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1. Introduction




Matching is a widely-used method of evaluation.

It is based on the intuitively attractive idea of contrasting the outcomes of
programme participants (denoted Y1) with the outcomes of "comparable"
nonparticipants (denoted YO0).

Differences in the outcomes between the two groups are attributed to the
programme.
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« The estimated gain for each person i in the treated sample is

Vii= e WomGis /) Y, (1)
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« The widely-used evaluation parameter on which we focus in this paper is the
mean effect of treatment on the treated for persons with characteristics X

E(Y,- Y,|D=1, X), (P-1)

where D =1 denotes programme participation. Heckman (1997) and Heckman
and Smit (1998) discuss conditions under which this parameter answers
economically interesting questions.

» For a particular domain H for X, this parameter is estimated by
Ej,ul WM}.N;“}[ 1'J-II = E’i'fn wﬁo,ﬁ|{f} J} 1'J-l.'!.r']i (2}

where different values of wNO,N1(i) may be used to select different domains ff or
to account for heteroskedasticity in the treated sample. Different matching

methods are based on different weighting functions {Wzvo,m(i)} and
Wron1 G D}
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» We show that the fundamental identification condition of the matching
method for estimating (P-1) is

E(Yo|D=1,X)=E(Yo|D=0, X),

whenever both sides of this expression are well defined.

* In order to meaningfully implement matching it is necessary to condition on
the support common to both participant and comparison groups S, where

S=Supp (X|D=1) nSupp (X|D=0),

and to estimate the region of common support.
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2. The Evaluation Problem and The

Parameters of Interest




« The selection bias that arises from making this approximation is

BX)=E(Y;|D=1,X)—E(Y;|D=0, X}.

Heckman 8



» Averaging the estimators over intervals of X produces a consistent estimator
of

M(S)=E(Y, - Y,|D=1, XeS5), (P-2)

with a well-defined N ~1/2 distribution theory where Sis a subset of Supp (X|D =
1.
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3. How Matching Solves The Evaluation
Problem




* Using the notation of Dawid (1979) let

(Yy, Y1) LD|X, (A-1)

denote the statistical independence of (YO, Y1) and D conditional on X. An
equivalent formulation of this condition is

Pr(D=1|Y,, Y, X)=Pr (D=1|X).

« This is a non-causality condition that excludes the dependence between
potential outcomes and participation that is central to econometric models of
self selection. (See Heckman and Honore (1990).)

» Rosenbaum and Rubin (1983), henceforth denoted RR, establish that, when
(A-1) and

0<P(X)<], (A-2)

are satisfied, (Yo, Y1) JLDIP(X), where P(X) =Pr (D=1 IX).
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» When the strong ignorability condition holds, one can generate marginal
distribution of the counterfactuals

Fo(o|D=1,X) and F(y;|D=0, X),
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* Note that under assumption (A-1)

E(Ys|D=1, XeS)=E[E(Y,|D=1,X)|D=1, XeS]
=E[E(Y,|D=0, X)|D=1, XeS],

so E(Y,|D = 1,X € S) can be recovered from E (Yy|D + 0, X) by integrating over
X using the distribution of X given D = 1, restricted to S.
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» \We can get by with a weaker condition since our objective is construction of
the counterfactual E(Yy|X,D = 1)

Yo L D|X, (A-3)

which implies that Pr(Y, < t|D = 1,X) = Pr(Y, < t|D =0,X) forX € S.
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» For identification of the mean treatment impact parameter (P-1), an even
weaker mean independence condition suffices

E(YslD=1, X)=E(Y,|D=0,X) forXeS. (A-17)
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3. Separability and Exclusion Restrictions




* In many applications in economics, it is instructive to partition X into two not-
necessarily mutually exclusive sets of variables, (T, Z), where the T variables
determine outcomes

Yo=go(T)+ Up, (3a)
N=g(T)+ U, (3b)

and the Z variables determine programme participation

Pr(D=1|X)=Pr(D=1|Z)=P(Z). (4)
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The evidence reported in Heckman, Ichimura, Smith and Todd (1996a),
reveals that the no-training earnings of persons who chose to participate in a
training programme, Y, can be represented in the following way

E(Yo|D=1, X)=g(T)+E(lb| P(Z)),

where Z and T contain some distinct regressors.
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* Thus, instead of (A-1) or (A-3), we consider the case where

U L D|X. (A-4a)

» Invoking the exclusion restrictions P(X) = P(Z) and using an argument
analogous to Rosenbaum and Rubin (1983), we obtain

E{D|Uy, P(Z)} =E{E(D|Uy, X)| Uy, P(Z)}
=E{P(Z)|U,, P(Z)}=P(Z)=E{D|P(Z)},
so that

Us L D|P(Z). (A-4b)

» Under condition (A-4a) it is not necessarily true that (A-1) or (A-3) are valid
but it is obviously true that

[Yo—2d(T)] LD|P(Z).
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* In order to identify the mean treatment effect on the treated, it is enough to
assume that

E(Us| D=1, P(Z))=E(U,;| D=0, P(Z)), (A-4b")

instead of (A-4a) or (A-4b).

» In order to place these results in the context of classical econometric selection
models, consider the following index model setup

Yo=go(T)+ U,
D=1 fw(Z)—v=0;

=() otherwise.
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« If Zand v are independent, then P(Z) = E,(¥(Z)) where E,(+) is the
distribution function of v.

» In this case identification condition (A-4b") implies

E[Us| D=1, F, (y(Z))]=E[T,| D=0, F,(v(Z))],

or when F, is strictly increasing,

o wi(Z}
j f Uof (U, vI¥(Z))dvdUs /F,(¥(Z))

i, [ J Unf (Us, vIW(Z))dvdUs /[~ F, (w(Z))].

i Z)

If, in addition, w(Z) is independent of (U}, v), and E(Up) =0, condition (*) implies

] wiZ)
J. J qul: Un ' ‘I-’]dvdﬂu = ﬂ,

—ax ¥ —oo

(*)
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5. Estimating The Mean Effect Of

Treatment: Should One Use The Propensity
Score Or Not?




Under (A-1") with S=Supp (X|D=1) and random sampling across individuals, if one
knew E(Y,|D=0, X=x), a consistent estimator of (P-2) is

Ay=Ni'Y,., [Yu—E(Ys|D=0, X=X)],
where I, is the set of i indices corresponding to observations for which D;= 1. If we assume
E(Yy|D=1, P(X))=E(Yy| D=0, P(X)) for XeSupp (P(X)|D=1), (A-1")
which is an implication of (A-1), and E(Y,| D=0, P(X)=p) is known, the estimator
Rp=Ni'Y,,, [Yu—E(Yo| D=0, P(X)=P(X,))]

is consistent for E(A|D=1).
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Theorem 1. . Assume:

(i) (A-1") and (A-1") hold for S=Supp (X|D=1);
(i) { ¥, X, }ier, are independent and identically distributed,
and
(iii) 0<E(Y¥3) - E(¥7) <.

Then Ay and Ap are both consistent estimators of (P-2) with asymptotic distributions
that are normal with mean 0 and asymptotic variances Vy and Vp, respectively, where

Vyx=E[Var (Y,|D=1,X)|D=1]+Var [E(Y,— Y| D=1,X)|D=1],
and

Ve=E[Var (Y,|D=1, P(X))|D=1]+Var [E(Y,— Y3 |D=1, P(X))|D=1].
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» The theorem directly follows from the central limit theorem for iid sampling
with finite second moment and for the sake of brevity its proof is deleted.

* Observe that

E[Var (¥;|D=1,X)|D=1]<E[Var (Y| D=1, P(X))|D=1],

because X is in general a better predictor than P(X) but

Var [E(Y, — Yo|D=1, X)|D=1]2=Var [E1(Y, - Yo)|D=1, P(X))|D=1],
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6. Asymptotic Distribution Theory for

Kernel-based Matching Estimators




» The general class of estimators of (P-2) that we analyse are of the form

Ni* o [Yu— (T, BZ)UX€D)
Ni' Loy, I(Xi€S)

where I(4)=1 if 4 holds and =0 otherwise and S is an estimator of S, the region of
overlapping support, where S=Supp {X| D=1} n Supp {X|D=0}.

A= (6)
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Definition 1. An estimator §{.::} of #(x) is an asymptotically linear estimator with
trimming I(xeS) if and only if there is a function y,e¥,, defined over some subset of a
finite-dimensional Euclidean space, and stochastic terms b(x) and R{x} such that for
sample size n:

(i) [B(x)—0(x)M(xeS)=n"" T, wa(Xi, ¥i;x)+b(x)+ R(x);
(ii) E{q:r,,{.i’;,l’,,fﬂf x}=0;

(iii) plim,_.n" r_ biX)=b<aw;

(iv) i ' 2 Y0, R(X:)=0,(1).
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A typical estimator of a parametric n:grcssmn function m(x; f) takes the form
mix; ﬁ}, where m is a known function and ﬁ is an asymptotically linear estimator, with
B—p=n Y, wiXi, Y)) +o,(n7""?). In this case, by a Taylor expansion,

Jlm(x, B)=m(x, B)l=n""?T;_| [om(x, B)/6Blw(X,, Y))
+[0m(x, B)/0 — dm(x, B)/0pIn"2 Ti_ | w(Xi, Yi)+0,(1),

where # lies on a line segment between S and ﬁ When ng{.l'., ¥)}1=0 and
E{w(Xi, Y))y(X,, Yi)'} <co, under iid sampling, for example, n ”E; wiX;, Y=
0,(1) and plim,.,f=F so that thuﬁmlﬂm(x B)/aB — dm(x, ﬂ]x’ﬁﬁl_ﬂpﬂ] if
dm(x, p)/ép is Holder continuous at §."

Under these regularity conditions

Jnlm(x, B)—m(x, B)]=n""2Y"_ [8m(x, B)/3Blw (X, Y;)+0,(1).
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(a) Asymptotic linearity of the kernel regression estimator

We now establish that the more general kernel regression estimator for nonparametric
functions is also asymptotically linear. Corollary 1 stated below is a consequence of a
more general theorem proved in the Appendix for local polynomial regression models
used in Heckman, Ichimura, Smith and Todd (1998) and Heckman, Ichimura and Todd
(1997). We present a specialized result here to simplify notation and focus on main ideas.
To establish this result we first need to invoke the following assumptions.
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Assumption 1. Sampling of {X,, ¥;} is i.i.d., X; takes values in R and ¥, in R, and
Var (Y;) <oo.

When a function is p-times continuously differentiable and its p-th derivative satisfies
Hélder's condition, we call the function p-smooth. Let m(x)=E{Y;| X;=x}.

Assumption 2. mi(x) is p-smooth, where p > d.
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We also allow for stochastic bandwidths:

Assumption 3. Bandwidth sequence a, satisfies plim,.. a./h.=@o>0 for some
deterministic sequence {,} that satisfies nk] /log n—co and nh;’ —¢ < co for some ¢=0.

This assumption implies 25 >d but a stronger condition is already imposed in Assump-
tion 2."

Assumption 4. Kernel function K(+) is symmetric, supported on a compact set, and
is Lipschitz continuous.
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Assumption 5. Trimming is p-nice on S.

In order to control the bias of the kernel regression estimator, we need to make
additional assumptions. Certain moments of the kernel function need to be 0, the under-
lying Lebesgue density of X, fy(x), needs to be smooth, and the point at which the
function is estimated needs to be an interior point of the support of X;. It is demonstrated
in the Appendix that these assumptions are not necessary for p-th order local polynomial
regression estimator,

Assumption 6. Kernel function K(-) has moments of order 1 through p—1 that are
equal to zero.

Assumption 7.  fy(x) is p-smooth,

Assumption 8. A point at which m(-) is being estimated is an interior point of the
support of X;.
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The following characterization of the bias is a consequence of Theorem 3 that is
proved in the Appendix.

Corollary 1. Under Assumptions 1-8, if K(u,, ..., uz)=k(w) - - - k(uys) where k(+)
is a one dimensional kernel, the kernel regression estimator riy(x) of m(x) is asymptotically

linear with trimming, where, writing &=Y,—E{Y,| X;}, and

ValXi, Yi5 %)= (naohi) ™ & K ((X;—x)/(aoh.)) [(x€S)/ fx(x),

b(x)=(atoh,)" -

xgnl[

Jx(x) JK[HHH] P2 LH 02

J-ui K {HJJH][IE’ m(x) /(2% )] - [8%fx (%) /(8% ]“i"“’]] I(xeS$).
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(b) Extensions to the case of local polynomial regression

In the Appendix, we consider the more general case in which the local polynomial regres-
sion estimator for £(¢, p) is asymptotically linear with trimming with a uniformly consistent
derivative. The latter property is useful because, as the next lemma shows, if both P(z) and
£(t, p) are asymptotically linear, and if 62(¢, p)/dp is uniformly consistent, then g(r, P(z)) is
also asymptotically linear under some additional conditions. We also verify in the Appen-
dix that these additional conditions are satisfied for the local polynomial regression
estimators.

Let P,(z) be a function that is defined by a Taylor’s expansion of 2(1, P(z)} in the
neighbourhood of P(z), i.e. (s, P(z)} £(t, P(z))+0é(t, P,(2))/dp - [P{z} P(2)].
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Lemma 1. Suppose that:
(i) Both F‘(z} and g(t, p) are asymptotically linear with trimming where
(P(z)— PU(xeS)=n"" TI_, WDy, Z;3 2) +b,(2) + R, (2),
[£(t, ) —g(t, PU(xe8) =n"" T, W (Y, Ty, P(Z;); 1, p) + by (1, p) + Ry (8, p);

(i) 2¢(z, p)/dp and P(z) are uniformly consistent and converge to dg(1, p)/0p and
P(z), respectively and dg(t, p)/0dp is continuous,

(iii) plimaco ™2 3, by (T1, P(Z))) = by and
plim,_.on~" " Y,_, dg(T:, P(Z;))/dp - by(Ti, P(Z))=by,;

(iv) plimy.cn” "':Z“. 1[ﬁ§(ﬂ,Pn{3:W5P ag(Ti, P(Z;))/0p] - Rp(Z;)=0;

(V) plimy.o n™* Y Y7 [08(T, Pr,(Z))/8p —g(T:, P(Z)))/dp]
" Wap( Dy, 255 Z;)=0.

then £(1, ﬁ[z]} is also asymptotically linear where
[£(t, P(2)) —g(t, P@)U(xe8) =n"" T_ [wne (¥}, Ty, P(Z)); 1, P(2))

+30g(t, P(2))/3p - ¥np(Dy, Z;; 2)]+b(x) + R(x),
and phim, ., 1”2 Y B(X,)=b,+b,,.
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Assumption 9. K(-) 1s 1-smooth.

Lemma | implies that the asymptotic distribution theory of A can be obtained for
those estimators based on asymptotically linear estimators with trimming for the general
nonparametric (in P and g) case. Once this result is established, it can be used with lemma
1 to analyze the properties of two stage estimators of the form g(t, P(z)).
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Theorem 2. Under the following conditions:

(i) {Yois Xi}ier, and {Y1i, X, }icr, are independent and within each group they are i.i.d.
and Yy; for iely and Yy, for iel, each has a finite second moment,

(ii) The estimator §(x) of g(x)=E{Y,|D;=1,X,=x} is asymptotically linear with
trimming, where

[8(x) — ()M {xe5} =No" T, wowow(Yor, Xi; X)
+NT' T Winen (Y, Xis %)+ be(x) + Ry (x)

and the score functions Wayw (Y4, X; x) for d=0 and 1, the bias term Ei{x], and
the trimming function satisfy:

(ii-a) E {wanow, (Ya, Xi; X)|Dy=d, X, D=1)}=0 for d=0 and 1, and
Var { Wanyn(Yai, Xi; X)} =0(N) for each iely u I ;

(ii-b) plimy,~co N7'? ¥, b(X))=b;

{]]-I'.‘-} p]i]l'lﬁl_.m Var {E[\Fn,ﬂ;ﬂifﬂ.‘, X.,X}I FUE,D;=|},X“ D=1]|D=l}= Vu‘:m
plimy, . Var {E[w iy (Y, Xi; X)| Yy, D=1, X;, D=1]|D= 1} =V, <o,
and
limpy, oo E{[Fli_g{xi}]I{XiES] "

- E[WIM}M{}’”: XHI” Fli': D:'=1:- X!l D=1”D=1}=Cﬂv1 ’

(ii-d) § and S are p-nice on S, where p>d, where d is the number of regressors in X
and f(x) is a kernel density estimator that uses a kernel function that satisfies
Assumption 6.
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Then under (A-1") the asymptotic distribution of

NI [N.-- r [l’u—ﬁ[.f,}:[i{.heﬁj
Nl_] Z.ref. I(X’ES]

is normal with mean (b/Pr (XeS|D=1)) and asymptotic variance

—Es (Y, — }'u|ﬂ=1]il

Pr(XeS|D=1)""{Vars [Es (Y, Y,|T, P(Z), D=1)|D=1]
+Eg [Vars (Y, |T, P(Z), D=1)|D=1]}
+Pr(XeS|D=1)"*{V,+2- Cov,+ 8V,}.

Proof. See the Appendix. |
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7. Answers to The Three Questions of
Section 1 and More General Questions

Concerning The Value of A Priori
Information




 In this case the score function 1NON1 (Yy;, X;; x) and

& K((X;—x)/an)(xe§)
ay fx (x| D=0) | K(u)du’
where &= Yy, — E{ Yy;|X;, D;=0} and we write fy (x| D=0) for the Lebesgue density of X,

given D;=0. (We use analogous expressions to denote various Lebesgue densities.) Clearly

¥, and Cov, are zero in this case. Using the score function we can calculate ¥, when we
match on X. Denoting this variance by Vyy,

Wowon ( Yoi, Xij x)=

Vox= lim Var {E[wowew,( Yoi, Xi, X) | Yor, D=0, X;, D=1]| D=1}

My—an

. & K((X,—X)/an)(XeS) B 3 ] B }
= Vari E Yo, D;=0,X,.D=1]||D=1}.
ul.ff.nm ‘”{ [air&f_r{rlﬂ=ﬂ]_[ﬁi(u}dul o |
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« Now observe that conditioning on X; and Yy; is given, so that we may write
the last expression as

Var {E.E[“-’{(X i—X)/an)I(XeS)

. D=0,X,, D=1|D=1}.
v, fe (X | D=0)[K(u)du | : ]" }

* Now

E[ﬂ:(x.- —X)/an)I(X€eS)

umtx|ﬂ=ﬂljﬂu}da'ﬂ’=“"f"Dﬂ}’

Xi—X

can be written in the following way, making the change of variable = w:

ano

J‘ K(w)([X;—anw]eS) f(X;—anw|D=1) dw
[ K(u)du f(Xi—ayw|D=0)
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Taking limits asN, — oo, and using assumptions 3, 4 and 7, so we can take
limits inside the integral

i E[K{(X:—X}fﬂmH[IESJ _f(Xi|D=1)
dvofx (X| D=0)[K(u)du f(Xi|D=0)

since ay, — 0 and [K(w)dw/[K(u)du=1. Thus, since we sample the X; for which D,=0,

|D;5ﬂ,..¥“ﬂ=1:| I[IJES]:-

Np=+00

Var (Yol X;, D;=0) f3(X;|Di=1
Vox=Es 3
f3(X:|D,=0)

1'|,J_::,=ﬂ] Pr {X,eS|D;=0}.
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Hence the asymptotic variance of Ay is, writing A=Pr {XeS|D=0}/Pr (XeS|D=1),
Pr (XeS|D=1)""{Vars[Es(Y¥,— Y;|X, D=1)|D=1]+E;s [Vars (¥,|X, D=1)|D=1]
+ABE; [Var (Y,|X, D=0)f3(X|D=1)/f%(X|D=0) | D=0]}.
Similarly for Ap, Vyp is
Pr(XeS|D=1)""{Vars[Es (¥, — Yo| P(X), D=1)|D=1]

+Eg [Vars (Y1 | P(X), D=1)|D=1]
+ AOEs [Var (Y, | P(X), D=0)
xf32(P(X)|D=1)/f}(P(X)|D=0)|D=0]}.
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To show this first note that in this case Var (D|X)=Var (D|Z). Thus

[Vax— Vaz] - Pr {XeS)

=Es{Var (D|Z)[dg(P(Z))/p) - [Lf3(X|D=1)/f3(X)]—-[/2(Z|1D=1)/F3(Z)]]}

=Es {'Jar (D1Z)[dg(P(Z))/op) -

=Es {‘ﬂ'ﬂr (D1Z)dg(P(Z))/op)" -

=],

f3(Z|D=1)]

| f2(2)

f3(Z|D=1)]

f2(Z)

_ 'E(ﬁ-({lz, D=1), z)_rl}}
1L\ sz

[ )

x(X|Z)
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8. Summary and Conclusion
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