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1. Policy adoption problem

• Suppose a policy is proposed for adoption in a country.

• What can we conclude about the likely effectiveness of the
policy in countries?

• Build a model of counterfactuals.

Y1 = µ1(X ) + U1 (1)

Y0 = µ0(X ) + U0.
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Consider the Basic Generalized Roy Model

• Two potential outcomes (Y0,Y1).

• A choice equation

D = 1[µD(Z ,V )︸ ︷︷ ︸
net utility

> 0].

• Observed outcomes:

Y = DY1 + (1− D)Y0

• Assume µD(Z ,V ) = µD(Z )− V .

• This separability plays a key role in the IV (LATE) and discrete
choice.

• Can be relaxed, but things look much less traditional.
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Switching Regression Notation

Y = Y0 + (Y1 − Y0)D (2)

= µ0 + (µ1 − µ0 + U1 − U0)D + U0.

(Quandt, 1958, 1972).

In Conventional Regression Notation

Y = α + βD + ε (3)

α = µ0, β = (Y1 − Y0) = µ1 − µ0 + U1 − U0, ε = U0.

• β is the “treatment effect.”
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Figure 1: Distribution of gains, a Roy economy
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β = Y1 − Y0

TT= 2.666 = E (Y1 − Y0|D = 1), TUT= −0.632 = E (Y1 − Y0|D = 0)
Return to Marginal Agent = C = 1.5, ATE = µ1 − µ0 = β̄ = 0.2
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The model

Outcomes Choice Model

Y1 = µ1 + U1 = α+ β̄ + U1 D =

{
1 if D∗ > 0
0 if D∗ ≤ 0

Y0 = µ0 + U0 = α+ U0

General Case

(U1 − U0) ⊥⧸⊥ D
ATE ̸=TT ̸=TUT
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Parameterizing the model

The Researcher Observes (Y ,D,C )

Y = α + βD + U0 where β = Y1 − Y0

Parameterization

α = 0.67 (U1,U0) ∼ N (0,Σ) D∗ = Y1 − Y0 − C

β̄ = 0.2 Σ =

[
1 −0.9

−0.9 1

]
C = 1.5
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• In the case when U1 = U0 = ε0, simple least squares regression
of Y on D subject to a selection bias if ε0 determines D.

• Notice that in a Roy model where D = 1(Y1 − Y0 ≥ 0) and
U1 = U0, D = 1(µ1(x)− µ0(x) ≥ 0) where µ1(·) and µ0(·)
depend on X = x .

• “Regression discontinuity” at set of points
x ∈ {x |µ1(x)− µ0(x) = 0}.

• If

D = 1(Y1 − Y0 − C ≥ 0)

C = µC (Z ) + UC

there would be selection bias if U0 ⊥⧸⊥ UC .

Heckman Urzua Vytlacil Roy Models of Policy



• Consider case I.

• Upward biased for β if Cov(D, ε0) > 0.

• In the example, if Cov(ε0,UC ) < 0, you get upward bias for
OLS. If Cov(ε0,UC ) > 0, OLS is downward biased.

• Prove. How does this covariance relate to the question of
whether a country is a meritocracy?

Heckman Urzua Vytlacil Roy Models of Policy



• Three main approaches have been adopted to solve this
problem:

1 Selection models
2 Instrumental variable models (experiments; RDD is local IV)
3 Matching: assumes that ε ⊥⊥ D | X .

• Matching is just nonparametric least squares and assumes
access to rich data which happens to guarantee this condition.
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Instrumental Variables in Case I, the traditional case: β is a
constant

• If there is an instrument Z , with the property that

Cov(Z ,D) ̸= 0 (4)

Cov(Z , ε) = 0, (5)

then

plim β̂IV =
Cov(Z ,Y )

Cov(Z ,D)
= β.

• If other instruments exist, each identifies the same β.
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Case II, heterogeneous response case: β is a random variable
even conditioning on X

Sorting bias
or sorting on the gain which is distinct from sorting on the level.

Essential heterogeneity
Cov(β,D) ̸= 0.

Suppose (4), (5) and
Cov(Z , β) = 0. (6)

• Can we identify the mean of (Y1 − Y0) using IV?
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• In general we cannot (Heckman and Robb, 1985).

• Let

β̄ = (µ1 − µ0)

β = β̄ + η

U1 − U0 = η

Y = α + β̄D + [ε+ ηD] .

• Need Z to be uncorrelated with [ε+ ηD] to use IV to
identify β̄.

• This condition will be satisfied if policy adoption is made
without knowledge of η (= U1 − U0).

• If decisions about D are made with partial or full knowledge of
η, IV does not identify β̄.

• Crucial Question: What is the agent’s information set?
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• The IV condition is

E [ε+ ηD | Z ] = 0.

• E (ε | Z ) = 0, E (η | Z ) = 0.

• Even if η ⊥⊥ Z , η ⊥⧸⊥ Z | D = 1.

• E (ηD | Z ) = E (η | D = 1,Z ) Pr(D = 1 | Z ).
• But E (η | Z ,D = 1) ̸= 0, in general, if agents have some
information about the gains.
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• Draft Lottery example (Heckman, 1997).

• Linear IV does not identify ATE or any standard treatment
parameters.
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Examples

D = 1(µD(z) > V )

(Notice: lower case z is a number; Z is a random variable.)
Example:

µD(z) = γz

(V ⊥⊥ Z ) | X .

The propensity score or probability of selection into D = 1:

P(z) = Pr(D = 1 | Z = z) = Pr(γz > V ) = FV (γz)

FV is the distribution of V .

Heckman Urzua Vytlacil Roy Models of Policy



Generalized Roy model
U1 ̸= U0

D = 1[Y1 − Y0 − C ≥ 0]

Costs C = µC (W ) + UC

Z = (X ,W )

µD (Z ) = µ1 (X )− µ0 (X )− µC (W )

V = − (U1 − U0 − UC ) .
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Heterogeneous response model

In a general model with heterogenous responses, specification of
P(Z ) and relationship with the rest of the model plays an essential
role.

E = (ηD|Z = z)

= E (η|D = 1,Z = z)Pr(D = 1|Z = z)

= E (η|γz ≥ V ,Z = z)Pr(D = 1|Z = z)

If FV is weakly monotonic,

= E (η|FV (γz) ≥ FV (V ),Z = z)Pr(D = 1|Z = z).
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Because Z ⊥⊥ η|X
E (η|FV (γz) ≥ FV (V ),Z = z)

=E (η|FV (γz) ≥ FV (V ))

P(z) =FV (γz) “Propensity Score”

UD =FV (V ) “Uniform Random Variable”

E (ηD|Z = z ,D = 1)

=E (η|P(z) ≥ UD)P(z).

• Probability of selection enters this term, even though we use
only one component of Z as an instrument.
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• Selection models control for this dependence induced by choice.
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Selection models

Assume
(U1,U0,V ) ⊥⊥ Z (7)

[Alternatively (ε, η,V ) ⊥⊥ Z ].

η = (U1 − U0), ε = U0 (8)

E (Y | D = 0,Z = z) = E (Y0 | D = 0,Z = z)

= α + E (U0 | γz < V )

E (Y | D = 0,Z = z) = α + K0(P(z)︸ ︷︷ ︸)
control function
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E (Y | D = 1,Z = z) = E (Y1 | D = 1,Z = z)

= α + β̄ + E (U1 | γz > V )

= α + β̄ + K1(P(z))︸ ︷︷ ︸
control function

• K0(P(z)) and K1(P(z)) are control functions in the sense of
Heckman and Robb (1985, 1986).

• P(z) is an essential ingredient in both matching and IV:

• Matching: K1 (P(z)) = K0 (P(z)). Why? E (U1|Z ) = E (U0|Z ).
• Matching balances

• It may or may not be true that E (U1|Z ) = 0 or E (U2|Z ) = 0.

• Matching differences out the common term.
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