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The Method of Matching



• To operationalize the method of matching, assume two samples: "t" for 

treatment and "c" for comparison group. 

• Unless otherwise noted, observations are statistically independent. Simple 

matching methods are based on the following idea: For each person i in the 

treatment group, we find some group of "comparable" persons. 

• The same individual may be in both groups if that person is treated at one 

time and untreated at another. 

• We denote outcomes in the treatment group by 𝑌𝑖
𝑡 and we match these to the 

outcomes of a subsample of persons in the comparison group to estimate a 

treatment effect. 

• In principle, we can use a different subsample as a comparison group for each 

person.



• In practice, we can construct matches on the basis of a neighborhood 

𝑋(𝑋𝑖)where 𝑋𝑖 is a vector of characteristics for person i. 

• Neighbors to treated person i are persons in the comparison sample whose 

characteristics are in neighborhood 𝐶(𝑋𝑖). 

• Suppose that there are 𝑁𝐶 persons in the comparison sample and 𝑁𝑡 in the 

treatment sample. 

• Thus, the persons in the comparison sample who are neighbors to i, are 

persons j for whom 𝑋𝑗 ∈ 𝐶(𝑋𝑖), i.e., the set of persons 𝐴𝑖 = {𝑗|𝑋𝑗 ∈ 𝐶(𝑋𝑖)}.



• Let 𝑊(𝑖, 𝑗) be the weight placed on observation j in forming a comparison with 

observation i and further assume that the weights sum to one,



• Heckman et al. (1997a) survey a variety of alternative matching schemes 

proposed m the literature. 

• Here we briefly introduce two widely used methods. 

• The nearest-neighbor matching estimator defines Ai such that only one j is 

selected so that it is closest to Xi in some metric:

where || || is a metric measuring distance in the 𝑋 characteristics space. 

• The Mahalanobis metric is one widely used metric for implementing the 

nearest-neighbor matching estimator.

• The metric used to define neighborhoods for i is

Where σ𝐶 is the covariance matrix in the comparison sample.



• The weighting scheme for the nearest neighbor matching estimator is

• A version of nearest-neighbor matching, called "caliper" matching (Cochran 

and Rubin, 1973), makes matches to person i only if

where s is a pre-specified tolerance. 

• Otherwise, person i is bypassed and no match is made to him or her.

• Kernel matching uses the entire comparison sample, so that A i = { 1 ..... N,:}, 

and sets

where K is a kernel.



• In practice, kernels are typically a standard distribution function such as that for 

the normal. 

• Kernel matching is a smooth method that reuses and weights the comparison 

group sample observations differently for each person i in the treatment group 

with a different Xi. 

• Kernel matching can be defined pointwise at each sample point X~ or for 

broader intervals.

• The impact of treatment on the treated is estimated by forming the mean 

difference across the I
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The instrumental variable estimator as a 

matching estimator
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The Instrumental Variable Estimator as A 

Matching-Comparison Group Estimator
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• Heckman (1998c) shows how most evaluation estimators, including IV 

estimators, can be interpreted as matching estimators using the weighting 

framework of Eqs. (7.8) and (7.10).

• To see the basic idea, consider the simple random coefficient model

• We define 𝛽 and 𝛼 as functions of 𝑋 where 𝐸 𝑈|𝑋, 𝐷 ≠ 0. Assume a valid 

instrumental Z that satisfies conditions (7.17a)-(7.17c). Then

• Now we can express the outcome equation as follows:

• where 𝐷 = 𝐸(𝐷|𝑋, 𝑍) +𝑊 and where, under our assumptions, the error terms 

have mean zero conditional on 𝑋 and 𝑍.
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• If we have a valid instrument, then 𝐸(𝑈|𝑋, 𝑍) = 𝐸(𝑈|𝑋) and 𝐸(𝛼|𝑋, 𝑍, 𝐷 =
1) = 𝐸(𝛼|𝑋, 𝐷 = 1).

• To identify 𝐸(𝛼|𝑋, 𝐷 = 1) we may form pairwise comparisons between person 

i and anyone else, provided that the matched partner for i, say i’, has the same 𝑋
but a different 𝑍 = 𝑍′, where

• If this condition is satisfied, we may match a suitable i / to form the pairwise 

estimate of the gains as follows:
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• Accordingly, we can write our estimate of 𝐸(𝛼|𝑋, 𝐷 = 1) as a weighted average 

of contrasts:

for 𝑖, 𝑖′ such that 𝐸 𝐷𝑖 𝑋, 𝑍𝑖 ≠ 𝐸(𝐷𝑖
′|𝑋, 𝑍𝑖′), and where the weights are given by

• Formally, we set

for 𝑖, 𝑖′, where 𝐸(𝐷𝑖|𝑋, 𝑍𝑖) = 𝐸(𝐷𝑖′|𝑋, 𝑍𝑖′, ) and we get the same result summed 

over all 𝑖, 𝑖′ since for these cases 𝑊 𝑖, 𝑖′ = 0.
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• Eq. (7.20) reveals that propensity score matching with 𝑍 as the propensity score 

estimates 𝐸(𝛼|𝑋, 𝐷 = 1) by taking a weighted average of all 𝑖, 𝑖′ contrasts for 

values of 𝑋, 𝑍 with distinct probability values. 

• Instrumental variable estimation is just a weighted average of contrasts of 

conditional means constructed in terms of propensity scores. 

• Observe that this method only requires (7.17b) and not that E(U I X, Z) = 0. 

• Thus, like matching and randomized trials, the IV method does not eliminate 

conventional econometric exogeneity bias - it just balances the bias.
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Panel data estimators as matching estimators
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• The simple before-after estimator can be written as a matching estimator using 

the weighting scheme introduced in Section 7.4.1. 

• To begin, accept assumption (4.A.I) as valid. 

• For person 𝑖 at time 𝑡 > 𝑘 (𝑘 is the program participation period in the notation 

of Section 4) who has participated in the program, the match is with 

himself/herself in period t′ < 𝑘. 

• Assume a stationary environment. 

• Letting the match partner be the same individual at time t′ < 𝑘, we match 

𝑌0,𝑖,𝑡′ , 𝑡
′ < 𝑘 to obtain the following:

where the weight 𝑊(𝑖, 𝑡′) = 1. More generally if we have access to more than one 

preprogram observation per person, one can weight the various terms by functions 

of the variances determined using the optimal weighting schemes in minimum 

distance estimation (see Heckman, 1998c, for details.)
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• Thus, the comparison group for person 𝑖 at time 𝑡 is a weighted average of the 

available observations for that person over the pre-program observation period:

where

• Each post-program period can be matched in this way with the pre-program 

observations.

• The weights can be chosen to minimize the variance in the sum of the contrasts. 

(Heckman, 1998c).
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• Assuming that the same treatment effect characterizes all post-program periods, 

and summing over all post-program observations, we can estimate the treatment 

on the treated parameter by the sample analog of

and 𝜑(𝑖, 𝑡) are weights chosen to minimize the variance of this expression. 

If the treatment effects are different for each post-program period, there is no point 

in summing across post-program periods.
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• There is no necessary reason why the weights should be the same on tile 

components.

• Thus, we may write

provided that

for all 𝑖. 

• These conditions enable us to difference out common components and retain 

identification of 𝐸(𝛼|𝑋, 𝐷 = 1).
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• If there are trends operating on participants, it is necessary to eliminate them to 

estimate the parameter of interest. 

• If the trends are common across participants, we are led to using the 

differences-in-differences method as long as assumption (4.A.2) is valid. 

• In this setting, it is necessary to use a group of persons who do not receive 

treatment. 

• Accordingly, we can think of creating a comparison person 𝑖′ for treatment 

person 𝑖:

for all 𝑖, 𝑖′ and 𝑗.
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• This transforms the comparison group to be conformable with the treatment 

group. 

• We thus create a pairing 𝑖 → 𝑖′, such that persons 𝑖 and 𝑖′ have the same 

weights, 𝑖 is in the treatment group and 𝑖′ is in the comparison group, and we 

can form the difference-in-differences estimator for person 𝑖 paired with person 

𝑖′ as follows:
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• This procedure eliminates common trends and weights the comparison group 

and treatment group symmetrically. 

• Different weights are required for models with different serial correlation 

properties (Heckman, 1998c).

• More generally, we can form other pairings in the comparison group and 

compare 𝑖 to an entire collection of non-treated persons who are operated on by 

a common trend. 

• For example, we can form an alternative difference-in-differences estimator as 

follows:

where 𝑁𝐶, is the number of persons in the comparison sample, q)(i ~) is a weight 

and where
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• Difference (7.33) eliminates age- or period-specific common trends or year 

effects. 

• We can form variance weighted versions of (7.33) to pool information across 

𝑖 to estimate 𝐸(𝑌1 − 𝑌0|𝑋, 𝐷 = 1) efficiently if the effect is constant (see 

Heckman, 1998c).

• The same scheme can be used to estimate models with person-specific, time-

varying variables. 

• Time-invariant variables are eliminated by subtraction. Consider the before-

after estimator. 

• Let 𝐴𝑖𝑡(𝑌𝑖𝑡) be an "adjustment" to 𝑌𝑖𝑡, where
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• Then the comparison group for person 𝑖 based on his preprogram adjusted 

outcomes can be written as

and the before-after estimator can now be written in terms of adjusted outcomes as

follows:

• We can make a similar modification to the difference-in-differences scheme:
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• This modification eliminates non-invariant components. 

• This enables us to generalize the simple before-after estimator to a case where 

person-specific and period-specific shocks operate on agents. 

• This produces a large class of longitudinal estimators as special cases of the 

weighting scheme introduced in our discussion and is the basis for a unified 

treatment of a variety of evaluation estimators. 

• Heckman (1998a) presents a comprehensive analysis and many examples of 

weights for different traditional econometric estimators.
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