Roy Models of Policy Evaluation

James J. Heckman and Edward Vytlacil (Extracted from: Understanding Instrumental Variables in Models with Essential Heterogeneity)

Econ 312, Spring 2023

1. Policy adoption problem

- Suppose a policy is proposed for adoption in a country.
- What can we conclude about the likely effectiveness of the policy in countries?
- Build a model of counterfactuals.

$$Y_1 = \mu_1(X) + U_1$$
 (1)
 $Y_0 = \mu_0(X) + U_0.$

Consider the Basic Generalized Roy Model

- Two potential outcomes (Y_0, Y_1) .
- A choice equation

$$D = \mathbf{1}[\underbrace{\mu_D(Z, V)}_{\text{net utility}} > 0].$$

Observed outcomes:

$$Y = DY_1 + (1 - D)Y_0$$

- Assume $\mu_D(Z, V) = \mu_D(Z) V$.
- This separability plays a key role in the IV (LATE) and discrete choice.
- Can be relaxed, but things look much less traditional, the UNIVERSITY OF

Switching Regression Notation

$$Y = Y_0 + (Y_1 - Y_0)D$$

= $\mu_0 + (\mu_1 - \mu_0 + U_1 - U_0)D + U_0.$ (2)

(Quandt, 1958, 1972).

In Conventional Regression Notation

$$Y = \alpha + \beta D + \varepsilon \tag{3}$$

 $\alpha = \mu_0, \ \beta = (Y_1 - Y_0) = \mu_1 - \mu_0 + U_1 - U_0, \ \varepsilon = U_0.$

• β is the "treatment effect."

Figure 1: Distribution of gains, a Roy economy

The model

Outcomes	Choice Model
$Y_1 = \mu_1 + U_1 = \alpha + \overline{\beta} + U_1$ $Y_0 = \mu_0 + U_0 = \alpha + U_0$	$D=\left\{ egin{array}{ll} 1 ext{ if } D^*>0 \ 0 ext{ if } D^*\leq 0 \end{array} ight.$
General Case	
$egin{array}{llllllllllllllllllllllllllllllllllll$	

Parameterizing the model

The Researcher Observes (Y, D, C)

$$Y = \alpha + \beta D + U_0$$
 where $\beta = Y_1 - Y_0$

Parameterization

$$\alpha = 0.67 \quad (U_1, U_0) \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}) \quad D^* = Y_1 - Y_0 - C$$

$$\bar{\beta} = 0.2 \quad \mathbf{\Sigma} = \begin{bmatrix} 1 & -0.9 \\ -0.9 & 1 \end{bmatrix} \qquad C = 1.5$$

- In the case when U₁ = U₀ = ε₀, simple least squares regression of Y on D subject to a selection bias if ε₀ determines D.
- Notice that in a Roy model where $D = 1(Y_1 Y_0 \ge 0)$ and $U_1 = U_0$, $D = 1(\mu_1(x) \mu_0(x) \ge 0)$ where $\mu_1(\cdot)$ and $\mu_0(\cdot)$ depend on X = x.
- "Regression discontinuity" at set of points
 x ∈ {x|μ₁(x) − μ₀(x) = 0}.

• If

$$D = 1(Y_1 - Y_0 - C \ge 0)$$

 $C = \mu_C(Z) + U_C$

there would be selection bias if $U_0 \not\perp U_C$.

- Consider case I.
- Upward biased for β if Cov(D, ε₀) > 0.
- In the example, if Cov(ε₀, U_C) < 0, you get upward bias for OLS. If Cov(ε₀, U_C) > 0, OLS is downward biased.
- **Prove.** How does this covariance relate to the question of whether a country is a meritocracy?

- Three main approaches have been adopted to solve this problem:
 - Selection models
 - 2 Instrumental variable models (experiments; RDD is local IV)

3 Matching: assumes that $\varepsilon \perp D \mid X$.

• Matching is just nonparametric least squares and assumes access to rich data which happens to guarantee this condition.

Instrumental Variables in Case I, the traditional case: β is a constant

• If there is an instrument Z, with the property that

$$\operatorname{Cov}(Z, D) \neq 0$$
 (4)
 $\operatorname{Cov}(Z, \varepsilon) = 0,$ (5)

then

plim
$$\hat{\beta}_{IV} = \frac{\text{Cov}(Z, Y)}{\text{Cov}(Z, D)} = \beta.$$

• If other instruments exist, each identifies the same β .

Case II, heterogeneous response case: β is a random variable even conditioning on X

Sorting bias

or sorting on the gain which is distinct from sorting on the level.

Essential heterogeneity $Cov(\beta, D) \neq 0.$

Suppose (4), (5) and

$$\operatorname{Cov}(Z,\beta) = 0. \tag{6}$$

• Can we identify the mean of $(Y_1 - Y_0)$ using IV?

• In general we cannot (Heckman and Robb, 1985).

Let

$$\bar{\beta} = (\mu_1 - \mu_0)$$
$$\beta = \bar{\beta} + \eta$$
$$U_1 - U_0 = \eta$$
$$Y = \alpha + \bar{\beta}D + [\varepsilon + \eta D].$$

- Need Z to be uncorrelated with $[\varepsilon + \eta D]$ to use IV to identify $\bar{\beta}$.
- This condition will be satisfied if policy adoption is made without knowledge of $\eta (= U_1 U_0)$.
- If decisions about D are made with partial or full knowledge of η , IV does not identify $\bar{\beta}$.
- Crucial Question: What is the agent's information set? UNIVERSITY OF

The IV condition is

$$E\left[\varepsilon+\eta D\mid Z\right]=0.$$

- $E(\varepsilon | Z) = 0, \quad E(\eta | Z) = 0.$
- Even if $\eta \perp\!\!\!\perp Z$, $\eta \not\!\!\perp Z \mid D = 1$.
- $E(\eta D \mid Z) = E(\eta \mid D = 1, Z) \Pr(D = 1 \mid Z).$
- But $E(\eta \mid Z, D = 1) \neq 0$, in general, if agents have some information about the gains.

- Draft Lottery example (Heckman, 1997).
- Linear IV does not identify ATE or any standard treatment parameters.

Examples

$$D = 1(\mu_D(z) > V)$$

(Notice: lower case z is a number; Z is a random variable.) **Example:**

$$\mu_D(z) = \gamma z$$
$$(V \perp Z) \mid X.$$

The propensity score or probability of selection into D = 1:

$$P(z) = \Pr(D = 1 \mid Z = z) = \Pr(\gamma z > V) = F_V(\gamma z)$$

 F_V is the distribution of V.

Generalized Roy model $U_1 \neq U_0$

$$D = \mathbf{1}[Y_1 - Y_0 - C \ge 0]$$

Costs
$$C = \mu_C (W) + U_C$$

 $Z = (X, W)$
 $\mu_D (Z) = \mu_1 (X) - \mu_0 (X) - \mu_C (W)$
 $V = - (U_1 - U_0 - U_C)$.

Heterogeneous response model

In a general model with heterogenous responses, specification of P(Z) and relationship with the rest of the model plays an essential role.

$$E = (\eta D | Z = z)$$

= $E(\eta | D = 1, Z = z) Pr(D = 1 | Z = z)$
= $E(\eta | \gamma z \ge V, Z = z) Pr(D = 1 | Z = z)$

If F_V is weakly monotonic,

$$= E(\eta|F_V(\gamma z) \ge F_V(V), Z = z)Pr(D = 1|Z = z).$$

Because
$$Z \perp \eta | X$$

 $E(\eta | F_V(\gamma z) \ge F_V(V), Z = z)$
 $=E(\eta | F_V(\gamma z) \ge F_V(V))$
 $P(z) = F_V(\gamma z)$ "Propensity Score"
 $U_D = F_V(V)$ "Uniform Random Variable"
 $E(\eta D | Z = z, D = 1)$
 $=E(\eta | P(z) \ge U_D)P(z).$

• Probability of selection enters this term, even though we use only one component of Z as an instrument.

• Selection models control for this dependence induced by choice.

Selection models

Assume

$$(U_1, U_0, V) \perp Z \tag{7}$$

[Alternatively (ε, η, V) $\perp \!\!\!\perp Z$].

$$\eta = (U_1 - U_0), \, \varepsilon = U_0 \tag{8}$$

$$E(Y | D = 0, Z = z) = E(Y_0 | D = 0, Z = z) = \alpha + E(U_0 | \gamma z < V)$$

$$E(Y \mid D = 0, Z = z) = \alpha + \underbrace{K_0(P(z))}_{z \in Z}$$

control function

$$E(Y \mid D = 1, Z = z) = E(Y_1 \mid D = 1, Z = z)$$

= $\alpha + \overline{\beta} + E(U_1 \mid \gamma z > V)$
= $\alpha + \overline{\beta} + \underbrace{K_1(P(z))}_{\text{control function}}$

- K₀(P(z)) and K₁(P(z)) are control functions in the sense of Heckman and Robb (1985, 1986).
- P(z) is an essential ingredient in both matching and IV:
- Matching: $K_1(P(z)) = K_0(P(z))$. Why? $E(U_1|Z) = E(U_0|Z)$.
- Matching balances
- It may or may not be true that $E(U_1|Z) = 0$ or $E(U_2|Z) = 0$.
- Matching differences out the common term.

