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Index Model of Choice and Treatment Effects:
Definitions and Unifying Principles
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Y1 = µ1(X ,U1) (1)

Y0 = µ0(X ,U0). (2)
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D∗ = µD(Z )− V ; D = 1 if D∗ ≥ 0 ; D = 0 otherwise,
(3)

• (Z ,X ) is observed

• (U0,U1,V ) is unobserved

• The random variable V may be a function of (U0,U1)

• In the original Roy Model, µ1 and µ0 are additively separable in
U1 and U0 respectively, and V = −[U1 − U0]
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• In the original formulations of the Generalized Roy Model,
V = −[U1 − U0 − UC ]

• UC arises from the cost function.

• Define Z so that it includes all of the elements of X as well as
any additional variables unique to the choice equation.
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Assumptions

A (A-1)

(U0,U1,V ) are independent of Z conditional on X
(Independence), i.e. (U0,U1,V ) ⊥⊥ Z |X ;

A (A-2)

µD(Z) is a non-degenerate random variable conditional on X (Rank Condition);

A (A-3)
The distribution of V is continuous;

A (A-4)

The values of E(Y1) and E(Y0) are finite (Finite Means);

A (A-5)

0 < Pr(D = 1 | X ) < 1.



• (A-1) assumes that V is independent of Z given X , and is used
below to generate counterfactuals.

• For the definition of treatment effects, we do not need either
(A-1) or (A-2).

• Definitions of treatment effects and their identification through
MTE do not require any elements of Z that are not elements of
X or independence assumptions.

• However, analysis of instrumental variables requires that Z
contain at least one element not in X .

• Assumptions (A-1) or (A-2) justify application of instrumental
variables methods and nonparametric selection or control
function methods.
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• Assumption (A-4) is needed to satisfy standard integration
conditions: guarantees that the mean treatment parameters are
well defined.

• Assumption (A-5) is the assumption in the population of both a
treatment and a control group for each X . Observe that there
are no exogeneity requirements for X .

• This is in contrast with the assumptions commonly made in the
conventional structural literature and the semiparametric
selection literature.
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• A counterfactual “no feedback” condition facilitates
interpretability so that conditioning on X does not mask the
effects of D.

• Letting Xd denote a value of X if D is set to d , a sufficient
condition that rules out feedback from D to X is:

A (A-6)

Let X0 denote the counterfactual value of X that would be observed
if D is set to 0. X1 is defined analogously. Assume Xd = X for
d = 0, 1. (The XD are invariant to counterfactual manipulations.)
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• Vytlacil (2002): assumptions (A-1)–(A-5) for the selection
model and (1)–(3) are equivalent to the assumptions
used to generate the LATE model of Imbens and
Angrist (1994).

• The nonparametric selection model for treatment effects
developed by Heckman and Vytlacil is implied by the
assumptions of the Imbens-Angrist instrumental variable model
for treatment effects.

• Approach links the IV literature to the literature on economic
choice models exposited in Part I.
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• The model of equations (1)-(3) and assumptions (A-1)–(A-5)
impose two testable restrictions on the distribution of (Y , D,
Z , X ).

• First, it imposes an index sufficiency restriction: for any set
A and for j = 0, 1,

Pr(Yj ∈ A | X ,Z ,D = j) = Pr(Yj ∈ A | X ,P(Z ),D = j).

• Z (given X ) enters the model only through the propensity score
P(Z ).
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• This restriction has empirical content when Z contains two or
more variables not in X .

• Second, the model also imposes monotonicity in p for
E (YD | X = x , P = p) and E (Y (1− D) | X = x , P = p).
Heckman and Vytlacil (2005) develop this condition further in
Appendix A, and show that it is testable.
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Definitions of Treatment Effects
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• (ATE): ∆ATE(x) ≡ E (∆ | X = x) where ∆ = Y1 − Y0.

• This is the effect of assigning treatment randomly to everyone
of type X assuming full compliance, and ignoring general
equilibrium effects.

• The average impact of treatment on persons who actually take
the treatment is Treatment on the Treated (TT):
∆TT(x) ≡ E (∆ | X = x ,D = 1).

• This parameter can also be defined conditional on
P(Z ): ∆TT(x , p) ≡ E (∆ | X = x ,P(Z ) = p,D = 1).
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• The mean effect of treatment on those for whom X = x and
UD = uD : Marginal Treatment Effect (MTE)

∆MTE(x , uD) ≡ E (∆ | X = x ,UD = uD). (4)

• Parameter defined independently of any instrument.

• Separate the definition of parameters from their identification.

• For uD evaluation points close to zero, ∆MTE(x , uD) is the
expected effect of treatment on individuals with the value of
unobservables that make them most likely to participate in
treatment and who would participate even if the mean scale
utility µD (Z ) is small. If UD is large, µD (Z ) would have to be
large to induce people to participate.
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• Can also interpret E (∆ | X = x , UD = uD) as the mean gain in
terms of Y1 − Y0 for persons with observed characteristics X
who would be indifferent between treatment or not if they were
randomly assigned a value of Z , say z , such that µD(z) = V .
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LATE:

•

E (Y1 − Y0 | X = x ,D(z) = 1,D(z ′) = 0)

= E (Y1 − Y0 | X = x , u′
D < UD ≤ uD) = ∆LATE(x , uD , u

′
D)

for uD = Pr(D(z) = 1) = P(z), u′
D = Pr(D(z ′) = 1) = P(z ′),

• Assumption (A-1)implies that

• Pr(D(z) = 1) = Pr(D = 1 | Z = z) and

• Pr(D(z ′) = 1) = Pr(D = 1 | Z = z ′).
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• Imbens and Angrist define the LATE parameter as the
probability limit of an estimator.

• Conflates issues of definition of parameters with issues of
identification.

• This representation of LATE allows us to separate these two
conceptually distinct matters and to define the LATE
parameter more generally.

• One can, in principle, evaluate the right hand side of the
preceding equation at any uD , u

′
D points in the unit interval

and not only at points in the support of the distribution of the
propensity score P (Z ) conditional on X = x where it is
identified.
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Table 1A: Treatment effects and estimands as weighted averages of the
marginal treatment effect

ATE(x) = E (Y1 − Y0 | X = x) =
∫ 1
0 ∆MTE(x , uD) duD

TT(x) = E (Y1 − Y0 | X = x ,D = 1) =
∫ 1
0 ∆MTE(x , uD)ωTT(x , uD) duD

TUT(x) = E (Y1 − Y0 | X = x ,D = 0) =
∫ 1
0 ∆MTE (x , uD) ωTUT (x , uD) duD

PRTE(x) = E (Ya′ | X = x)− E (Ya | X = x) =
∫ 1
0 ∆MTE (x , uD) ωPRTE (x , uD) duD

for two policies a and a′ that affect the Z but not the X

IVJ(x) =
∫ 1
0 ∆MTE(x , uD)ω

J
IV(x , uD) duD , given instrument J

OLS(x) =
∫ 1
0 ∆MTE(x , uD)ωOLS(x , uD) duD

Source: Heckman and Vytlacil (2005)
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• All weights (except OLS) integrate up to 1
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Table 1B: Weights

ωATE(x, uD ) = 1

ωTT(x, uD ) =
[∫ 1

uD
fP|X (p | X = x)dp

] 1

E(P | X = x)

ωTUT (x, uD ) =
[∫ uD

0 fP|X (p|X = x) dp
] 1

E ((1 − P) |X = x)

ωPRTE(x, uD ) =

[
FP

a′ |X
(uD |x)−FPa|X (uD |x)

∆P̄(x)

]
, where ∆P̄(x) = E (Pa | X = x) − E

(
Pa′ | X = x

)

ωJ
IV(x, uD ) =

[∫ 1
uD

∫
(J(Z) − E (J(Z) | X = x)) fJ,P|X (j, t | X = x) dj dt

] 1

Cov(J(Z),D | X = x)

ωOLS(x, uD ) = 1 +
E(U1 | X = x,UD = uD )ω1(x, uD ) − E(U0 | X = x,UD = uD )ω0(x, uD )

∆MTE(x, uD )

ω1(x, uD ) =
[∫ 1

uD
fP|X (p | X = x) dp

] 1

E(P | X = x)

ω0(x, uD ) =
[∫ uD

0 fP|X (p | X = x) dp
] 1

E((1 − P) | X = x)

Source: Heckman and Vytlacil (2005)
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• From assumptions (A-1), (A-3), and (A-4), ∆LATE(x , uD , u
′
D) is

continuous in uD and u′
D and

lim
u′D↑uD

∆LATE(x , uD , u
′
D) = ∆MTE(x , uD).
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Treatment Parameter (j) =

∫ 1

0

∆MTE (x , uD) ωj (x , uD) duD

• ωj (x , uD) is the weighting function for the MTE.

• Integral is defined over the full support of uD .

• Except for the OLS weights, the weights in the table all
integrate to one, although in some cases the weights for IV may
be negative.
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∆TT (x) is weighted average of ∆MTE:

∆TT (x) =

∫ 1

0

∆MTE (x , uD)ωTT (x , uD) duD ,

where

ωTT (x , uD) =
1− FP|X (uD | x)∫ 1

0

(
1− FP|X (t | x)

)
dt

=
SP|X (uD | x)

E (P (Z ) | X = x)
, (5)

and SP|X (uD | x) is Pr(P (Z ) > uD | X = x) and ωTT (x , uD) is a
weighted distribution.
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• ∆TT (x) oversamples ∆MTE (x , uD) for those individuals with
low values of uD that make them more likely to participate in
the program being evaluated.

• Treatment on the untreated (TUT) is defined symmetrically
with TT and oversamples those least likely to participate. The
various weights are displayed in table 1AB.

• The other weights, treatment effects and estimands shown in
this table are discussed later.
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• Observe that if
E (Y1 − Y0 | X = x ,UD = uD) = E (Y1 − Y0 | X = x)
so ∆ = Y1 − Y0 is mean independent of UD given X = x , then
∆MTE = ∆ATE = ∆TT = ∆LATE.

• Where there is no heterogeneity in terms of unobservables in
MTE (∆ constant conditional on X = x) or agents do not act
on it so that UD drops out of the conditioning set, marginal
treatment effects are average treatment effects, so that all of
the evaluation parameters are the same.

• Otherwise, they are different.

• Only in the case where the marginal treatment effect is the
average treatment effect will the “effect” of treatment be
uniquely defined.
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Figure 1A: Weights for the marginal treatment effect for different
parameters
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• A high uD is associated with higher cost, relative to return, and
less likelihood of choosing D = 1.

• The decline of MTE in terms of higher values of uD means that
people with higher uD have lower gross returns.

• TT overweights low values of uD (i.e., it oversamples UD that
make it likely to have D = 1).

• ATE samples UD uniformly.

• Treatment on the Untreated (E (Y1 − Y0 | X = x ,D = 0)), or
TUT, oversamples the values of UD which make it unlikely to
have D = 1.
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Table 3: Treatment parameters and estimands in the generalized Roy
example

Treatment on the Treated 0.2353
Treatment on the Untreated 0.1574
Average Treatment Effect 0.2000
Sorting Gaina 0.0353
Policy Relevant Treatment Effect (PRTE) 0.1549
Selection Biasb −0.0628
Linear Instrumental Variablesc 0.2013
Ordinary Least Squares 0.1725

aTT − ATE = E(Y1 − Y0 | D = 1)− E(Y1 − Y0)
bOLS − TT = E(Y0 | D = 1)− E(Y0 | D = 0)
cUsing Propensity Score P (Z) as the instrument.
Note: The model used to create Table 3 is the same as those used to create Figures 1A and
1A. The PRTE is computed using a policy t characterized as follows: If Z > 0 then D = 1 if
Z(1 + t)− V ≥ 0. If Z ≤ t then D = 1 if Z − V ≥ 0. For this example t is set equal to 0.2.
Source: Heckman and Vytlacil (2005)
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• Table 3 shows the treatment parameters produced from the
different weighting schemes for the model used to generate the
weights in figures 1A and 1B (next).

• Given the decline of the MTE in uD , it is not surprising that
TT>ATE>TUT. This is the generalized Roy version of the
principle of diminishing returns.

• Those most likely to self select into the program benefit the
most from it. The difference between TT and ATE is a sorting
gain: E (Y1 − Y0 | X ,D = 1)− E (Y1 − Y0 | X ), the average
gain experienced by people who sort into treatment compared
to what the average person would experience.

• Purposive selection on the basis of gains should lead to positive
sorting gains of the kind found in the table. If there is negative
sorting on the gains, then TUT≥ATE≥TT.
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Figure 1B: Marginal Treatment Effect vs. Linear Instrumental Variables
and Ordinary Least Squares Weights
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• The additively separable latent index model for D (equation
(3)) and assumptions (A-1)–(A-5) are far stronger than what is
required to define the parameters in terms of the MTE.

• The representations of treatment effects defined in Table 1A
remain valid even if Z is not independent of UD

• If there are no variables in Z that are not also contained in X ,
or if a more general nonseparable choice model generates D (so
D∗ = µD (Z ,UD)).

• No instrument Z is needed to define the parameters (task 1:
theory).

• Instrument needed to identify parameters.
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Appendix: Derivations of Weights
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• Given the index structure of the Generalized Roy Model, a
simple relationship exists among the parameters.

• From the definitions D = 1 (UD ≤ P(z)) and ∆ = Y1−Y0 that

∆TT(x ,P(z)) = E (∆|X = x ,UD ≤ P(z)). (6)
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• Next consider ∆LATE(x ,P(z),P(z ′)).

• Note that E (Y |X = x ,P(Z ) = P(z))

= P(z)

[
E (Y1|X = x ,P(Z ) = P(z),D = 1)

]
+ (1− P(z))

[
E (Y0|X = x ,P(Z ) = P(z),D = 0)

]
=

∫ P(z)

0
E (Y1|X = x ,UD = uD)duD +

∫ 1

P(z)
E (Y0|X = x ,UD = uD)duD ,
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Thus

E (Y |X = x ,P(Z ) = P(z))− E (Y |X = x ,P(Z ) = P(z ′))

=

∫ P(z)

P(z ′)
E (Y1|X = x ,UD = uD)duD −

∫ P(z)

P(z ′)
E (Y0|X = x ,UD = uD)duD .

MTE as Generator 36 / 66



Thus

∆LATE(x ,P(z),P(z ′)) = E (∆|X = x ,P(z ′) ≤ UD ≤ P(z)).

• Notice that this expression could be taken as an alternative
definition of LATE.

• Note that, in this expression, we could replace P (z) and P (z ′)
with uD and u′

D .

• No instrument needs to be available to define LATE.
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• We write these relationships in succinct form:

∆MTE(x , uD) = E (∆|X = x ,UD = uD)

∆ATE(x) =

∫ 1

0
E (∆|X = x ,UD = uD)duD

P(z)[∆TT(x ,P(z))] =

∫ P(z)

0
E (∆|X = x ,UD = uD)duD

(P(z)− P(z ′))[∆LATE(x ,P(z),P(z ′))] =∫ P(z)

P(z ′)
E (∆|X = x ,UD = uD)duD . (7)
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• The relationship between MTE and LATE or TT conditional on
P(z) is analogous to the relationship between a probability
density function and a cumulative distribution function.

• The probability density function and the cumulative distribution
function represent the same information, but for some purposes
the density function is more easily interpreted.

• Likewise, knowledge of TT for all P(z) evaluation points is
equivalent to knowledge of the MTE for all uD evaluation
points, so it is not the case that knowledge of one provides
more information than knowledge of the other.

• However, in many choice-theoretic contexts it is often easier to
interpret MTE than the TT or LATE parameters.

• It has the interpretation as a measure of willingness to pay on
the part of people on a specified margin of participation in the
program.
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• ∆MTE(x , uD) is the average effect for people who are just
indifferent between participation in the program (D = 1) or not
(D = 0) if the instrument is externally set so that P(Z ) = uD .

• For values of uD close to zero, ∆MTE(x , uD) is the average
effect for individuals with unobservable characteristics that
make them the most inclined to participate in the program
(D = 1).

• For values of uD close to one it is the average treatment effect
for individuals with unobserved (by the econometrician)
characteristics that make them the least inclined to participate.

• ATE integrates ∆MTE(x , uD) over the entire support of UD

(from uD = 0 to uD = 1). It is the average effect for an
individual chosen at random from the entire population.
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• ∆TT(x ,P(z)) is the average treatment effect for persons who
chose to participate at the given value of P(Z ) = P(z);

• It integrates ∆MTE(x , uD) up to uD = P(z).

• As a result, it is primarily determined by the MTE parameter
for individuals whose unobserved characteristics make them the
most inclined to participate in the program.

• LATE is the average treatment effect for someone who would
not participate if P(Z ) ≤ P(z ′) and would participate if
P(Z ) ≥ P(z).

• The parameter ∆LATE(x ,P(z),P(z ′)) integrates ∆MTE(x , uD)
from uD = P(z ′) to uD = P(z).
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• Use the third expression in equation (7)

• Substitute into equation (6)

• We obtain an alternative expression for the TT parameter as a
weighted average of MTE parameters:

∆TT(x)

=

∫ 1

0

1

p

[∫ p

0

E (∆|X = x ,UD = uD)duD

]
dFP(Z)|X ,D(p|x ,D = 1).
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Using Bayes’ rule, it follows that

dFP(Z)|X ,D(p|x , 1) =
Pr(D = 1|X = x ,P(Z ) = p)

Pr(D = 1|X = x)
dFP(Z)|X (p|x).
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• Since Pr(D = 1|X = x ,P(Z ) = p) = p, it follows that

∆TT(x) =
1

Pr(D = 1|X = x)

∫ 1

0

(∫ p

0

E (∆|X = x ,UD = uD)duD

)
dFP(Z)|X (p|x).

(8)

• Note that
Pr(D = 1|X = x) = E (P(Z )|X = x) =

∫ 1

0
(1−FP(Z)|X (t|x))dt.
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• Reinterpret (8) as a weighted average of local IV parameters
where the weighting is similar to that obtained from a
length-biased, size-biased, or P-biased sample:

∆TT(x) =
1

Pr(D = 1|X = x)
x

∫ 1

0

(∫ 1

0
1(uD ≤ p)E(∆|X = x ,UD = uD)duD

)
dFP(Z)|X (p|x)

=
1∫

(1− FP(Z)|X (t|x))dt

∫ 1

0

(∫ 1

0
E(∆|X = x ,UD = uD)1(uD ≤ p)dFP(Z)|X (p|x)

)
duD

=

∫ 1

0
E(∆|X = x ,UD = uD)

(
1− FP(Z)|X (uD |x)∫
(1− FP(Z)|X (t|x))dt

)
duD

=

∫ 1

0
E(∆|X = x ,UD = uD)gx (uD)duD
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Where

gx(uD) =
1− FP(Z)|X (uD |x)∫
(1− FP(Z)|X (t|x))dt

• gx(uD) is a weighted distribution.

• Since gx(uD) is a non-increasing function of uD , drawings from
gx(uD) oversample persons with low values of UD , i.e., values
of unobserved characteristics that make them the most likely to
participate in the program no matter what their value of P(Z ).
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Since
∆MTE(x , uD) = E (∆|X = x ,UD = uD)

it follows that

∆TT(x) =

∫ 1

0

∆MTE(x , uD)gx(uD)duD .
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• The TT parameter is thus a weighted version of MTE, where
∆MTE(x , uD) is given the largest weight for low uD values and
is given zero weight for uD ≥ pmax

x , where pmax
x is the maximum

value in the support of P(Z ) conditional on X = x .
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Figure 3: MTE integrates to ATE and TT under full support (for
dichotomous outcome)

Ch. 71: Econometric Evaluation of Social Programs, Part II 5101

Figure A.1. MTE integrates to ATE and TT under full support (for dichotomous outcome). Source: Heckman
and Vytlacil (2000).

participate in the program no matter what their value of P(Z). Since

�MTE(x, uD) = E(� | X = x,UD = uD)

it follows that

�TT(x) =
∫ 1

0
�MTE(x, uD)gx(uD) duD.

The TT parameter is thus a weighted version of MTE, where �MTE(x, uD) is given the
largest weight for low uD values and is given zero weight for uD � pmax

x , where pmax
x

is the maximum value in the support of P(Z) conditional on X = x.
Figure A.1 graphs the relationship between �MTE(uD), �ATE and �TT(P (z)), as-

suming that the gains are the greatest for those with the lowest UD values and that the
gains decline as UD increases. The curve is the MTE parameter as a function of uD , and
is drawn for the special case where the outcome variable is binary so that MTE para-
meter is bounded between −1 and 1. The ATE parameter averages �MTE(uD) over the
full unit interval (i.e., is the area under A minus the area under B and C in the figure).
�TT(P (z)) averages �MTE(uD) up to the point P(z) (is the area under A minus the
area under B in the figure). Because �MTE(uD) is assumed to be declining in uD , the
TT parameter for any given P(z) evaluation point is larger then the ATE parameter.

Equation (A.2) relates each of the other parameters to the MTE parameter. One can
also relate each of the other parameters to the LATE parameter. This relationship turns
out to be useful later on in this chapter when we encounter conditions where LATE can

Source: Heckman and Vytlacil (2000).
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• The curve is the MTE parameter as a function of uD , and is
drawn for the special case where the outcome variable is binary
so that MTE parameter is bounded between −1 and 1.
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• The ATE parameter averages ∆MTE(uD) over the full unit
interval (i.e., is the area under A minus the area under B and C
in the figure).

• ∆TT(P(z)) averages ∆MTE(uD) up to the point P(z) (is the
area under A minus the area under B in the figure).

• Because ∆MTE(uD) is assumed to be declining in uD , the TT
parameter for any given P(z) evaluation point is larger then the
ATE parameter.
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• Equation (7) relates each of the other parameters to the MTE
parameter. One can also relate each of the other parameters to
the LATE parameter.

MTE as Generator 52 / 66



• MTE is the limit form of LATE:

∆MTE(x , p) = lim
p′→p

∆LATE(x , p, p′).

• Relationship between LATE and ATE is immediate:

∆ATE(x) = ∆LATE(x , 0, 1).

• Using Bayes’ rule, the relationship between LATE and TT is

∆TT(x) =

∫ 1

0

∆LATE(x , 0, p)
p

Pr(D = 1|X = x)
dFP(Z)|X (p|x).

(9)
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Policy Relevant Treatment Effect
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• The conventional treatment parameters do not always answer
economically interesting questions. Their link to cost-benefit
analysis and interpretable economic frameworks is sometimes
obscure.

• Each answers a different question. Many investigators estimate
a treatment effect and hope that it answers an interesting
question.

• A more promising approach for defining parameters is to
postulate a policy question or decision problem of interest and
to derive the treatment parameter that answers it.

• Taking this approach does not in general produce the
conventional treatment parameters or the estimands produced
from instrumental variables.
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• Consider a class of policies that affect P , the probability of
participation in a program, but do not affect ∆MTE. The
policies analyzed in the treatment effect literature that change
the Z not in X are more restrictive than the general policies
that shift X and Z analyzed in the structural literature.

• An example from the schooling literature would be policies that
change tuition or distance to school but do not directly affect
the gross returns to schooling (Card, 2001). Since we ignore
general equilibrium effects in this chapter, the effects on
(Y0,Y1) from changes in the overall level of education are
assumed to be negligible.

MTE as Generator 56 / 66



• Let p and p′ denote two potential policies and let Dp and Dp′

denote the choices that would be made under policies p and p′.
When we discuss the Policy Relevant Treatment Effect, we use
“p” to denote the policy and distinguish it from the realized
value of P(Z ).

• Under our assumptions, the policies affect the Z given X , but
not the potential outcomes.
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• Let the corresponding decision rules be Dp = 1[Pp(Zp) ≥ UD ],
Dp′ = 1[Pp′(Zp′) ≥ UD ], where Pp(Zp) = Pr(Dp = 1 | Zp) and
Pp′(Zp′) = Pr(Dp′ = 1 | Zp′).

• To simplify the exposition, we will suppress the arguments of
these functions and write Pp and Pp′ for Pp(Zp) and Pp′(Zp′).
Define (Y0,p,Y1,p,UD,p) as (Y0,Y1,UD) under policy p, and
define (Y0,p′ ,Y1,p′ ,UD,p′) correspondingly under policy p′
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• Assume that Zp and Zp′ are independent of (Y0,p,Y1,p,UD,p)
and (Y0,p′ ,Y1,p′ ,UD,p′) respectively, conditional on Xp and Xp′ .
Let Yp = DpY1,p + (1− Dp)Y0,p and
Yp′ = Dp′Y1,p′ + (1− Dp′)Y0,p′ denote the outcomes that
would be observed under policies p and p′, respectively.

• Assume ∆MTE is policy invariant.
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• PRTE, denoted ∆PRTE(x):

E (Yp) | X = x)− E ((Yp′) | X = x)

=

∫ 1

0

∆MTE(x , uD){FPp′ |X (uD | x)− FPp |X (uD | x)} duD , (10)

where FPp |X (· | x) and FPp′ |X (· | x) are the distributions of Pp

and Pp′ conditional on X = x

• Defined for the different policy regimes and
∆MTE

Υ (x , uD) = E (Υ (Y1,p)−Υ(Y0,p) | UD,p = uD ,Xp = x).
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• The weights in expression (10) are derived under the
assumption that the policy does not change the joint
distribution of outcomes.

• To simplify the notation, throughout the rest of this chapter
when we discuss PRTE, we assume that Υ (Y ) = Y .
Modifications of our analysis for the more general case are
straightforward.
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• Define ∆P̄ (x) = E (Pp | X = x)− E (Pp′ | X = x), the change
in the proportion of people induced into the program due to the
intervention. Assuming ∆P̄ (x) is positive, we may define per
person affected weights as

ωPRTE (x , uD) =
FPp′ |X

(uD |x)−FPp |X (uD |x)

∆P̄(x)
.
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Derivation of PTRE
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Proof.
(Equation (10)) Define 1P(t) to be the indicator function for the
event t ∈ P . Then E (Yp | X )

=

∫ 1

0
E(Yp |X ,Pp(Zp) = t) dFPp |X (t)

=

∫ 1

0

[∫ 1

0
[1[0,t](uD)E(Y1,p | X ,UD = uD) + 1(t,1](uD)E(Y0,p | X ,UD = uD) duD

]
dFPp |X (t)

=

∫ 1

0

[∫ 1

0
[1[uD ,1](t)E(Y1,p | X ,UD = uD) + 1(0,uD ](t)E(Y0,p | X ,UD = uD) dFPp |X (t)

]
duD

=

∫ 1

0

[
(1− FPp |X (uD))E(Y1,p | X ,UD = uD) + FPp |X (uD)E(Y0,p | X ,UD = uD)

]
duD .

This derivation involves changing the order of integration. Q.E.D.
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• This derivation involves changing the order of integration.

• Note that from (A-4),

E |1[0,t](uD)E (Y1,p | X ,UD = uD)

+1(t,1](uD)E (Y0,p | X ,UD = uD)| ≤ E (|Y1|+ |Y0|) < ∞

so the change in the order of integration is valid by Fubini’s theorem.
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• Comparing policy p to policy p′,

E (Yp | X )− E (Yp′ | X )

=

∫ 1

0

E (∆ | X ,UD = uD)(FPp′ |X (uD)− FPp |X (uD)) duD ,
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