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➢ Over two dozen different terms for identification appear in the 

econometrics literature, including set identification, causal identification, 

local identification, generic identification, weak identification, 

identification at infinity, and many more. 

➢ This survey: 

➢ (i) gives a new framework unifying existing definitions of point 

identification;

➢ (ii) summarizes and compares the zooful of different terms associated 

with identification that appear in the literature; and 

➢ (iii) discusses concepts closely related to identification, such as 

normalizations and the differences in identification between structural

models and causal, reduced form models. ( JEL C01, C20, C50)
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1. Introduction 
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➢ Econometric identification really means just one thing: model parameters 

or features being uniquely determined from the observable population that 

generates the data

➢ This survey then discusses the differences between identification in 

traditional structural models versus the so-called reduced form (or causal 

inference, or treatment effects, or program evaluation) literature

➢ Concepts that are closely related to identification, including normalizations, 

coherence, and completeness are also discussed

➢ The study of identification logically precedes estimation, inference, and 

testing
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➢ The next section, section 2, begins by providing some historical 

background

➢ Section 3 then provides examples of, and methods for obtaining, point 

identification

➢ Next is section 4, which defines and discusses the concepts of coherence 

and completeness of models

➢ This is followed by section 5, which is devoted to discussing identification 

concepts in what is variously known as the reduced form, or program

evaluation, or treatment effects, or causal inference literature
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➢ Section 6 describes nonparametric identification, semiparametric 

identification, and set identification

➢ Section 7 describes limited forms of identification, in particular, local 

identification and generic identification

➢ Section 8 considers forms of identification that have implications for, or 

are related to, statistical inference

➢ Section 9 then concludes, and an appendix provides some additional 

mathematical details
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2. Historical Roots of Identification  
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➢ Before we can think about isolating, and thereby identifying, the effect of 

one variable on another, we need the notion of “ceteris paribus,” that is, 

holding other things equal

➢ The textbook example of an identification problem in economics, that of 

separating supply and demand curves, appears to have been first recognized 

by Philip Wright (1915), who pointed out that what appeared

to be an upward sloping demand curve for pig iron was actually a supply 

curve, traced out by a moving demand curve

➢ A standard identification problem in the statistics literature is that of 

recovering a treatment effect

➢ A different identification problem is that of identifying the true coefficient 

in a linear regression when regressors are measured with error
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3. Point Identification 
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➢ In modern terminology, the standard notion of identification is formally 

called point identification

➢ Early formal definitions of (point) identification were provided by

Koopmans and Reiersøl (1950), 

Hurwicz (1950), 

Fisher (1966), and 

Rothenberg (1971)

➢ In this survey I provide a new general definition of identification

➢ This generalization maintains the intuition of existing classical

definitions while encompassing a larger class of models than previous 

definitions
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3.1. Introduction to Point Identification 
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➢ Recall that θ is the parameter (which could include vectors and functions) 

that we want to identify and ultimately estimate

➢ Assume also that we have a model, which typically imposes some 

restrictions on the possible values ϕ could take on

➢ Example 1: 

Suppose for scalars Y, X, and θ, our model is that Y = Xθ + e where

E(𝑋2) ≠ 0 and E(eX) = 0, and suppose that ϕ, what we can learn from 

data, includes the second moments of the vector (Y, X)

➢ Example 2: 

Let the model be that a binary treatment indicator X is assigned to

individuals by a coin flip, and Y is each individual’s outcome
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➢ When discussing empirical work, a common question is, “what is the 

source of the identification?”

That is, what feature of the data is providing the information needed to

determine θ? 

This is essentially asking, what needs to be in ϕ?

➢ The definition of identification is somewhat circular or recursive

➢ We usually think of a model as a set of equations describing behavior

➢ A common starting assumption is that the DGP consists of n independently, 

identically distributed (IID) observations of a vector W,

where the sample size n goes to infinity
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➢ With more complicated DGPs (e.g., time series data, or cross section data 

containing social interactions or common shocks), part of the challenge in 

establishing identification is characterizing what information ϕ is 

knowable, and hence appropriate to use as the starting point for proving 

identification

➢ Even in the most seemingly straightforward situations, such as 

experimental design with completely random assignment into treatment

and control groups, additional assumptions regarding the DGP (and hence 

regarding the model and ϕ) are required for identification of treatment 

effects

➢ In practice, it is often useful to distinguish between two types of DGP 

assumptions
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3.2. Defining Point Identification 
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➢ Here we define point identification and some related terms, including 

structure and observational equivalence

➢ Define a model M to be a set of functions or constants that satisfy some 

given restrictions

➢ Examples of what might be included in a model are regression functions, 

error distribution functions, utility functions, game payoff matrices, and 

coefficient vectors

➢ Define a model value m to be one particular possible value of the functions 

or constants that comprise M

➢ Define ϕ to be a set of constants and/or functions about the DGP that we 

assume are known or knowable from data
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➢ Define a set of parameters θ to be a set of unknown constants and/or 

functions that characterize or summarize relevant features of a model

➢ The set of parameters θ may also include nuisance parameters, which are 

defined as parameters that are not of direct economic interest, but may be 

required for identification and estimation of other objects that are of interest

➢ We assume that each particular value of m implies a particular value of ϕ 

and of θ

➢ Two parameter values, θ and θ̃, are defined to be observationally equivalent 

if there exists a ϕ such that both s(ϕ, θ) and s(ϕ, θ̃) are not empty
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➢ Let Θ denote the set of all possible values that the model says θ could be

➢ We say that the model is point identified when no pairs of model values m 

and m ̃ in M are observationally equivalent (treating m and m ̃ as if they were 

parameters)

➢ The concepts of local and generic identification deal with cases where we 

can’t establish point identification for all θ in Θ

➢ Local identification of θ0 means that there exists a neighborhood of θ0 such 

that, for all values θ ≠ θ0 in this neighborhood, θ is not observationally 

equivalent to θ0

➢ Generic identification roughly means that the set of values of θ in Θ that 

cannot be point identified is a very small subset of Θ
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➢ Parametric identification is where θ is a finite set of constants and all the 

different possible values of ϕ also correspond to different values of a finite 

set of constants

➢ Nonparametric identification is where θ consists of functions or infinite 

sets

➢ Other cases are called semiparametric identification, which includes 

situations where, for example, θ includes both a vector of constants and 

nuisance parameters that are functions
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3.3. Examples and Classes of  Point
Identification 
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➢ Example 1: a median

Let the model M be the set of all possible distributions of a random 

variable W having a strictly monotonically increasing distribution

function

➢ How does this example fit the general definition of identification?

➢ Example 2: Linear regression

Consider a DGP consisting of observations of Y, X where Y is a scalar and 

X is a K-vector

➢ Example 3: Treatment

Suppose the DGP consists of individuals who are assigned a treatment of T 

= 0 or T = 1, and each individual generates an observed outcome Y
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➢ The key point for identification is not whether we can write a closed-form 

expression like E(Y |T = 1) - E(Y|T = 0) for θ, but whether there exists a 

unique value of θ corresponding to every possible ϕ

➢ Example 4: Linear Supply and Demand

Consider the textbook example of linear supply and demand curves

➢ Example 5: Latent Error Distribution

Suppose the DGP is IID observations of scalar random variables Y, X, so ϕ 

is the joint distribution of Y, X

➢ In examples 1, 2, and 5 above, data are assumed to be IID observations of 

some vector we can call W, and therefore what we start by assuming is 

knowable, ϕ, is the distribution function of W
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➢ Many identification arguments in econometrics begin with one of three 

cases:

➢ either ϕ is a set of reduced-form regression coefficients, or 

➢ ϕ is a data distribution, or 

➢ ϕ is the maximizer of some function

➢ Wright–Cowles Identification

The notion of identification most closely associated with the Cowles 

foundation concerns the simultaneity of linear systems of equations like 

supply and demand equations

➢ The model M is a set of linear structural equations

➢ A convenient feature of Wright–Cowles identification is that it can be 

applied to time series, panel, or other DGPs with dependence across 

observations, as long as the reduced form linear regression coefficients

have some well-defined limiting value ϕ
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➢ Distribution-Based Identification

Distribution-based identification is equivalent to the general definition of 

identification given by Matzkin (2007, 2012)

➢ Here, θ could be parameters of a parameterized distribution function, or 

features of the distribution ϕ like moments or quantiles, including possibly 

functions like conditional moments

➢ Note a key difference between Wright–Cowles and distribution-based 

identification is that the latter assumes an entire distribution function is 

knowable, while the former is based on just having features of the first and 

second moments of data be knowable
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➢ Extremum-Based Identification

➢ Extremum estimators are estimators that maximize an objective function, 

such as generalized method of moments (GMM) or least squares 

estimation

➢ To see the connection between extremum-based identification and 

estimation, consider the example of extremum estimators that maximize an 

average with IID data

➢ Suppose G is, as above, the probability limit of the objective function of a 

given extremum estimator

➢ Suppose we had considered extremum-based identification where the 

model consists of G functions defined by G(ζ) = -E[(W − |ζ|)2]
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3.4. Demonstrating Point Identification 
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➢ How can we show that a given set of parameters θ are point identified?

➢ Identification by construction means that we can write a closed-form

expression for θ as a function of ϕ

➢ An important example of a direct consistency proof is the Glivenko-

Cantelli theorem

➢ Another general method of showing that a parameter is identified is to 

prove that the true θ0 is the unique solution to some maximization problem 

defined by the model

➢ Examples of identification proofs that apply many of the above techniques 

can be found in Matzkin (2005, 2007, 2012)

➢ An interesting property of point identification is that it can be applied 

without reference to any data at all



Heckman 28

3.5. Common Reasons for Failure of Point
Identification 
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➢ Parameters θ often fail to be point identified for one of six somewhat 

overlapping reasons: 

➢ Model incompleteness

➢ Perfect collinearity

➢ Nonlinearity

➢ Simultaneity

➢ Endogeneity

➢ Unobservability

➢ Incompleteness arises in models where the relationships among variables 

are not fully specified

➢ Perfect collinearity is the familiar problem in linear regression that one 

cannot separately identify the coefficients in a linear regression like 

𝑌𝑖 = a + b 𝑋𝑖 + c 𝑍𝑖 + 𝑒𝑖
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➢ Nonlinearity can cause nonidentification by allowing equations to have 

multiple solutions

➢ Simultaneity is the familiar source of nonidentification that arises from X 

and Y being determined jointly or simultaneously, as in the case of price 

and quantity in a market

➢ Endogeneity is the general problem of regressors being correlated with 

errors

➢ Many models contain unobserved heterogeneity, which typically takes the 

form of nonadditive or non-separable error terms
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3.6. Control Variables 
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➢ “I controlled for that.” This is perhaps the commonest response to a 

potential identification question in econometric modeling 

➢ The solution of adding a control variable refers to the inclusion of another 

variable Z in the model to fix this problem

➢ There are two reasons why simply including covariates intended to act as 

controls may not fix these identification problems, and indeed can 

potentially make them worse:

➢ The first reason is functional form

➢ The second reason is that Z itself could be endogenous, and the 

problems resulting from adding an endogenous Z regressor to the 

model could be worse than the confounding issue
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➢ In the causal diagram literature (see, e.g., Pearl 2000, 2009), a distinction is 

made between “confounders” and “colliders.”

➢ A similar argument applies to difference-in-difference models

➢ These issues with potential controls are closely related to the Berkson

(1946) and Simpson (1951) paradoxes in statistics
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3.7. Identification by Functional Form 
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➢ Identification by functional form is when identification holds when we 

assume some functions in the model have specific parametric or 

semiparametric forms, but where identification may fail to hold without 

these parametric or semiparametric restrictions

➢ As noted in section 3.5, models that are nonlinear in parameters may fail to 

be identified because nonlinear equations can have multiple solutions

➢ Suppose we continue with the classical Cowles model considered

in example 4 in sections 3.3 and 3.5, except that now, while the demand 

curve is still 

Y = bX + cZ + U, 

we let the supply curve be 

Y = d𝑋2 + aX + ε
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➢ Formally proving identification entails showing that the equations 

E(Y - d𝑋2 - aX|Z = z) = 0 and E(Y - bX - cZ|Z = z) = 0 

for all z on the support of Z can be uniquely solved for a, b, c, and d

➢ Historically, identification by functional form assumed completely 

parameterized models with no unknown functions

➢ Still another example of identification by functional form is the model 

Y = a + bX + U

➢ In particular, identification based on functional form, such as constructed 

instruments, can be used to provide overidentifying information for model 

tests and robustness checks (see the next section for the definition of 

overidentification)
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3.8. Over-, Under-, and Exact 
Identification, Rank and Order Conditions 
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➢ Models often contain collections of equalities involving θ

➢ Common examples are conditional or unconditional moments, i.e.,

equations of the form 

E[g(W, θ)] = 0 or 

E[g(W, θ) |Z] = 0 

➢ We then say that parameters θ are exactly identified if removing any one 

these equalities causes θ to no longer be point identified

➢ The parameters are overidentified when θ can still be point identified after 

removing one or more of the equalities, and they are underidentified

when we do not have enough equalities to point identify θ

➢ Generally, when parameters are overidentified, it is possible to test validity 

of the moments used for identification
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4. Coherence, Completeness, and

Reduced Forms 
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➢ Although often ignored in practice, consideration of coherence and 

completeness of models should logically precede the study of identification

➢ Incoherent or incomplete models arise in some simultaneous games

➢ Entry games are an example of a system of equations involving discrete 

endogenous variables

➢ To illustrate, consider the simple model:

𝑌1 = I(𝑌2 + 𝑈1 ≥ 0),

𝑌2 = θ𝑌1 + 𝑈2

➢ if we replace the above model with

𝑌1 = I(D𝑌2 + 𝑈1 ≥ 0),

𝑌2 = (1 - D) θ𝑌1 + 𝑈2
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5. Causal Reduced-form versus Structural

Model Identification 
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➢ Among economists doing empirical work, recent years have seen a rapid 

rise in the application of so-called reduced-form or causal inference 

methods, usually based on randomization

➢ Proponents of these methods often refer to their approach as a reduced-

form methodology

➢ Two key characteristics of causal methods are: 

(i) a focus on identification and estimation of treatment effects 

rather than deep parameters, and

(ii) an emphasis on natural or experimental randomization as a key

source of identification
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5.1. Randomized Causal or Structural
Modeling? Do Both 
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➢ Before getting into details regarding the two methodologies, it should be 

pointed out that the perceived conflict between proponents of causal, 

reduced-form methods versus structural modeling approaches is 

somewhat artificial

➢ For both identification and estimation, the strengths of both approaches 

may be combined in many ways, including these:

(i) Causal analyses based on randomization can be augmented with 

structural econometric methods to deal with identification 

problems caused by data issues such as attrition, sample selection, 

measurement error, and contamination bias

(ii) It is not just reduced-form methods that require instrument 

independence
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➢ For both identification and estimation, the strengths of both approaches 

may be combined in many ways, including these:

(iii) Identifiable causal effects can provide useful benchmarks for 

structural models

(iv) Economic theory and structure can provide guidance regarding 

the external validity of causal parameters

(v) One can use causal methods to link randomized treatments to 

observable variables and use structure to relate these observables 

to more policy relevant treatments and outcomes

(vi) Big data analyses on large data sets can uncover promising 

correlations

(vii) Structural type assumptions can be used to clarify when and 

how causal effects may be identified
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5.2. Randomized Causal versus Structural
Identification: An Example 
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➢ An obstacle to comparing causal versus structural analyses is that these 

methods are usually described using different notations

➢ The example structural model considered here will be the linear regression 

model 

Y = a + bT + e 

➢ What makes one model or analysis structural and another causal? 

➢ We begin with a general triangular model, where Y is determined by T 

along with error terms and T is determined by Z and errors

➢ Because both T and Z are binary, we can without loss of generality write 

this model as a linear random coefficients model

Y = 𝑈0 + 𝑈1 T and 

T = 𝑉0 + 𝑉1 Z
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➢ The treatment effect for an individual is defined as Y(1) - Y(0), or 

equivalently as 𝑈1, which is the difference between the outcome

one would have if treated versus not treated

➢ A common assumption in the causal inference literature is the stable unit 

treatment value assumption (SUTVA)

➢ With just the assumptions we have so far, the parameter c satisfies



Heckman 49

➢ The difference between our particular causal and structural models will 

consist only of different assumptions regarding the equation 

c = E(𝑈1 𝑉1)/E(𝑉1)

➢ Note from previous slide that
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➢ Now consider a causal identification argument

➢ Let 𝑃𝑣 denote the probability that 𝑉1 = 𝑣. Then, by definition of 

expectations

➢ Interestingly, if one imposes both our structural assumption cov(𝑈1, 𝑉1)=0 

and our reduced-form “no defiers” restriction 𝑃−1 = 0, then it can be shown 

that
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➢ Even with binary treatment, it is possible to relax the above listed 

assumptions in both the structural and the causal framework

➢ Given our independence and exclusion assumptions, the only difference 

between the structural and causal assumptions we have made here is the 

following: the causal analysis assumes nobody has 𝑉1 = -1, identifies 

LATE (which is ATE for compliers), and identifies nothing about people 

who

are not compliers

➢ It is important to recall that these particular assumptions and models are 

not universal or required features of causal versus structural methods

➢ Another limitation of the reduced-form methodology is how it extends to 

more general treatments

➢ A related limitation of LATE is that the definition of a complier depends 

on the definition of the instrument Z
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5.3. Randomized Causal versus Structural
Simultaneous Systems 
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➢ Suppose that instead of a treatment affecting an outcome, where the 

direction of causality is assumed, we had a simultaneous system of 

equations, say 

Y = 𝑈0 + 𝑈1 X and

X = H(Y, Z, V)

➢ As before, let us again analyze the meaning of 

c = cov(Z, Y)/ cov(Z, X)

➢ In contrast, a causal analysis of this system is possible, but much more 

complex

➢ Another limitation of applying causal methods to simultaneous systems is 

that the counterfactual notation itself rules out some types of structural 

models

➢ A final limitation in applying causal analyses to simultaneous systems is 

the SUTVA restriction discussed earlier
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5.4. Randomized Causal versus Structural
Identification: Conclusions 
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➢ One great advantage of causal-based methods is their long history of 

success in the hard sciences 

➢ Another virtue of causal methods is the fundamental nature of treatment 

effects as interpretable estimands

➢ Structural models can also cope with many data issues that cause 

difficulties for causal analyses

➢ Where are the deep parameters that structural models have uncovered?

➢ What are their widely agreed-upon values?

➢ The main disadvantage of imposing behavioral restrictions for 

identification is that reality is complicated, so every structural model we 

propose is likely to be oversimplified and hence misspecified
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➢ The main disadvantage of imposing behavioral restrictions for 

identification is that reality is complicated, so every structural model we 

propose is likely to be oversimplified and hence misspecified

➢ A big issue for both structural and causal models is external validity, that 

is, if the environment changes even slightly, how would an identified 

parameter or treatment effect change?

➢ Another limitation of causal methods is that economic policy is often 

concerned with characteristics that cannot be directly observed,

like utility, risk aversion, noncognitive skills, bargaining power, 

expectations, or social welfare
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6. Identification of Functions and Sets 
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➢ The first two subsections below discuss two modern literatures

➢ nonparametric or semiparametric identification, and 

➢ set identification

➢ The third subsection below describes the role of normalizations in 

identification
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6.1. Nonparametric and Semiparametric
Identification 
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➢ In section 3.2, we defined nonparametric identification as the case 

where θ consists of functions or infinite sets

➢ Recall that parametric identification was defined as the case where θ is 

a finite set of constants, and all the different possible values of ϕ also 

correspond to different values of a finite set of constants

➢ Semiparametric identification can also be used to refer to identification 

of a vector of constants that are of interest in a nonparametric model

➢ The difference between parametric and semiparametric identification can 

be somewhat arbitrary

➢ More generally, econometric models often involve moments, which take 

the form of integrals
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6.2. Set Identification 
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➢ Recall that we let θ denote the parameters we wish to identify, Θ is the 

set of all possible values of θ, and θ1 is the unknown true value

of θ

➢ Partial identification broadly refers to the analysis of situations where ϕ 

provides some information about parameters θ, but not enough 

information to actually point identify θ

➢ An important tool used for studying set identification is the theory of 

random sets

➢ One reason why parameters may be set rather than point identified is 

incompleteness of the underlying model

➢ Khan and Tamer (2010) define non-robust identification as the situation 

where an otherwise point-identified parameter loses even set 

identification when an identifying assumption is relaxed
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6.3. Normalizations in Identification 
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➢ Nonparametric or semiparametric identification results often require so-

called normalizations 

➢ The proof is by construction: 

β = [E(XX′)]−1E[Xg−1(E(Y |X))]

➢ Is β still point identified when the function g is unknown?

➢ To have any chance of point identifying β, we need to impose a 

restriction on the model that rules out all values of c ≠ 1

➢ Scale restrictions, whether they are free normalizations or not, are 

commonly needed to point identify semiparametric models
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➢ Consider a threshold-crossing binary choice model, that is, 

Y = I(α + X′β + e ≥ 0)

➢ Another common use of normalizations for identification are in non-

separable error models

➢ Returning to the example of threshold-crossing models, when derived 

from utility maximization such models embody an additional 

normalization to location and scale

➢ Suppose αy + X′ βy + ey is the utility one receives from making the

choice Y = y for y equal to zero or one

➢ Utility maximization then means choosing

Y = I(α + X′β + e ≥ 0)
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6.4. Examples: Some Special Regressor
Models 
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➢ Return now to example 5, from section 3.3, regarding identification of a 

latent error distribution

➢ Here we consider the same model, except now we allow for the presence 

of additional covariates Z

➢ In this model 

E(Y|X = x, Z = z) = Pr(X + U > 0 | X = x, Z = z) = Pr(x + U > 0 | Z = z) 

= 1 - Pr (U ≤ - x | Z = z) = 1 - FU|Z (-x|z)
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➢ Example: Set Identification of the Latent Mean

In this example we let Z be empty and consider identification of θ = 

E(U)

➢ Example: General Binary Choice

Suppose we continue to have IID observations of Y, X, Z with 

Y = I(X + U > 0) where U ⊥ X|Z, but now in addition assume that 

U = g(Z) + e with g(Z) = E(U|Z), so 

Y = I(X + g(Z) + e > 0)

➢ Example: Binary Choice with Random Coefficients

Before considering binary choice, consider first the simpler linear

random coefficients model
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7. Limited Forms of Identification 
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7.1. Local and Global Identification 
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➢ A necessary condition for global identification, and one that is often 

easier to verify in practice, is local identification

➢ Formally, local identification of θ0 means that there exists a 

neighborhood of θ0 such that no θ ∈ Θ exists in this neighborhood

that is both unequal to θ0 and observationally equivalent to θ0

➢ To illustrate the difference between local and global identification, 

suppose m(x) is a known continuous function
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➢ Case 1: Suppose we know m(x) is strictly monotonic

➢ Case 2: Suppose m is known to be a Jth order polynomial for some 

integer J

➢ Case 3: Suppose all we know about m is that it is continuous

➢ Local identification may be sufficient in practice if we have enough 

economic intuition about the estimand to know that the correct θ should 

lie in a particular region
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7.2. Generic Identification 
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➢ Generic identification is a weaker condition than point identification, 

is a necessary condition for point identification, and is often easier to 

prove than point identification

➢ To interpret what generic identification means, imagine that nature 

chooses a value θ0 by randomly picking an element of Θ

➢ In models that are systems linear equations (as in Wright–Cowles 

identification), generic identification is closely related to the order 

condition for identification

➢ Generic identification is sometimes seen in social interactions models

➢ The term generic identification is sometimes used more informally to 

describe situations in which identification holds except in special or 

pathological cases, but where it might be difficult to explicitly describe

all such cases
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8. Identification Concepts That Affect

Inference 
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➢ For the most part, identification is treated as a precursor to estimation

➢ In this section we summarize these identification concepts that affect 

inference

➢ However, it should be noted that some previously discussed concepts are 

also related to inference
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8.1. Weak versus Strong Identification 
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➢ Informally, weak identification arises in situations that are, in a particular 

way, close to being not point identified

➢ The usual source of weak identification is low correlations among variables 

used to attain identification

➢ The key feature of weakly identified parameters is not that they are 

imprecisely estimated with large standard errors

➢ Nonparametric regressions are also typically imprecisely estimated, with 

slower than parametric convergence rates and associated large standard 

errors

➢ Weak identification resembles multicollinearity, which in a linear 

regression would correspond to E(XX′) instead of E( 𝑋𝑋′) being ill-

conditioned
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8.2. Identification at Infinity or Zero;
Irregular and Thin Set Identification 
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➢ Based on Chamberlain (1986) and Heckman (1990), identification at 

infinity refers to the situation in which identification is based only on the 

joint distribution of data at points where one or more variables go to 

infinity

➢ Khan and Tamer (2010) and Graham and Powell (2012) use the term 

irregular identification to describe cases where thin set identification leads 

to slower than root-n rates of estimation

➢ It is easy to confuse irregular identification with weak identification, but 

they are not the same

➢ The difference is that asymptotic theory for weakly identified parameters is 

based on models where true parameter values are assumed to vary with the 

sample size, in order to obtain good approximations to the true precision 

with which they can be estimated in moderately sized samples
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8.3. Ill-Posed Identification 
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➢ Suppose that parameters θ are point identified

➢ Problems of ill-posedness arise when the connection from ϕ to θ is not 

sufficiently

➢ When identification is ill posed, construction of a consistent estimator 

requires “regularization,” that is, some way to smooth out the discontinuity 

in g

➢ Nonparametric estimation of a probability density function is an example of 

an ill-posedness problem

➢ Depending on the application, the degree of ill-posedness can range from 

mild to moderate to severe
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8.4. Bayesian and Essential Identification 
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➢ Two more names for the same concept that appear in the literature are 

frequentist identification and sampling identification

➢ These terms are used to contrast the role of identification in frequentist 

statistics from its role in Bayesian statistics

➢ A parameter vector θ is defined to be Bayes identified if its posterior 

distribution differs from its prior distribution

➢ Typically, a parameter that is point identified will also be Bayes identified

➢ Parameters that are set rather than point identified are also generally Bayes 

identified
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9. Conclusions 
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➢ Identification is a rapidly growing area of research within econometrics, as 

the ever-expanding zooful of different terms for identification indicates

➢ Unlike statistical inference, there is not a large body of general tools or 

techniques that exist for proving identification

➢ Finally, one might draw a connection between identification and big data

➢ This paper has considered over two dozen different identification related 

concepts, as listed in the introduction

➢ Given the increasing recognition of its importance in econometrics, the 

identification zoo is likely to keep expanding
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