 i}, D_{i}=1, X_{i}, D=1\right] \mid D=1\right\}=\operatorname{Cov}_{1}$;
(ii-d) S and \hat{S} are \bar{p}-nice on S, where $\bar{p}>d$, where d is the number of regressors in X and $\hat{f}(x)$ is a kernel density estimator that uses a kernel function that satisfies Assumption 6.

Then under (A-1') the asymptotic distribution of

$$
N_{1}^{1 / 2}\left[\frac{N_{1}^{-1} \sum_{i \epsilon I_{1}}\left[Y_{1 i}-\hat{g}\left(X_{i}\right)\right] I\left(X_{i} \in \hat{S}\right)}{N_{1}^{-1} \sum_{i \in I_{1}} I\left(X_{i} \in \hat{S}\right)}-\mathrm{E}_{S}\left(Y_{1}-Y_{0} \mid D=1\right)\right]
$$

is normal with mean $(b / \operatorname{Pr}(X \in S \mid D=1))$ and asymptotic variance

$$
\begin{aligned}
\operatorname{Pr}(X \in S \mid D=1)^{-1}\left\{\operatorname{Var}_{S}\right. & {\left[\mathrm{E}_{S}\left(Y_{1}-Y_{0} \mid T, P(Z), D=1\right) \mid D=1\right] } \\
& \left.+\mathrm{E}_{S}\left[\operatorname{Var}_{S}\left(Y_{1} \mid T, P(Z), D=1\right) \mid D=1\right]\right\} \\
& +\operatorname{Pr}(X \in S \mid D=1)^{-2}\left\{V_{1}+2 \cdot \operatorname{Cov}_{1}+\theta V_{0}\right\} .
\end{aligned}
$$

Proof. See the Appendix. ||

7. Answers to The Three Questions of Section 1 and More General Questions Concerning The Value of A Priori Information

- In this case the score function $\psi 1 N 0 N 1\left(Y_{1 i}, X_{i} ; x\right)$ and

$$
\psi_{0 N_{0} N_{1}}\left(Y_{0 i}, X_{i} ; x\right)=\frac{\varepsilon_{i} K\left(\left(X_{i}-x\right) / a_{N_{0}}\right) I(x \in S)}{a_{N_{0}}^{d} f_{X}(x \mid D=0) \int K(u) d u},
$$

where $\varepsilon_{i}=Y_{0 i}-\mathrm{E}\left\{Y_{0 i} \mid X_{i}, D_{i}=0\right\}$ and we write $f_{X}(x \mid D=0)$ for the Lebesgue density of X_{i} given $D_{i}=0$. (We use analogous expressions to denote various Lebesgue densities.) Clearly V_{1} and Cov_{1} are zero in this case. Using the score function we can calculate V_{0} when we match on X. Denoting this variance by $V_{0 X}$,

$$
\begin{aligned}
V_{0 X} & =\lim _{N_{0} \rightarrow \infty} \operatorname{Var}\left\{\mathrm{E}\left[\psi_{0 N_{0} N_{1}}\left(Y_{0 i}, X_{i}, X\right) \mid Y_{0 i}, D_{i}=0, X_{i}, D=1\right] \mid D=1\right\} \\
& =\lim _{N_{0} \rightarrow \infty} \operatorname{Var}\left\{\left.\mathrm{E}\left[\left.\frac{\varepsilon_{i} K\left(\left(X_{i}-X\right) / a_{N_{0}}\right) I(X \in S)}{a_{N_{0}}^{d} f_{X}(X \mid D=0) \int K(u) d u} \right\rvert\, Y_{0 i}, D_{i}=0, X_{i}, D=1\right] \right\rvert\, D=1\right\} .
\end{aligned}
$$

- Now observe that conditioning on X_{i} and $Y_{0 i}$ is given, so that we may write the last expression as

$$
\operatorname{Var}\left\{\left.\varepsilon_{i} \mathrm{E}\left[\left.\frac{K\left(\left(X_{i}-X\right) / a_{N_{0}}\right) I(X \in S)}{a_{N_{0}}^{d} f_{X}(X \mid D=0) \int K(u) d u} \right\rvert\, D_{i}=0, X_{i}, D=1\right] \right\rvert\, D=1\right\} .
$$

- Now

$$
\mathrm{E}\left[\left.\frac{K\left(\left(X_{i}-X\right) / a_{N_{0}}\right) I(X \in S)}{a_{N_{0}}^{d} f_{X}(X \mid D=0) \int K(u) d u} \right\rvert\, D_{i}=0, X_{i}, D=1\right],
$$

can be written in the following way, making the change of variable $\frac{X_{i}-X}{a_{n 0}}=w$:

$$
\int \frac{K(w) I\left(\left[X_{i}-a_{N_{0}} w\right] \in S\right)}{\int K(u) d u} \frac{f\left(X_{i}-a_{N_{0}} w \mid D=1\right)}{f\left(X_{i}-a_{N_{0}} w \mid D=0\right)} d w .
$$

- Taking limits as $N_{0} \rightarrow \infty$, and using assumptions 3,4 and 7 , so we can take limits inside the integral

$$
\lim _{N_{0} \rightarrow \infty} \mathrm{E}\left[\left.\frac{K\left(\left(X_{i}-X\right) / a_{N_{0}}\right) I(X \in S)}{a_{N_{0}}^{d} f_{X}(X \mid D=0) \int K(u) d u} \right\rvert\, D_{i}=0, X_{i}, D=1\right]=\frac{f\left(X_{i} \mid D=1\right)}{f\left(X_{i} \mid D=0\right)} I\left(X_{i} \in S\right),
$$

since $a_{N_{0}} \rightarrow 0$ and $\int K(w) d w / \int K(u) d u=1$. Thus, since we sample the X_{i} for which $D_{i}=0$,

$$
V_{0 X}=\mathrm{E}_{S}\left[\left.\frac{\operatorname{Var}\left(Y_{0 i} \mid X_{i}, D_{i}=0\right) f_{X}^{2}\left(X_{i} \mid D_{i}=1\right)}{f_{X}^{2}\left(X_{i} \mid D_{i}=0\right)} \right\rvert\, D_{i}=0\right] \operatorname{Pr}\left\{X_{i} \in S \mid D_{i}=0\right\} .
$$

Hence the asymptotic variance of $\hat{\Delta}_{X}$ is, writing $\lambda=\operatorname{Pr}\{X \in S \mid D=0\} / \operatorname{Pr}(X \in S \mid D=1)$,

$$
\begin{aligned}
\operatorname{Pr}(X \in S \mid D=1)^{-1}\{ & \left\{\operatorname{Var}_{S}\left[\mathrm{E}_{S}\left(Y_{1}-Y_{0} \mid X, D=1\right) \mid D=1\right]+\mathrm{E}_{S}\left[\operatorname{Var}_{S}\left(Y_{1} \mid X, D=1\right) \mid D=1\right]\right. \\
+ & \left.\lambda \theta \mathrm{E}_{S}\left[\operatorname{Var}\left(Y_{0} \mid X, D=0\right) f_{X}^{2}(X \mid D=1) / f_{X}^{2}(X \mid D=0) \mid D=0\right]\right\} .
\end{aligned}
$$

Similarly for $\hat{\Delta}_{P}, V_{0 P}$ is

$$
\begin{aligned}
\operatorname{Pr}(X \in S \mid D=1)^{-1}\{ & \operatorname{Var}_{S}\left[\mathrm{E}_{S}\left(Y_{1}-Y_{0} \mid P(X), D=1\right) \mid D=1\right] \\
& +\mathrm{E}_{S}\left[\operatorname{Var}_{S}\left(Y_{1} \mid P(X), D=1\right) \mid D=1\right] \\
& +\lambda \theta \mathrm{E}_{S}\left[\operatorname{Var}\left(Y_{0} \mid P(X), D=0\right)\right. \\
& \left.\left.\times f_{p}^{2}(P(X) \mid D=1) / f_{p}^{2}(P(X) \mid D=0) \mid D=0\right]\right\} .
\end{aligned}
$$

To show this first note that in this case $\operatorname{Var}(D \mid X)=\operatorname{Var}(D \mid Z)$. Thus

$$
\begin{aligned}
& {\left[V_{2 X}-V_{2 Z}\right] \cdot \operatorname{Pr}\{X \in S\}} \\
& \quad=\mathrm{E}_{S}\left\{\dot{\left.\operatorname{Var}(D \mid Z)[\partial g(P(Z)) / \partial p]^{2} \cdot\left[\left[f_{X}^{2}(X \mid D=1) / f_{X}^{2}(X)\right]-\left[f_{Z}^{2}(Z \mid D=1) / f_{Z}^{2}(Z)\right]\right]\right\}}\right. \\
& \quad=\mathrm{E}_{S}\left\{\operatorname{Var}(D \mid Z)[\partial g(P(Z)) / \partial p]^{2} \cdot\left[\frac{f_{Z}^{2}(Z \mid D=1)}{f_{Z}^{2}(Z)}\right] \cdot\left[\mathrm{E}\left(\left.\frac{f_{X}^{2}(X \mid Z, D=1)}{f_{X}^{2}(X \mid Z)} \right\rvert\, Z\right)-1\right]\right\} \\
& \quad \geqq \mathrm{E}_{S}\left\{\operatorname{Var}(D \mid Z)[\partial g(P(Z)) / \partial p]^{2} \cdot\left[\frac{f_{Z}^{2}(Z \mid D=1)}{f_{Z}^{2}(Z)}\right] \cdot\left[\mathrm{E}\left(\left.\frac{f_{X}(X \mid Z, D=1)}{f_{X}(X \mid Z)} \right\rvert\, Z\right)^{2}-1\right]\right\} \\
& \quad=0 .
\end{aligned}
$$

8. Summary and Conclusion

