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Single Spell Models
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A nonnegative random variable T with absolutely continuous
distribution function G (t) and density g(t) may be uniquely
characterized by its hazard function. The hazard for T is the
conditional density of T given T > t ≥ 0 i .e.

h(t) = f (t | T > t) =
g(t)

1− G (t)
≥ 0. (1)

Knowledge of G determines h.
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Conversely, knowledge of h determines G because by integration of
(1)

t∫
0

h(u)du = − ln(1− G (x)) |t0 + c , (2)

G (t) = 1− exp

[
−
∫ t

0

h(u) du

]
; (3)

c = 0 since G (0) = 0.
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The density of T is

g(t) = h(t) exp

[
−
∫ t

0

h(u) du

]
. (4)

h(t) = lim
∆→0

Pr(t < T < t +∆ | T > t) (5)

lim
∆→0

[
G (t +∆)− G (t)

∆

]
1

(1− G (t))

=
g(t)

1− G (t)
.
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The survivor function is the probability that a duration exceeds t.
Thus

S(t) = P(T > 1) = 1− G (t) = exp

[
−
∫ t

0

h(u) du

]
. (6)

In terms of the survivor function we may write the density g(t) as

g(t) = h(t)S(t).
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Note that there is no requirement that

lim
t→∞

t∫
0

h(u)du → ∞ (7)

or equivalently that S(∞) = 0. Duration dependence is said to exist
if

dh(t)

dt
̸= 0.
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If
dh(t)

dt
> 0, at t = t0, there is said to be positive duration

dependence at t0. If
dh(t)

dt
< 0, at t = t0, there is said to be

negative duration dependence at t0. In job search models of
unemployment, positive duration dependence arises in the case of a
“declining reservation wage” (see, e.g., Lippman and McCall, 1976).
We define the conditional hazard as

h(t | x
˜
(t), θ

˜
(t))= lim

∆→0

Pr(t < T < t+∆ | T > t,x
˜
(t), θ

˜
(t))

∆
, (8)
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The dating on regressor x
˜
(t) is an innocuous convention, x

˜
(t) may

include functions of the entire past or future or the entire paths of
some variables e.g.

x1(t) =

∫ ∞

t

k1(z1(u))du

x2(t) =

∫ t

−∞
k2(z2(u))du

x3(t) =

∫ t

−∞
k3(z3(u), t)du

where the zi(u) are underlying time-dated regressor variables.
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(A-1) θ
˜
(t) is distributed independently of x(t′) for all t, t ′. The

distribution of θ
˜
is µ(θ

˜
). The distribution of x

˜
is D(x

˜
).

(A-2) There is no functional restrictions connecting the conditional
distribution of T given θ

˜
and x

˜
and the marginal distributions

of θ
˜
and x

˜
.
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By analogy with the definitions presented for the raw duration
models, we may integrate (8) to produce the conditional duration
distribution

G (t | θ
˜
, x
˜
) = 1− exp

[
−
∫ t

0

h(u | x
˜
(u), θ

˜
(u)) du

]
(9)
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the conditional survivor function

S(t | θ
˜
, x
˜
) = P(T > t | θ

˜
, x
˜
) = exp

[
−
∫ t

0

h(u | x
˜
(u), θ

˜
(u)) du

]
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and the conditional density

g(t | θ
˜
, x
˜
) = h(t | x

˜
(t), θ

˜
(t))S(t | θ

˜
, x
˜
). (10)
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One specification of conditional hazard (8) that has received much
attention in the literature is the proportional hazard specification

h(t | x
˜
(t), θ

˜
(t)) = ψ(t)φ(x

˜
(t))η(θ

˜
(t)) (11)

which postulates that the log of the conditional hazard is linear in
functions of t, x

˜
and θ

˜
and that

ψ(t) ⩾ 0, η(θ
˜
(t)) > 0, φ(x

˜
(t)) ⩾ 0 for all t.
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Multiple Spell Models
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Let {Y (τ), τ > 0}, Y (τ) ∈ N̄ where N̄ = {1, ...,C}, C <∞, be a
finite state continuous time stochastic process. We define random
variable R(j), j ∈ {1, ...,∞} as the value assumed by Y at the j th

transition time. Y (τ) or R(j) is generated by the following sequence.
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(i) An individual begins his evolution in a state
Y (0) = R(0) = r(0) and waits there for a random
length of time T1 governed by a conditional survivor
function

P(T1 > t1 | r(0)) = exp

−
t1∫

0

h(u | x
˜
(u), r(0)) du

 .

As before h(u | x
˜
(u), r(0)) is a calendar time (or age)

dependent function and we now make explicit the origin
state of the process.
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(ii) At time Υ(1) = τ(1), the individual moves to a new
state R(1) = r(1) governed by a conditional probability
law

P(R(1) = r(1) | τ(1), r(0))

which may also be age dependent.
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(iii) The individual waits in state R(1) for a random length
of time Υ2 governed by

P(T2 > t2 | τ(1), r(1), r(0)) =

exp

−
t2∫

0

h(u | x
˜
(u + τ(1)), r(1), r(0)) du

 .

Heckman Duration Models



Note that one coordinate of x
˜
(u) may be u + τ(1), and that

Υ(2)−Υ(1) = T2. At the transition time Υ(2) = τ(2) he switches
to a new state R(2) = r(2) where the transition probability

P(R(2) = r(2) | τ(1), τ(2), r(1), r(0))

may be calendar time dependent.
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Continuing this sequence of waiting times and moves to new states
gives rise to a sequence of random variables

R(0) = r(0),Υ(1) = τ(1),

R(1) = r(1),Υ(2) = τ(2),

R(2) = r(2), . . .

and suggests the definitions

Y (τ) = R(k) for τ(k) ≤ τ < τ(k + 1)

where R(k), k = 0, 1, 2, ... is a discrete time stochastic process
governed by the conditional probabilities

P(R(k) = r(k) | t
˜k
, r
˜k−1

)
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where

t
˜k

= (t1, . . . , tk) and r
˜k−1

= (r(0), ..., r(k − 1)).

Tk = Υ(k)−Υ(k − 1) is governed by the conditional survivor
function

P(Tk ≥ tk | t
˜k−1

, r
˜k−1

) = exp

−
tk∫
0

h(u | x
˜
(u + τ(k − 1)), t

˜k−1
, r
˜k−1

) du


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Specializations of Interest
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Repeated events of the same kind.
This is a one state process, e.g. births in a fertility history. R(·) is a
degenerate process and attention focuses on the sequence of waiting
times T1,T2,.... .
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One example of such a process writes

P(Tk > tk) = exp

−
tk∫
0

hk(u | x
˜
(u + τ(k − 1))) du

 .
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The hazard for the k th interval depends on the number of previous
spells. This special form of dependence is referred to as occurrence
dependence. In a study of fertility, k − 1 corresponds to birth parity
for a woman at risk. Heckman and Borjas (1980) consider such
models for the analysis of unemployment.
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Another variant writes the hazard of a current spell as a function of
the mean duration of previous spells i.e. for spell j > 1

h(u | x
˜
(u + τ(j − 1)), t

˜j−1
) = h

(
u | 1

j − 1

j−1∑
i=1

ti , τ(j − 1) + u

)

(see, e.g., Braun and Hoem (1978)).
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Yet another version of the general model writes for the j th spell
h(u | x

˜
(u + τ(j − 1)), t

˜j−1
) = hj(u | x

˜
, t1, t2, ...., tj−1).

This is a model with both occurrence dependence and lagged
duration dependence, where the latter is defined as dependence on
lengths of preceding spells.
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A final specification writes

h(u | x
˜
(u + τ(j − 1)), t

˜j−1
) = h(x

˜
(u + τ(j − 1))).

For spell j this is a model for independent non-identically distributed
durations; and Y (τ) is a nonstationary renewal process.
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Multistate Processes
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Let
P(R(k) = r(k) | t

˜k
, r
˜k−1

) = mr(k−1),r(k)

where

∥ mij ∥ = M

is a finite stochastic matrix with and

P(Tk > tk | t
˜k−1

, r
˜k−1

) = exp
(
−λr(k−1)tk

)
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where the elements of {λi} are positive constants. Then Y (τ) is a
time homogeneous Markov chain with constant intensity matrix

Q = Λ(M − I )

where

Λ =


λ1 0

˜
. . .

0
˜

λC


and C is the number of states in the chain.
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In a dynamic McFadden model for a stationary environment, M has
the special structure mij = mℓj = Pj for all i and ℓ i.e. the origin
state is irrelevant in determining the destination state. This
restricted model can be tested against a more general specification.

Heckman Duration Models



A time inhomogeneous semi-Markov process emerges as a special
case of the general model if we let

P(R(k) = r(k) | t
˜k
, r
˜k−1

, τ(k − 1)) = πr(k−1),r(k)(τ(k), tk)

where
∥ πij(τ, u) ∥ = π

˜
(τ, u)

is a two parameter family of time (τ) and duration (u) dependent
stochastic matrices with each element a function τ and u and
mii = 0.
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We further define

P(Tk > tk | t
˜k−1

, r
˜k−1

, τ(k − 1))

= exp

−
tk∫
0

h(u | r
˜(k−1)

, τ(k − 1)) du

 .

With this restricted form of dependence, Y (τ) is a time
inhomogeneous semi-Markov process. (Hoem, 1972, provides a nice
expository discussion of such processes). Moore and Pyke (1968)
consider the problem of estimating a time inhomogeneous
semi-Markov model without observed or unobserved explanatory
variables.

Heckman Duration Models



The natural estimator for a model without restrictions connecting
the parameters of

P(R(k) = r(k) | t
˜k
, r
˜k−1

, τ(k − 1))

and

P(Tk > tk | t
˜k−1

, r
˜k−1

, τ(k − 1))

breaks the estimation into two components.
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a. Estimate Π
˜
by using data on transitions from i to j for

observations with transitions having identical (calendar
time τ , duration u) pairs. A special case of this
procedure for a model with no duration dependence in
a time homogeneous environment pools i to j
transitions for all spells to estimate the components of
M (see also Billingsley, 1061). Another special case for
a model with duration dependence in a time
homogeneous environment pools i to j transitions for
all spells of a given duration.

b. Estimate P(Tk > tk | t
˜k−1

, r
˜k−1

, τ(k − 1)) using

standard survival methods on times between transitions.
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General Duration Models For The Analysis of Event History
Data

Heckman Duration Models



An individual event history is assumed to evolve according to the
following steps.

(i) At time τ = 0, an individual is in state i , there are
Ni ≤ C − 1 possible destinations. The limit (as
∆t → 0) of the probability that a person who starts in
i at calendar time τ = 0 leaves the state in interval
(t1, t1 +∆t) given regressor path {x

˜
(u)}t1+∆t

0 and

unobservable θ is the conditional hazard or escape rate
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lim

P(t1 < T1 < t1 +∆t | r
˜(0)

=(i),Υ(0)=0, x
˜
(t1), θ)

∆t
(12)

= h(t1 | r
˜(0)

= (i),Υ(0)=0, x
˜
(t1), θ). (13)
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This limit is assumed to exist. (Assumed to be “regular”). The limit
(as ∆t → 0) of the probability that a person starting in r

˜(0)
= (i) at

time τ(0) leaves to go to j ̸= i , j ∈ Ni in interval (t1, t1 +∆t) given
regressor path {x

˜
(u)}t1+∆t

0 and θ is

lim
∆t→0

P(t1 < T1 < t1 +∆t,R(1) = j | r
˜(0)

= (i),Υ(0) = 0, x
˜
(t1), θ)

∆t
= h(t1, j | r

˜(0)
=(i),Υ(0)=0, x

˜
(t1), θ). (14)
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From the laws of conditional probability

Ni∑
j=1

h(t1, j | r
˜(0)

= (i),Υ(0) = 0, x
˜
(t1), θ) = h(t1 | r

˜(0)
= (i),Υ(0) = 0, x

˜
(t1), θ).
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(ii) The probability that a person starting in state i at
calendar time τ = 0 survives to T1 = t1 is (from the
definition of the survivor function in (8) and from
hazard (69))

P(T1 > t1 | r
˜(0)

= (i),Υ(0) = 0, {x
˜
(u)}t10 , θ)

= exp

−
t1∫

0

h(u | r
˜(0)

= (i),Υ(0) = 0, x
˜
(u), θ) du

 .
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Thus the density of T1 is

f (t1 | r
˜(0)

= (i),Υ(0) = 0, {x
˜
(u)}t10 , θ)

= −
∂P(T1 > t1 | r

˜(0)
= (i),Υ(0) = 0, {x

˜
(u)}t10 , θ)

∂t1
= h(t1 | r

˜(0)
= i ,Υ(0) = 0, x(t1), θ)P(T1 > t1 | r

˜(0)
= (i),Υ(0) = 0, {x

˜
(u)}t10 , θ).
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The density of the joint event R(1) = j and T1 = t1 is

f (t1, j | r
˜(0)

= (i),Υ(0) = 0, {x
˜
(u)}t10 , θ) =

h(t1, j | r
˜(0)

= (i),Υ(0) = 0, x
˜
(t1), θ)P(T1 > t1 | r

˜(0)
= (i),Υ(0) = 0, {x

˜
(u)}t10 , θ).
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The density is sometimes called a subdensity. Note that

Ni∑
j=1

f (t1, j | r
˜(0)

= (i),Υ(0) = 0, {x
˜
(u)}t10 , θ)

= f (t1 | r
˜(0)

= (i),Υ(0) = 0, {x
˜
(u)}t10 , θ).

Heckman Duration Models



Proceeding in this fashion, one can define densities corresponding to
each duration in the individual’s event history. Thus, for an
individual who starts in state r

˜(m)
after his mth transition, the

subdensity for Tm+1 = tm+1 and R(m + 1) = j , j = 1, ...,Nℓ is

f (tm+1, f | r
˜(m)

,Υ(m) = τ(m), {x
˜
(u)}τ(m+1)

0 , θ)

where

τ(m + 1) =
m+1∑
n=1

tn. (15)
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The conditional density of completed spells T1, ...,Tk and right

censored spell Tk+1 given {x
˜
(u)}τ(k)+tk+1

0 assuming that Υ(0) = 0 is

the exogenous start date of the event history (and so corresponds to
the origin date of the sample) is, allowing for more general forms of
dependence,

g(t1, r(1), t2, r(2), ..., tk , r(k), tk+1 | {x
˜
(u)}τ(k)+tk+1

0 ) = (16)

∫ {
P(Tk+1 > tk+1 | r

˜(k)
, t
˜(k)

, τ(k), {x
˜
(u)}τ(k)+tk

τ(k) , θ

}
dµ(θ).
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As noted in section 5, it is unlikely that the origin date of the
sample coincides with the start date of the event history. Let

φ(r(0),Υ(0) = 0, r(1), t1a, {x
˜
(u)}τ(1)−∞, θ)

be the probability density for the random variables describing the
events that a appropriate h as defined in (8.2). The joint density of
(r(0), t1c , r(1)) the completed spell density sampled at Υ(0) = 0
terminating in state r(1) is defined analogously. For such spells we
write the density as

φ(r(0),Υ(0) = 0, t1c , r(1), {x
˜
(u)}τ(1)−∞, θ).
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In a multiple spell model setting in which it is plausible that the
process has been in operation prior to the origin date of the sample,
intake rate k is the density of the random variable Υ describing the
event “entered the state r(o) at time Υ = τ ≤ 0 and did not leave
the state until Υ > 0.” The expression for k in terms of the exit rate
depends on (i) presample values of x

˜
and (ii) the date at which the

process began. Thus in principle given (i) and (ii) it is possible to
determine the functional form of k . In this context it is plausible
that k depends on θ.
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The joint likelihood for r(0), t1ℓ(ℓ = a, c), r(1), t2, ..., r(k), tk+1

conditional on θ and {x
˜
(u)}τ(k)+tk+1

−∞ for a right censored k + 1 st

spell is

g(r(0), t1ℓ, r(1), t2, r(2), ..., tk , r(k), tk+1

∣∣∣{x
˜
(u)}τ(k)+tk+1

−∞ , θ)

= φ(r(0),Υ(0) = 0, t1ℓ, r(1) | {x
˜
(u)}τ(1)−∞, θ)

[
k∏

i=2

f (ti , r(i) | r
˜(i−1)

, t
˜(k−1)

τ(i − 1), x
˜
(u)}τ(i)τ(i−1), θ

]
P(Tk+1 > tk+1 | r

˜k
, t
˜(k−1)

, τ(k − 1), {x
˜
(u)}τ(k)+tk+1

0 , θ). (17)
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The marginal likelihood obtained by integrating out θ is,

g(r(0), t1ℓ, r(1), t2, ..., tk , r(k), tk+1 | {x
˜
(u)}τ(k)+tk+1

−∞ ) =∫
θ
=

g(r(0), t1ℓ, r(1), t2, ..., tk , r(k), tk+1 | {x
˜
(u)}τ(k)+tk+1 , θ)du(θ)(18)
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Using (16) and conditioning on T1ℓ = t1ℓ produces conditional
likelihood

g(r(0), t1ℓ, r(1), t2, ..., tk , r(k), tk+1 | {x
˜
(u)}τ(k)+tk+1

−∞ , θ,T1ℓ = t1ℓ)

=
k∏

i=2

f (ti , r(i) | r
˜(i−1)

, t
˜(i−1)

, τ(i − 1), {x(u)τ(i)τ(i−1), θ)·

P(Tk+1 > tk+1 | r
˜k
, t
˜k
, τ(k), {x(u)}τ(k)+tk+1

τ(k) , θ).

Heckman Duration Models



Competing Risk Specifications
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Let there be N states the individual can occupy at any moment of
time. If the individual begins “life” in state i there are N − 1 “latent
times” with densities

fij(tij) = hij(tij) exp

− tij∫
0

hij(u)du

 (j = 1...,N ; j ̸= i) (A1)

where fij(·) is the density function of exit times from state i into
state j , and hij(·) is the associated hazard function.
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The joint density of the N − 1 latent exit times is given by

N∏
j=1
j ̸=i

hij(tij) exp

− tij∫
0

hij(u)du

 . (A2)

An individual exits from state i to state j ′ if the j ′th first passage
time is the smallest of the N − 1 potential first passage times, i.e., if

tij ′ < tij(j = 1, ..,N ; j ̸= j ′; j , j ′ ̸= i).
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Let the probability that the individual leaves state i and then
directly enters state j ′ be denoted by Pij ′ .
Then

Pij ′ = A3 (19)

∞∫
0

∞∫
tij′

...

∞∫
tij′


N∏
j=1
j ̸=i

hij(tij) exp

− tij∫
0

hij(u)du

 dtij


×

hij ′(tij ′) exp

− tij′∫
0

hij ′(u)du


 dtij ′

=

∞∫
0

hij ′(tij ′) exp

−

tij′∫
0

 N∑
k=1
k ̸=i

hik(u)

 du

 dtij ′ .A3 (20)
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The conditional density of exit times from state i into state j ′ given
that tij ′ < tij , (∀j : j ̸= j ′; j , j ′ ̸= i) is

g(tij ′ | tij ′ < tij)(∀j : j ̸= j ′; j , j ′ ̸= i)A4 (21)

=

hij ′(tij ′) exp

−

tij′∫
0

 N∑
k=1
k ̸=i

hik(u)

 du


Pij ′

.A4 (22)
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It follows that the density of exit times from state i into all other
states combined can be written

fi ·(ti ·) =
N∑

j ′=1
j ′ ̸=i

Pij ′g(tij ′ | tij ′ < tij)(∀j : j ̸= j ′; j , j ′ ̸= i)

=

 N∑
k=1
k ̸=i

hik(ti ·)

 exp

−
ti·∫
0

 N∑
k=1
k ̸=i

hik(u)

 du

 .A5(23)
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The probability that the spell is not complete by time C is simply

Prob(T > C ) =

∞∫
C

fi ·(t)dt = exp

−
C∫
0

 N∑
k=1
k ̸=i

hik(u)

 du

 . (A6)
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This term enters the likelihood function for incomplete spells of at
least C in length. In this manner all spells, not only completed ones,
are used in the estimation of the parameters of the hazard function.
This is not the case in regression analyses of durations in a state (or
some transformation of duration) on exogenous variables, where
only completed spells can be used in a straightforward fashion.
(Obviously a nonlinear regression procedure can account for
censoring). [Z1rm(u + τrm)...z(K−2)rm(u + τrm)Vr ].
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Parameter vectors are indexed by transition. βij is K × 1 vector of
coefficients of explanatory variables in the hazard function. To be
specific

βij = [β0ijβ1ij ...β(K−2)ijCij ]. (A7)

As discussed in (Flinn and Heckman, 1982) we impose a one factor
specification, so that Cij is the factor loading associated with the i
to j transition. The usual normalizations required in factor analysis
in discrete data models are imposed. (See Heckman, 1981, pp.
167-174).
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We write the hazard function for the mth spell and rth individual as

himjm(trm) = exp
[
Z ′
rm(trm + τrm)βimjm

]
=

fimjm(trm)

1− Fimjm(trm)
(A8)

where fimjm is the cdf associated with (A1). From state im into state
jm is given by expression (A4). The density of a duration in the mth
spell that begins in im and terminates in state jm is the product of
these two terms and is written as

gimjm(trm) = himjm(trm) exp

−
trm∫
0

N∑
k=1
k ̸=im

himk(u)du

 . (A9)
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Densities of this type are called subdensities in the duration analysis
literature (see Kalbfleisch and Prentice, 1980, p. 167). It is
notationally convenient to write the exp term in (A9) as

Sim(trm) = exp

−
trm∫
0

N∑
k=1
k ̸=im

himk(u)du

 (A10)

so
gimjm(trm) = himjmSim(trm).

Note that from (A6) the probability that the mth spell lasts more
than trm is

P(Trm > trm) = Sim(trm) (A11)

so S has a substantive probabilistic interpretation. It is called the
survivor function in the duration analysis literature.
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Consider an individual’s contribution to the likelihood function
(suppressing the individual’s subscript for notational convenience)

L(β,V ) =

[
M−1∑
i=1

gimjm(tm)

]
SiM (tM) (A12)

where the Mth (and final) censored spell is assumed to last longer
than tM . Treating V as a random effect, the integrated likelihood is

L(β) =

∞∫
−∞

L(β,V )dµ(V ) (A13)

where dµ(V ) is the density of V . Now define

$(β) = ln[L̄(β)].
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Note that

∂$(β)

∂βgij
=

1

L̄(β)

∂L̄(β)

∂βgij
=

1

L̄(β)

∞∫
−∞

∂L̄(β,V )

∂βgij
dµ(V ) (A14)
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a. It allows for a flexible Box-Cox hazard with scalar
heterogeneity

h | x
˜
, θ) = exp

(
x
˜
(t)β +

(
tλ1 − 1

λ1

)
γ1 +

(
tλ2 − 1

λ2

)
γ2 + cθ

)
, λ1 < λ2

(13′)
where β, γ1, γ2, λ1, λ2 and c are permitted to depend
on the origin state, the destination state and the serial
order of the spell. Lagged durations may be included
among the x

˜
. Using maximum likelihood procedures it

is possible to estimate all of these parameters except
for one normalization of c .
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b. It allows for general time varying variables and right
censoring. The regressors may include lagged durations.

c. µ(θ) can be specified as either normal, log normal or
gamma or the NPMLE procedure can be used.

d. It solves the left censoring or initial conditions problem
by assuming that the functional form of the initial
duration distribution for each origin state is different
from that of the other spells.
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Conventional Reduced Form Models
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Proposition 1
Uncontrolled unobservables bias estimated hazards towards negative
duration dependence.

The proof is a straightforward application of the Cauchy-Schwartz
theorem. Let h(t | x

˜
, θ
˜
) be the hazard conditional on x

˜
, θ
˜
and

h(t | x
˜
) is the hazard conditional only on x

˜
. These hazards are

associated respectively with conditional distributions G (t | x
˜
, θ
˜
) and

G (t | x
˜
).
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From the definition,

h(t | x
˜
) =

∫
g(t | x

˜
, θ
˜
)dµ(θ

˜
)∫

(1− G (t | x
˜
, θ
˜
))dµ(θ

˜
)
.
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Thus

∂h(t | x
˜
)

∂t
=

∫
(1− G (t | x

˜
, θ
˜
))
∂h(t | x

˜
, θ
˜
)

∂t
dµ(θ

˜
)∫

(1− G (t | x
˜
, θ
˜
))dµ(θ

˜
)

+

[∫
g(t | x

˜
, θ
˜
)dµ(θ

˜
)

]2
−
∫ g 2(t | x

˜
, θ
˜
)

1− G (t | x
˜
, θ
˜
))
dµ(θ

˜
)

∫
(1− G (t | x

˜
, θ
˜
)dµ(θ

˜
)

[∫
(1− G (t | x

˜
, θ
˜
))dµ(θ

‘
)

]2
.
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The second term on the right hand side is always nonpositive as a
consequence of the Cauchy-Schwartz theorem.■

Intuitively, more mobility prone persons are the ones likely to leave
first.
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There are many possible conditional hazard functions (see, e.g.,
Lawless (1982)). One class of proportional hazard models that nests
many previous models as a special case and therefore might be
termed “flexible” is the Box-Cox conditional hazard

h(t | x
˜
, θ
˜
) = exp

{
x
˜
(t)β +

(
tλ1 − 1

λ1

)
+

(
tλ2 − 1

λ2

)
γ2 + θ

˜
(t)

}
(24)

γ2 = 0 and λ1 = 0; Weibull γ2 = 0 and λ1 = 1 Gompertz.
The conventional approach does, however, allow for right censored
spells assuming independent censoring mechanism. We consider two
such schemes.
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Let V (t) be the probability that a spell is censored at duration t or
later. If

V (t) = 0 t < L

V (t) = 1 t ≥ L (25)

there is censoring at fixed duration L. This type of censoring is
common in many economic data sets. More generally, for
continuous censoring times let v(t) be the density associated with
V (t). Let d = 1 if a spell is not right censored and d = 0 if it is.
Let t denote an observed spell length. Then the joint frequency of
(t, d) conditional on x

˜
for the case of absolutely continuous

distribution V (t) is

f (t, d
∣∣∣x
˜
) = v(t)(1−d)

∫
θ
=

[h(t | x
˜
(t), θ)]V (t)]dS(t | x

˜
(t), θ)dµ(θ)(26)

= {v(t)1−dV (t)d}
∫
θ
=

[h(t | x
˜
(t), θ)]dS(t) | x

˜
(t), θ)dµ(θ).(27)
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For a Dirac censoring distribution, the density of observed durations
is

f (t, d | x
˜
) =

∫
θ
=

[h(t | x
˜
(t), θ)]dS(t | x

˜
(t), θ)dµ(θ). (28)

Except for special time paths of variables the term

t∫
0

h(u | x
˜
(u), θ)du

which appears the survivor function does not have a closed form
expression. To evaluate it requires numerical integration.
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To circumvent this difficulty, one of two expedients is often adopted
(see, e.g. Lundberg, 1981, Cox and Lewis, 1966).

1 1 Replacing time trended variables with their within spell average

x̄
˜
(t) =

1

t

∫ t

0
x
˜
(u)du t > 0

2 Using beginning of spell values x
˜
(0). Expedient (i) has the

undesirable effect of building spurious dependence between
duration time t and the manufactured regressor variable. To
see this most clearly, suppose that x

˜
is a scalar and

x
˜
(u) = a+ bu. Then clearly

x̄(t) = a+
b

2
t,

and t and x̄(t) are clearly linearly dependent. Expedient (ii)
ignores the time inhomogeneity in the environment.
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Table 1. Weibull Model-Employment to Nonemployment Transitions
(Absolute Value of Normal Statistics in Parentheses)

Regressors Fixed At Regressors Fixed
Average Value Over At Value As Of Regressors
The Spell tart of Spell Vary
(expedient i) (expedient ii) Freely

Intercept .971 -3.743 -3.078
(1.535) (12.074) (8.670)

ln duration (γ1) -.137 -.230 -.341
(1.571) (2.888) (3.941)

Married with Spouse -1.093 -.921 -.610
Present? (=1 if yes; = Otherwise) (2.679) (2.310) (1.971)

National Unemployment Rate -1.800 .569 .209
(6.286) (3.951) (1.194)

Source: See Flinn and Heckman, 1982b, p. 69.
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These empirical results are typical. Introducing time varying
variables into single spell duration models is inherently dangerous
and ad hoc methods for doing so can produce wildly misleading
results. More basically, separating the effect of time varying variables
from duration dependence is only possible if there is “sufficient”
independent variation in x

˜
(t) scalar. Taking logs, we reach

ln(h(t | x , θ)) = x(t)β +

(
tλ1 − 1

λ1

)
γ1 + θ(t).
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Identification and Estimation Strategies
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1 (A) What features, if any, of h(t | x
˜
, θ) and/or h(t | x

˜
, θ) are

identified from the “raw data”, i.e., G (t | x
˜
)?

(B) Under what conditions are h(t | x
˜
, θ) and µ(θ) identified? i.e.,

how much a priori information has to be imposed on the model
before these functions are identified?

(C) What empirical strategies exist for estimating h(t | x
˜
, θ)

and/or µ(θ) nonparametrically and what is their performance?
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Nonparametric Procedures to Assess The Structural Hazard
h(t | x

˜
, θ)

In order to test whether or not an empirical G (t | x
˜
) exhibits

positive duration dependence, it is possible to use the total time on
test statistic (Barlow et.al., 1972, p. 267). This statistic is briefly
described here. For each set of x

˜
values, constituting a simple of Ix

˜

durations, order the first k durations starting with the smallest

t1 ≤ t2 ≤ tk , 1 ≤ k ≤ Ix
˜
.
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Let Di :Ix
˜

= [Ix
˜
− (i + 1)](ti − ti−1), where t0 ≡ 0. Define

Vk = k−1
k−1∑
i=1

[
i∑

j=1

Dj :Ix
˜

]
/ k−1

k∑
i=1

Di :Ix
˜

.

Vk is called the cumulative total time on test statistic. If the
observations are from a distribution with an increasing hazard rate,
Vk tends to be large. Intuitively, if G (t | x

˜
) is a distribution that

exhibits positive duration dependence. D1:Ix
˜

stochastically dominates

D2:Ix
˜
,D2:Ix

˜

stochastically dominates D3:Ix
˜

, and so forth. Critical

values for testing the null hypothesis.
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Let G1 = {G : − ln[1− G (t | x
˜
)] is concave in t holding x

˜
fixed}.

Membership in this class can be determined from the total time on
test statistic. If G1 is log concave, the Di :Ix

˜

defined earlier are

stochastically increasing in i for fixed Ix
˜
and x

˜
. Ordering the

observations from the largest to the smallest and changing the
subscripts appropriately, we can use Vk to test for log concavity.

Next let G2 = {G : G (t | x
˜
) =

∫
(1− exp

(
−tφ(x

˜
)η(θ)

)
dµ(θ) for

some probability measure µ on [0,∞]}. It is often erroneously
suggested that G1 = G2 i.e. that negative duration dependence by a
homogenous population (G ∈ G1) cannot be distinguished from a
pure heterogeneity explanation (G ∈ G2).
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In fact, by virtue of Bernstein’s theorem (see, e.g. Feller, 1971, p.
439-440) if G ∈ G2 it is completely monotone i.e.

(−1)n
∂n

∂tn
(1− G (t | x

˜
)) ≥ 0 for n ≥ 1 and all t ≥ 0 (29)

and if G (t | x
˜
) satisfies (23), G (t | x

˜
) ∈ G2.

Setting n = 3, (23) is violated if (-1)3
∂3

∂t3
(1− G (t | x

˜
)) < 0 i.e. if

for some t = t0[
−
∂2h(t | x

˜
)

∂t2
+ 3h(t | x

˜
)
∂h(t | x

˜
)

∂t
− h3(t | x

˜
)

]
t=t0

> 0.
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Formal verification of (23) requires uncensored data sufficiently rich
to support numerical differentiation twice. Note that if the data are
right censored at t = t∗, we may apply (23) over the interval
0 < t ≤ t∗ provided that we define

1− G ∗(t | x
˜
) =

∫ (
1− e

−tφ(x
˜
)η(θ)

)
dµ(θ)∫ (

1− e
−t∗φ(x

˜
)η(θ)

)
dµ(θ)

and test whether

(−1)n
∂n

∂tn
(1− G ∗(t | x

˜
)) ≥ 0 for n ≥ 1 and 0 < t ≤ t∗. (30)
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The key insight in his test is as follows. For G ∈ G2, the probability
that T > k is the survivor function
By a transformation of variables z = exp

(
−φ(x

˜
)η(θ)

)
, we may

transform (25) for fixed x
˜
to

S(k | x
˜
) =

1∫
0

zkdµ∗(z)

i.e. as the k th moment of a random variable defined on the unit
interval.
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From the solution to the classical Hausdorff moment problem (see,
e.g., Shohat and Tamarkin, 1943, p. 9) it is known that there exists
a µ∗(z) that satisfies (23) if

∆kS(ℓ | x
˜
) ≥ 0 k , ℓ = 0, 1, ..,∞ (31)

where

∆0S(ℓ | x
˜
) = S(ℓ | x

˜
)

Heckman Duration Models



∆1S(ℓ | x
˜
) = S(ℓ | x

˜
)− S(ℓ+ 1 | x

˜
)

∆kS(ℓ | x
˜
) = S(ℓ | x

˜
)

−
(

k
1

)
S(ℓ

∣∣∣x
˜
) +

(
k
2

)
S(ℓ+ 2 | x

˜
) + ...+ (−1)kS(ℓ+ k | x

˜
)

.
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Choosing equispaced intervals (0, 1, ....[t∗]) where [t∗] is the nearest
whole integer less than t∗, form the S(ℓ | x

˜
) functions ℓ = 0, ..., [t∗].

Compute the survivor functions so defined and test a subset of the
necessary conditions. (ℓ = 1, ..., k).
It is important to note that these are rejection criteria. There are
other models that may satisfy (23).
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For example

S(t) =

∞∫
0

e−tαθdµ(θ) (32)

for α < 1 is completely monotone. By Bernstein’s theorem this
distribution has one representation in G2 but it is not unique.
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Identifiability
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h(t | x
˜
, θ) = ψ(t)φ(x

˜
)θ. (33)

Before stating identifiability conditions, it is useful to define

Z (t) =

t∫
0

ψ(u)du.

Then for the proportional hazard model we have the following
proposition due to Elbers and Ridder (1982).
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Proposition 2

If (i) E (Θ) = 1, (ii) Z (t) defined on [0,∞) can be written as the
integral of a nonnegative integrable function ψ(t) defined on [0,∞),

Z (t) =

t∫
0

ψ(u)du, (iii) the set S
˜
, x

˜
∈ S

˜
is an open set in Rk and

the function φ is defined on S
˜
and is nonnegative, differentiable and

nonconstant on S, then Z , φ, and µ(θ) are identified. ■
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A general strategy of proof for this case is as follows (for details see
Heckman and Singer (1984a)) Assume that Z ′

α
˜

(t) is a member of a

parametric family of nonnegative functions and that the pair (α
˜
, µ)

is not identified. Assuming that Z ′
α
˜

is differentiable to order j ,

nonidentifiability implies the identities

1 =
g1(t)

g0(t)
=

Z ′
α
˜ 1

(t)

∞∫
0

θ e
−Z ′

α
˜1

(t)θ
dµ1(θ)

Z ′
α
˜ 0

(t)

∞∫
0

θ e
−Z ′

α
˜0

(t)θ
dµ0(θ)

· · ·

1 =
g
(j)
I (t)

g
(j)
0 (t)

.
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Proposition 3

For the true value of λ, λ0, defined so that λ0 ≤ 0, if E (Θ) <∞ for
all admissible µ, and for all bounded γ, then the triple (γ0, λ0, µ0) is
uniquely identified.■ (For proof, see Heckman and Singer 1984a).
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Proposition 4
For the true value of λ, λ0, such that 0 < λ0 < 1, if all admissible µ
are restricted to have a common finite mean that is assumed to be
known a priori (E (Θ) = m1) and a bounded (but not necessarily
common) second moment E (Θ2) <∞, and all admissible γ are
bounded, then the triple (γ0, λ0, µ0) is uniquely identified.■ (For
proof see Heckman and Singer, 1984a).
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Proposition 5
For the true value of λ, λ0, restricted so that 0 < λ0 < j , j a
positive integer, if all admissible µ are restricted to have a common
finite mean that is assumed to be known a priori (E (Θ) = m1) and
a bounded (but not necessarily common) j + 1st moment
(E (Θj+1) <∞), and all admissible γ are bounded, then the triple
(γ0, λ0, µ0) is uniquely identified.■ (For proof see Heckman and
Singer, 1984a).
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It is interesting that each integer increase in the value of λ0 > 0
requires an integer increase in the highest moment that must be
assumed finite for all admissible µ.
The general strategy of specifying a flexible functional form for the
hazard and placing moment restrictions on the admissible µ works in
other models besides the Box-Cox class of hazards. For example
consider a nonmonotonic log logistic model used by Trussell and
Richards (1983).
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Z ′(t) =
(λα)(λt)α−1

1 + (λt)α
, ∞ > λ, α > 0 (34)
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Proposition 6

For hazards model (4.8), the triple (λ0, α0, µ0) is identified provided
that the admissible µ are restricted to have a common finite mean
E (Θ) = m1 <∞.■ (For proof, see Heckman and Singer, 1984a).
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Sampling Plans and Initial Conditions Problems
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Begin after the date of the sample. For interrupted spells one of the
following duration times may be observed: (1) time in the state up
to the sampling date (Tb) (2) time in the state after the sampling
date (Ta) or (3) total time in a completed spell observed at the
origin of the sample (Tc = Ta + Tb). Durations of spells that begin
after the origin date of the sample are denoted Td .
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Time Homogeneous Environments and Models Without
Observed and Unobserved Explanatory Variables

Heckman Duration Models



Time 0. Looking backward, a spell of length tb interrupted at 0
began tb periods ago. Looking forward, the spell lasts ta periods
after the sampling date. The completed spell is tc = tb + ta in
length. We ignore right censoring and assume that the underlying
distribution is nondefective. (These assumptions are relaxed below.)
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Let k(−tb) be the intake rate i.e. tb periods before the sample
begins, k(−tb) is the proportion of the population that enters the
state of interest at time τ = −tb. The time homogeneity
assumption implies that

k(−tb) = k ,∀tb.
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Let g(t) = h(t) exp
[
−
∫ t

0
h(u) du

]
be the density of completed

durations in the population. The associated survivor function is

S(t) = 1− G (t) = exp

[
−
∫ t

0

h(u)du

]
.

The proportion of the population experiencing a spell at calendar
time τ = 0,P0, is obtained by integrating over the survivors from
each cohort, i.e.

P0 =

∫ ∞

0

k(−tb)(1−G (tb)dtb =

∫ ∞

0

k(−tb) exp

[
−
∫ tb

0

h(u) du

]
dtb.

(35)
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Thus the density of an interrupted spell of length tb is the ratio of
the proportion surviving from those who entered tb periods ago to
the total stock

f (tb) =
k(−tb)(1− G (tb))

P0
=

k(−tb) exp

[
−

tb∫
0

h(u) du

]
P0

.
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This rules out defective distributions. Assuming

m =

∫ ∞

0

xg(x)dx <∞ and integrating the denominator of the

preceding expression by parts, we reach the familiar expression (see,
e.g. Cox and Lewis (1966))

f (tb) =
(1− G (tb))

m
=

S(tb)

m
=

1

m
exp

[
−
∫ tb

0

h(u) du

]
.

The density of sampled interrupted spells is not the same as the
population density of completed spells.
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The density of sampled completed spells is obtained by the following
straightforward argument. In the population, the conditional density
of tc given 0 < tb < tc is

g(tc | tb) =
g(tc)

(1− G (tb))
= h(tc) exp

[
−
∫ tc

tb

h(u) du

]
, tc > tb.

(36)
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Using the density of f (tb), the marginal density of tc in the sample is

f (tc) =

tc∫
0

g(tc | tb)f (tb)dtb =
tc∫
0

g(tc)

m
dtb (37)

so

f (tc) =
tcg(tc)
m

.
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The density of the forward time ta can be derived in a similar
fashion.

f (ta) =

∞∫
0

g(ta + tb | tb)f (tb)dtb =
∞∫
0

g(ta + tb)

m
dtb

1

m

∞∫
ta

g(z)dz =
(1− G (ta))

m
=

S(ta)

m
=

exp
[
−
∫ ta
0
h(u) du

]
m

(38)

So in a time homogeneous environment the functional form of f (ta)
is identical to f (tb).
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The following results are well known about the distributions of the
random variables Ta,Tb and Tc .

1 If g(t) is exponential with parameter θ
(i.e. g(t) = θe−tθ) then so are f (ta) and f (tb). The proof is
immediate.

2 E (Ta) =
m

2
(1 +

σ2

m2
)

where σ2 = E (T −m)2 =

∞∫
0

(t −m)2g(t)dt.

3 E (Tb) =
m

2
(1 +

σ2

m2
)

(since Ta and Tb have the same density)

Heckman Duration Models



1 E (Tc) = m

(
1 +

σ2

m2

)
so E (Tc) = 2E (Ta) = 2E (Tb) and E (Tc) > m unless σ2 = 0.

2 If
− ln(1− G (t))

t
↑ in t,

σ2

m2
> 1. (This condition is implied if

h(t) =
g(t)

1− G (t)
is decreasing in t, i.e., h′(t) < 0. In this case,

E (Ta) = E (Tb) > m. (See Barlow and Proschan 1975 for
proof.

3 If
− ln(1− G (t))

t
↓ t,

σ2

m2
< 1. (This condition is implied if

h′(t) > 0). In this case E (Ta) = E (Tb) < m. (See Barlow and
Proschan 1975 for proof).
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We next present the distribution of Td , the duration time for spells
that begin after the origin date of the sample. Let Υ denote the
time a spell begins. The density of Υ is k(τ). Assuming that Υ and
Td are independent the joint probability that a spell begins at
Υ = τ and lasts less than td periods is

Pr{Υ = τ and Td < td} = k(τ)G (td).

Thus the density of Td in a time homogeneous environment is

f (td) = g(td). (39)
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It is common to “solve” the left censoring problem by assuming that
G (t) is exponential. The bias that results from invoking this
assumption when it is false can be severe. As an example suppose
that the population distribution of t is Weibull so

g(t) = αφ tα−1e−φt
α

φ > 0, c > 0.

For α = 2
plim λ̂ = (φ)1/2Γ(1/2).
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As another example, suppose the sample being analyzed consists of
complete spells sampled at time zero (i.e. Tc) generated by an
underlying population exponential density

g(t) = λe−tλ.

Then from (32)
f (tc) = λ2tce

−λtc .

If it is falsely assumed that g(t) characterizes the duration data and
θ is estimated by maximum likelihood plim λ̂ = 2λ.
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Continuing this example, suppose instead that a Weibull model is
falsely assumed i.e.

g ∗(t) = α tα−1φe−tαφ

and the parameters α and φ are estimated by maximum likelihood.
The maximum likelihood estimator solves the following equations,

1

φ̂
=

I∑
i=1

t α̂i

I

1

α̂
+

I∑
i=1

ln ti

I
=

φ̂
I∑

i=1

(ln ti) t
α̂
i

I
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so

1

α̂
+

I∑
i=1

ln ti

I
=

I∑
i=1

t α̂i ln ti

I∑
i=1

t α̂i

. (40)
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Using the easily verified result that

∞∫
0

tP−1 ln
(
te−tλ

)
dt = λ−P

{
∂Γ(P)

∂P
− ln (λΓ(p))

}
and that fact that in large samples plim α̂ = α∗ is the value of α∗

that solves (31), α∗ is the solution to

1

α∗ + E (ln t) =
E (tα

∗
ln t)

E (tα∗)

we obtain the equation

1

α∗ +

(
∂Γ(P)

∂P
|P=2 − lnλ

)
=

(
∂ ln Γ(P)

∂P
|P=α∗+2 − lnλ

)
. (41)
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Using the fact that

Γ∗(P + 1)

Γ(P + 1)
=

1

P
+

Γ′(P)

Γ(P)

and collecting terms, w may rewrite (32) as

1

α∗(α∗ + 1)
+
∂Γ(P)

∂P
|P=2 =

1

Γ(P)

∂Γ(P)

∂P
|P=α∗+1 . (42)
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Since Γ(2) = 1, it is clear that α∗ = 1 is never a solution of this
equation. In fact, since the left hand side is monotone decreasing in
α∗ and the right hand side is monotone increasing in α∗, and since
at α∗ = 1, the left hand side α∗ > 1.

Heckman Duration Models



It can also be shown that

plim φ̂ =
λα

∗−1

Γ(α∗ + 2)
.
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The Densities of Ta,Tb,Tc and Td in Time Inhomogeneous
Environments For Models With Observed and Unobserved

Explanatory Variables
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We define k(τ | x
˜
(τ), θ) to be the intake rate into a given state at

calendar time τ . We assume that θ is a scalar heterogeneity
component and x

˜
(τ) is a vector of explanatory variables. It is

convenient and correct to think of k(τ | x
˜
(τ), θ) as the density

associated with the random variable Υ for a person with
characteristics (x

˜
(τ), θ). We continue the useful convention that

spells are sampled at Υ = 0. The densities of Ta,Tb.Tc and Td are
derived for two cases: (a) conditional on a sample path {x

˜
(u)}t−∞

and (b) marginally on the sample path {x
˜
(u)}t−∞ (i.e. integrating it

out). We denote the distribution of {x
˜
(u)}t−∞ as D(x

˜
) with

associated density dD(x
˜
).
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The derivation of the density of Tb conditional on {x
˜
(u)}0−∞ is as

follows. The proportion of the population in the state at time τ = 0
is obtained by integrating over the survivors of each cohort of
entrants. Thus

P0(x
˜
) =

∞∫
0

∫
θ
=

k(−tb | x
˜
(−tb), θ) exp

(
−
∫ tb

0

h(u | x
˜
(u − tb), θ) du

)
dµ(θ)dtb.
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The proportion of people in the state with sample path {x
˜
(u)}0−∞

whose spells are exactly of length tb is the set of survivors from a
spell that initiated at τ = −tb or

∫
θ
=

k(−tb | x
˜
(−tb), θ) exp

(
−
∫ tb

0

h(u | x
˜
(u − tb), θ) du

)
dµ(θ).
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Thus the density of Tb conditional on {x
˜
(u)}0−∞ is

f (tb | {x
˜
(u)}0−∞ (43)

=

∫
θ
=

k(−tb | x
˜
(−tb), θ) exp

(
−
∫ tb
0
h(u | x

˜
(u − tb), θ) du

)
dµ(θ)

P0(x
˜
)

The marginal density of Tb (integrating out x
˜
) is obtained by an

analogous argument: divide the marginal flow rate as of time
Υ = −tb (the integrated flow rate) by the marginal (integrated)
proportion of the population in the state at τ = 0.
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Thus defining

P0 =

∫
X
=

P0(x
˜
)dD(x

˜
)

where X
=
is the domain of integration for x

˜
we write

f (tb) =

∫
X
=

∫
θ
=

k(-tb-tb) | x
˜
(-tb-tb), θ) exp

(
−
∫ tb
0
h(u | x

˜
(u − tb), θ) du

)
dµ(θ) dD(x

˜
)

P0

(44)
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Note that we use a function space integral to integrate out
{x
˜
(u)}0−∞. (See Kac (1959) for a discussion of such integrals).

Note further that one obtains an incorrect expression for the
marginal density of Tb if one integrates (43) against the population
density of x

˜
(dD(x

˜
)).
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The error in this procedure is that the appropriate density for x
˜

against which (43) should be integrated is a density of x
˜
conditional

on the event that an observation is in the sample at τ = 0. By
Bayes’ theorem this density is

f (x
˜
| Tb > 0) =

∞∫
0

f (tb | {x
˜
(u))}0−∞)dD(x

˜
)dtb

 P0(x
˜
)

P0

which is not in general the same as the density dD( x
˜
). For proper

distributions for Tb,

f (x
˜
| Tb > 0) = dD(x

˜
)
P0(x

˜
)

P0
.
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The derivatives of the density of Tc , the completed length of a spell
sampled at Υ = 0 is equally straightforward. For simplicity we
ignore right censoring problems so that we assume that the sampling
frame is of sufficient length that all spells are not censored and
further assume that the underlying duration distribution is not
defective. (But see the remarks at the conclusion of this section.)
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Conditional on {x
˜
(u)}t−∞ and θ the probability that the spell began

at τ is
k(τ | x

˜
(τ), θ).

The conditional density of a completed spell of length t that begins
at τ is∫

h(t | x
˜
(τ + t), θ) exp

(
−
∫ t

0

h(u | x
˜
(τ + u), θ)

)
dµ(θ).

For a fixed τ ≤ 0, tc by definition exceeds −τ . Conditional on x
˜
,

the probability that Tc exceeds τ is P0(x
˜
).
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Thus, integrating out τ , respecting the fact that tc > −τ

f (tc

∣∣∣{x
˜
(u)}tc−∞) = (45)

0∫
−tc

∫
θ
=

k(τ | x
˜
(τ), θ)h(t | x

˜
(τ + tc), θ) exp

[
−
∫ tc
0
h(u | x

˜
(τ + u), θ)du

]
dµ(θ) dτ

P0(x
˜
)
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The marginal density of Tc is

f (tc) (46)

=

0∫
−tc

∫
X
=

∫
θ
=

k(τ | x
˜
(τ), θ)h(tc | x

˜
(τ + t), θ) exp

[
−
∫ tc
0 h(u | x

˜
(τ + u), θ) du

]
dµ(θ) dD(x

˜
)dτ

P0
.
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Ignoring right censoring, the derivation of the density of Ta proceeds
by recognizing that Ta conditional on Υ ≤ 0 is the right tail portion
of random variable −Υ+ Ta, the duration of a completed spell that
begins at Υ = τ . The probability that the spell is sampled is P0(x

˜
).

Thus the conditional density of Ta = ta given {x
˜
(u)}ta−∞ is obtained

by integrating out τ and correctly conditioning on the event that the
spell is sampled i.e.

f (ta | {x
˜
(u)}ta−∞ (47)

=

0∫
−∞

∫
θ
=

k(τ | x
˜
(τ), θ)h(ta − τ | x

˜
(ta − τ), θ) exp

(
−
∫ ta−τ
0 h(u | x

˜
(u + τ), θ) du

)
dµ(θ) dτ

P0(x
˜
)
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and the corresponding marginal density is

f (ta) (48)

=

0∫
−∞

∫
X
=

∫
θ
=

k(τ | x
˜
(τ), θ)h(ta − τ) | x

˜
(ta + τ), θ) exp

[
−
∫ ta−τ

0
h(u | x

˜
(u + τ), θ) du

]
dµ(θ) dD(x

˜
)dτ

P0

(49)
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Of special interest is the case k(τ | x , θ) = k(x
˜
) in which the intake

rate does not depend on unobservables and is constant for all τ
given x , and in which x

˜
is time invariant. Then (43) specializes to

f (tb | x
˜
) =

1

m(x)

∫
θ
=

exp

[
−
∫ tb

0

h(u | x
˜
, θ) du

]
dµ(θ) (50)

where

m(x
˜
) =

∞∫
0

∫
θ

exp

[
−
∫ z

0

h(u | x
˜
, θ) du

]
dµ(θ) dz .
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This density is essentially of the same functional form as the density
after (30). Under the same restrictions on k and x

˜
, (43) and (44)

specialize respectively to

f (tc | x
˜
) =

tc

∫
θ
=

h(tc | x
˜
, θ) exp

[
−
∫ tc
0
h(u | x

˜
, θ) du

]
dµ(θ)

m(x
˜
)

(51)

and

f (ta | x
˜
) =

∫
θ
=

exp
[
−
∫ ta
0
h(u | x

˜
, θ) du

]
dµ(θ)

m(x
˜
)

(52)

For this special case all of the results (i)-(vi) stated in subsection A go

through with obvious redefinition of the densities to account for observed

and unobserved variables.Heckman Duration Models



It is only for this special case of k(τ | x
˜
, θ) with time invariant

regressors that the densities of Ta,Tb and Tc do not depend on the
parameters of k .
The common expedient for “solving” the initial conditions problem
for the density of Ta—assuming that G (t | x

˜
, θ) is

exponential—does not avoid the dependence of the density of Ta on
k even if k does not depend on θ as long as it depends on τ or x

˜
(τ)

where x
˜
(τ) is not time invariant.
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Thus in the exponential case in which
h(u | x

˜
(u + τ), θ) = h(x

˜
(u + τ), θ), we may write (44) for the case

k = k(τ | x
˜
(τ)) as

f (ta | {x
˜
(u)}ta−∞)

=

0∫
−∞

∫
θ
=

k(τ | x
˜
(τ))e

−
∫−τ
0 h(x

˜
|(u+τ),θ)du

h(x
˜
(ta), θ)e

−
∫ ta
0 h(x

˜
(u),θ) du

dµ(θ)dτ

0∫
−∞

∫
θ
=

k(τ | x
˜
(τ))e

−
∫−τ
0 h(x

˜
(u+τ),θ)du

dµ(θ)dτ
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Only if h(x
˜
(u + τ), θ) = h(x

˜
(u + τ)), so that unobservables do not

enter the model (or equivalently that the distribution of Θ is
degenerate), does k disappear from the expression. In this case the
numerator factors into two components, one of which is the
denominator of the density. “k” also disappears if it is a time
invariant constant that is functionally independent of θ.
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a. The functional form of k(τ | x
˜
(τ), θ) is not in general

known. This includes as a special case the possibility
that for some known τ ∗ < 0, k(τ | x

˜
(τ), θ) ≡ 0 for

τ < τ ∗. In addition, the value of τ ∗ may vary among
individuals so that if it is unknown it must be treated
as another unobservable.

b. If x
˜
(τ) is not time invariant, its value may not be

known for τ < 0 so that even if the functional form of
k is known, the correct conditional duration densities
cannot be constructed.
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The initial conditions problem stated in its most general form is
intractable. However, various special cases of it can be solved. For
example, suppose that the functional form of k is known up to some
finite number of parameters, but presample values of x

˜
(τ) are not.

If the distribution of these presample values is known or can be
estimated, one method of solution to the initial conditions problem
is to define duration distributions conditional on post sample values
of x

˜
(τ) from the model using the distribution of their values.
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This approach suggests using

f
(
tc | {x

˜
(u)}tc0

)
=

0∫
−tc

∫
θ
=

∫
{x
˜
(τ):τ<0}

k(τ | x
˜
(τ), θ)h(tc | x

˜
(t + τ), θ) exp

[
−
∫ tc

0

h(u | x
˜
(τ + u), θ)du

]
dD(x) dµ(θ) dτ.
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Recall, however, that the distribution of x
˜
within the sample is not

the distribution of x
˜
in the population, D(x

˜
). This is a consequence

of the impact of the sample selection rule on the joint distribution of
x
˜
and T . The distribution of the x

˜
within sample depends on the

distribution of θ, and the parameters of h(t | x
˜
, θ) and the

presample distribution of x
˜
. Thus, for example, the joint density of

Ta and x
˜
for τ > 0 is

f (ta, x
˜
(τ) |τ ≥ 0)

=

dD(x
˜
)

∫ 0

−ta

∫
θ
=

∫
{x
˜
:τ<0}

k(τ | x
˜
(τ), θ)h(ta + τ | x

˜
(ta + τ), θ)e

−
∫ ta−τ
0

h(u|x
˜
(u+τ),θ) du

dD(x
˜
) dµ(θ) dτ

P0

Heckman Duration Models



so, the density of within sample x
˜
(τ) is

f (x
˜
(τ) | τ ≥ 0) =

∫ ∞

0
f (ta, x

˜
(τ))dta

=
dD(x

˜
)

P0

∫ ∞

0

0∫
−ta

∫
θ
=

∫
{x
˜
:τ<0}

k(τ | x
˜
(τ), θ)h(ta + τ | x

˜
(ta + τ), θ)e

−
ta−τ∫
0

h(u|x
˜
(u+τ),θ) du

dD(x
˜
) dµ(θ) dτ dta.
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It is this density and not dD(x
˜
) that is estimated using within

sample data on x
˜
.
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A partial avenue of escape from the initial conditions problem
exploits Td i.e. durations for spells initiated after the origin date of
the sample. The density of Td conditional on {x

˜
(u)}td+τd0 where

τd > 0 is the start date of the spell is

f (td | {x
˜
(u)}td+τd0 )

=

∞∫
0

∫
θ
=

k(τ | x
˜
(τ), θ)h(td | x

˜
(τ + td), θ)e

−
td∫
0

h(u|x
˜
(τ+u),θ) du

dµ(θ) dτ

∞∫
0

∫
θ
=

k(τ | x
˜
(τ), θ) dµ(θ) dτ
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The denominator is the probability that Υ ≥ 0. Only if k does not
depend on θ will be the density of Td not depend on the parameters
of k . More efficient inference is based on the joint density of Υ and
that td

f (td , τ | {x
˜
(u)}td+τd0 )

=

∫
θ
=

k(τ | x
˜
(τ), θ)h(td | x

˜
(τ + td), θ) exp

[
−

td∫
0

h(u | x
˜
(τ + u), θ)du

]
dµ(θ) dτ

∞∫
0

∫
θ
=

k(τ | x
˜
(τ), θ) dµ(θ) dτ
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For example, the density of measured completed spells that begin
after the start date of the sample incorporates the facts that
0 ≤ Υ ≤ τ ∗ and Td ≤ τ ∗ −Υ i.e. that the onset of the spell occurs
after τ = 0 and that all completed spells must be length τ ∗ −Υ or
less. Thus we write (recalling that τd is the start date of the spell)

f (td | {x
˜
(u)}td+τd0 ,Td ≤ τ ∗ −Υ,Υ ≥ 0)

=

τ∗−td∫
0

∫
θ
=

k(τ | x
˜
(τ), θ)h(td | x

˜
(τ + td), θ)e

−
∫ td
0 h(u|x

˜
(τ+u),θ) du

dµ(θ) dτ

τ∗∫
0

τ∗−td∫
0

∫
θ
=

k(τ | x
˜
(τ), θ)h(td | x

˜
(τ + td), θ)e

−
∫
h(u|x

˜
(τ+u),θ)du

dµ(θ) dτ dtd
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The density of right censored spells that begin after the start date of
the sample is simply the joint probability of the events 0 < Υ < τ ∗

and Td > τ ∗ −Υ i.e.
P(0 < Υ < τ ∗ ∧ Td > τ ∗ −Υ | {x

˜
(u)}τ∗0 ) =

=

τ∗∫
0

∞∫
τ∗−τ

∫
θ
=

k(τ |

x
˜
(τ), θ) exp

[
−

τ∗−td∫
0

h(u | x
˜
(τ + u), θ)du

]
dµ(θ)dtddτ.
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The modification required in the other formulae presented in this
subsection to account for the finiteness of the sampling plan are
equally straightforward. For spells sampled at τ = 0 for which we
observe presample values of the duration and post sample completed
durations (Tc), it must be the case that (a) Υ ≤ 0 and (b)
τ ∗ −Υ > Tc > −Υ where τ ∗ > 0 is the length of the sampling
plan. Thus in place of (41) we write

f (tc | {x
˜
(u)}tc−∞,−Υ < Tc ≤ τ ∗ −Υ,Υ ≤ 0)

=

τ∗−tc∫
−tc

∫
θ
=

k(τ | x
˜
(τ), θ)h(tc | x

˜
(τ + tc), θ)e

−
∫ tc
0 h(u|x

˜
(τ+u),θ) du

dµ(θ) dτ

0∫
−∞

τ∗−t∫
−τ

−τ∫
θ
=

k(τ | x
˜
(τ), θ)h(tc | x

˜
(τ + tc), θ)e

−
∫ tc
0 h(u|x

˜
(τ+u),θ) du

dµ(θ) dtc dτ
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The denominator of this expression is the joint probability of the
events that −Υ < Tc < τ ∗ −Υ and Υ ≤ 0. For spells sampled at
τ = 0 for which we observe presample values of the duration and
post sample right censored durations, it must be the case that (a)
Υ < 0 and (b) Tc ≥ τ ∗ −Υ so the density for such spell is

f (tc | x
˜
(u)
}tc

−∞
,Tc ≥ τ ∗ −Υ,Υ ≤ 0)

=

0∫
−∞

∞∫
τ∗−τ

∫
θ
=

k(τ | x
˜
(τ), θ)h(tc | x

˜
(τ + tc), θ)e

−
tc∫
0

h(u|x
˜
(τ+u),θ) du

dµ(θ) dtc dτ.
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Examples of Duration Models Produced by Economic Theory

Example A
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A Dynamic Model of Labor Force Participation
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The consumer works at age a if the marginal rate of substitution
between goods and leisure evaluated at the no work position (also
known as the nonmarket wage)

M(Y (a)) =
U2(Y (a), 1)

U1(Y (a), 1)
(53)

function I (a) written as

I (a) = W (a)−M(Y (a)). (54)

If I (a) ≥ 0, the consumer works at age a and we record this event
by setting d(a) = 1. If I (a) < 0, d(a) = 0.
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For each person successive values of ε(a) may be correlated but it is
assumed that ε(a) is independent of Y (a) and W (a). We define the
index function inclusive of ε(a) as

I ∗(a) = W (a)−M(Y (a)) + ε(a). (55)
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The probability that an employed person does not leave the
employed state is

1− F (ψ) (56)

where ψ = M(Y )−W . The probability of receiving j new values of
ε in interval te is

Pj =

(
te
j

)
P j(1− P)te−j .
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The probability that a spell is longer than te is the sum over j of the
products of the probability of receiving j innovations in te(P

j) and
the probability that the person does not leave the employed state on
each of the j occasions (1− F (ψ))j . Thus

P(Te > te) =
te∑
j=0

(
te
j

)
P j(1− P)te−j(1− F (ψ))j

= (1− P(F (ψ))te .
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Thus the probability that an employment spell terminates at te is

P(Te = te) = P(Te > te − 1)− P(Te > te)

= (1− PF (ψ))te−1(P(F (ψ)). (57)
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By similar reasoning it can be shown that the probability that a
non-employment spell terminates in tn periods is

P(Tn = tn) = [(1− P(1− F (ψ))]tn−1P(1− F (ψ)). (58)

From single spell, can only estimate P(F (ψ).
In place of the Bernoulli assumption for the arrival of fresh values of
ε, suppose instead that a Poisson process governs the arrival of
shocks. As is well known (see, e.g. Feller (1970)) the Poisson
distribution is the limit of a Bernoulli trial process in which the
probability of success in each interval η = ∆

n
,Pη , goes to zero in

such a way that limn→0 nPη → λ ̸= 0.
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For a time homogeneous environment the probability of receiving j
offers time period te is

P(j | te) = exp (−λte)
(λte)

j

j !
. (59)

Thus for the continuous time model the probability that a person
who begins employment at a = a1 will stay in the employed state at
least te periods is, by reasoning analogous to that use to derive (50),

Pr(Te > te) =
∞∑
j=0

exp (−λte)
(λte)

j

j !
(1− F (ψ))j = exp [−λF (ψ)te ]

(60)
so the density of spell lengths is

g(te) = λF (ψ) exp [−λF (ψ)te ] .
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A more direct way to derive this notes that from the definition of a
Poisson process, the probability of receiving a new value of ε in
interval (a, a +∆) is

p = λ∆+ o(∆)

where lim
∆→0

o(∆)

∆
→ 0, the probability of exiting the employment

state conditional on an arrival of ε is F (ψ)). Hence the exit rate or
hazard rate from the employment state is

he = lim
∆→0

λ∆F (ψ)

∆
+ o(∆) = λF (ψ).
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Using (4) relating the hazard function and the survivor function we
conclude that

Pr(Te > te) = e
−

te∫
0

he(u) du
= e−λF (ψ)te .

By similar reasoning, the probability that a person starting in the
nonemployed state will stay on in that state for at least duration tn is

Pr(Tn > tn | λ) = e−λ(1−F (ψ))tn .

Analogous to the identification result already presented for the
discrete time model, it is impossible using single spell employment
or nonemployment data to separate λ from F (ψ) or 1− F (ψ)
respectively. However, access to data on both employment and
nonemployment spells make it possible to identify both λ and F (ψ).
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The assumption of time homogeneity of the environment is only
made to simplify the argument. Suppose that nonmarket time
arrives via a nonhomogeneous Poisson process so that the probability
of receiving one nonmarket draw in interval (a + a +∆) is

p(a) = λ(a)∆ + o(∆). (61)

Assuming that W and Y remain constant, the hazard rate for exit
from employment at time period a for a spell that begins at a1 is

he(a | a1) = λ(a)F (ψ) (62)

so that the survivor function for the spell is

P(Te > te | a1) = exp

[
−F (ψ)

∫ a1+te

a1

λ(u) du

]
. (63)

By similar reasoning

P(Tn > tn | a1) = exp

[
−(1− F (ψ))

∫ a1+tn

a1

λ(u) du

]
.
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Example B
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A One State Model of Search Unemployment
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V is the value of search. Using Bellman’s optimality principle for
dynamic programming [see, e.g. Ross (1970)]. V may be
decomposed into three components plus a negligible component [of
order o(∆t)].

V =
c∆t

1 + r∆t
+

(1− λ∆t)

1 + r∆t
V

+
λ∆t

1 + r∆t
E max[w/r ;V ] + o(∆t),

= 0 otherwise. (64)

for V > 0.
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• λ is the rate of arrival of job offeres (externally specified).

• r is discount rate, C is cost of search per instant, ∆t is time
interval.
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Collecting terms in (64) and passing to the limit, we reach the
familiar formula [Lippman and McCall (1976a)]

c + rV = (λ/r)

∫ ∞

rV

(w − rV )dF (w) for V > 0. (65)

To calculate the probability that an unemployment spell Tu exceeds
tu, we note that the probability of receiving an offer in term interval
(a, a +∆) is

p = λ∆+ o(∆) (66)

and further note that the probability that an offer is accepted is
(1− F (rV )) so

hu = λ(1− F (rV ) (67)

and
P(Tu > tu) = e−λ(1−F (rV ))t . (68)

Heckman Duration Models



For discussion of the economic content of this model, see, e.g.,
Lippman and McCall (1976) or Flinn and Heckman (1982a).
Accepted wages are truncated random variables with rV as the
lower point of truncation. The density of accepted wages is

g(w | w > rV ) =
f (w)

1− F (rV )
, w ≧ rV .

From the assumption that wages are distributed independently of
wage arrival times, the joint density of duration time tu and accepted
wages (w) is the product of the density of each random variable,

m(tu,w) = {λ(1-F(rV)) exp[−λ(1− F (rV ))]} f (w)

1− F (rV )

= λ exp[−λ(1− F (rV ))tu]f (w),

w ≧ r (69)
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For simplicity we assume that a reservation wage property
characterizes the optimal policy noting that for general time
inhomogeneous models it need not. We denote the reservation wage
at time τ as rV (τ). The probability that an individual receives a
wage offer in time period (τ, τ +∆) is

p(τ) = λ(τ)∆ + o(∆). (70)
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The probability that it is accepted is (1− F (rV (τ))). Thus the
hazard rate at time τ for exit from an unemployment spell is

h(τ) = λ(τ)(1− F (rV (τ)) (71)

so that the probability that a spell that began at τ1 lasts at least tu
is

P(Tu > tu | τ1) = exp

[
−
∫ τ1+tu

τ1

λ(z)(1− F (rV (z))) dz

]
. (72)

The associated density is

g(tu | τ1) = λ(τ1+tu)(1−F (rV (τ1+tu))) exp

[
−
∫ τ1+tu

τ1

λ(z)(1− F (rV (z))) dz

]
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Example C
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A Dynamic McFadden Model
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h(j | τ) = λ(τ)Pj(τ) (73)

so that the probability that the next purchase is item j at a time
t = τ + τ1 or later is

P(t, j | τ1) = exp

[
−
∫ τ1+t

τ1

λ(u)Pj(u) du

]
. (74)
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The Pj may be specified using one of the many discrete choice
models discussed in Amemiya’s survey (1981). For the McFadden
random utility model with Weibull errors (1973), the Pj are
multinomial logit. For the Domencich-McFadden (1975) random
coefficients preference model with normal coefficients the Pj are
specified by multivariate probit.
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Following McFadden (1974), the utility associated with each of J
possible choices at time τ is written as

U(τ) = V (s, x
˜
(τ)) + ε(s, x

˜
(τ))

where s denotes vectors of measured attributes of individuals, x
˜
(τ)

represents vectors of attributes of choices, V is a nonstochastic and
ε(s, x

˜
(τ)) are iid Weibull, i.e.,

P(ε(s, x
˜ j
(τ)) ≤ φ) = e−e−φ

.
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Then as demonstrated by McFadden (p. 110),

Pj(s, x
˜ j
(τ)) =

e
V (s,x

˜ j
(τ))

J∑
ℓ=1

e
V (s,x

˜ℓ
(τ))

.

Adopting a linear specification for V we write

V (s, x
˜
(τ)) = x

˜

′(τ)β(s)

so

Pj(s, x
˜ j
(τ)) =

e
x
˜

′
j
(τ)β(s)

J∑
ℓ=1

e
x
˜

′
ℓ
(τ)β(s)

.
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New Issues That Arises in Formulating and Estimating
Choice Theoretic Duration Models
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1 Without data on accepted wages, the models of previous
sections are underidentified even if there are no regressors or
unobservables in the model.

2 Even with data on accepted wages, the model is not identified
unless the distribution of wage offers satisfies a recoverability
condition to be defined below.

3 For models without unobserved variables, the asymptotic
estimator of the model is non-standard.

4 Allowing for individuals to differ in observed and unobserved
variables injects an element of arbitrariness into model
specification, creates new identification and computational
problems, and virtually guarantees that the hazard is not of the
proportional hazards functional form.

5 A new feature of duration models with unobservables produced
by optimizing theory is that the support of θ now depends on
parameters of the model.
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Point A
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From a random sample of durations of unemployment spells in a
model without observed or unobserved explanatory variables, it is
possible to estimate hu via maximum likelihood or Kaplan-Meir
procedures (see, e.g Kalbfleisch and Prentice, 1980), pp. 10-16). It
is obviously not possible using such data alone to separate λ from
(1− F (rV )) much less to estimate the reservation wage rV .
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Point B
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Given access to data on accepted wage offers it is possible to
estimate the reservation wage rV . A strongly consistent estimator
of rV is the minimum of the accepted wages observed in the sample

r̂V = min{Wi}Ii=1. (75)

For proof see Flinn and Heckman (1982a).
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Access to accepted wages does not secure identification of F . Only
the truncated wage offer distribution can be estimated

F (w | w ≥ rV ) =
F (w)− F (rV )

1− F (rV )
, w ≥ rV .

To recover an untruncated distribution from a truncated distribution
with a known point of truncation requires further conditions. If F is
normal, such recovery is possible. If it is Pareto, it is not. A
sufficient condition that
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Point C
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Using density (63) in a maximum likelihood procedure creates a
non-standard statistical problem. The range of random variable W
depends on a parameter of the model (W ≥ rV ). For a model
without observed or unobserved explanatory variables, the maximum
likelihood estimator of rV is in fact the order statistic estimator
(30). The likelihood based on (63) is monotonically increasing in
rV , so that imposing the restriction that W ≥ rV is essential in
securing maximum likelihood estimates of the model.
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Assuming that the density of W is such that f (rV ) ̸= 0, the
consistent maximum likelihood estimator of the remaining
parameters of the model can be obtained by inserting r̂V in place of
rV everywhere in (63) and the sampling distribution of this
estimator is the same whether or not rV is known a priori or
estimated. For a proof, see Flinn and Heckman (1982a). In a model
with observed explanatory variables but without unobserved
explanatory variables, a similar phenomenon occurs. However, at the
time of this writing, a rigorous asymptotic distribution theory is only
available for models with discrete valued regressor variables which
assumes a finite number of values.
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i. Economic theory provides no guidance on the
functional form of the c , r , λ and F functions (other
than the restriction given by (59)). Estimates secured
from these models are very sensitive to the choice of
these functional forms. Model identification is difficult
to check and is very functional form dependent.

ii. In order to impose the restrictions produced by
economic theory to secure estimates, it is necessary to
solve nonlinear equation (59).

iii. Because of the restrictions like (59), proportional
hazard specifications are rarely produced by economic
models

Heckman Duration Models



Point D
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In the search model without observed variables, the restriction that
W ≥ rV is an essential piece of identifying information. In a model
with unobservable Θ introduced in c , r , λ or F , rV = rV (θ) as a
consequence of functional restriction (59). In this model, the
restriction that W ≥ rV is replaced with an implicit equation
restriction on the support of Θ i .e. for an observation with accepted
wage W and reservation wage rV (θ), the admissible support set for
Θ is

{Θ : 0 ≤ rV (θ) ≤ w}.
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Pitfalls In Using Regression Methods To Analyze Duration
Data
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To focus on essential ideals, consider a regression analysis of
duration data for a particular type of event, e.g., the lengths of time
spent in consecutive jobs. To simplify the analysis we assume that
no time elapses between consecutive jobs. The density of duration
in a given job for an individual with fixed characteristics Z is

f (t | Z ).
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Unobserved heterogeneity components are assumed to be absent
from the model. The expected length of t given Z is

E (t | Z ) =
∫ ∞

0

tf (t | Z )dt = g(Z ). (76)
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From a regression analysis, we seek to estimate the parameters of
g(Z ). For example, if

f (t | Z ) = θ(Z ) exp[−θ(Z )t], θ(Z ) > 0

E (t | Z ) = 1

θ(Z )
. (77)
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Defining θ(Z ) = (βZ )−1

E (t | Z ) = βZ . (78)

Under ideal conditions, a regression of t on Z will estimate β. We
now specify those conditions.

Heckman Duration Models



Suppose that the data at our disposal come from a panel data set of
length T . To avoid inessential detail suppose that at the origin of
the sample, 0, everyone begins a spell of the event. This assumption
enables us to ignore problems with initial conditions.
We would like to use this data to estimate E (t | Z ).
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But in our panel sample, the expected value of the length of the
first spell is not E (t | Z ) but is rather

E (t | Z ,T ) =

∫ T

0

tf (t | Z )dt+T

∫ ∞

T

f (t | Z )dt ≤ E (t | Z ). (79)

Thus, in the exponential example

E (t | Z ,T ) = βZ{1− exp(−T/βZ )}. (80)

Clearly, at least squares regression of t on Z will not estimate β. As
T → ∞, the bias disappears. In the exponential example, as T
becomes big relative to the mean duration. 1/θ(Z ), the bias
becomes small.
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One widely used method utilizes only completed first spells. This
results in another type of selection bias. The expected value of t
given that t < T is

E (t | Z ,T , t < T ) =

∫ T

0

tf (t | Z )dt∫ T

0

f (t | Z )dt
. (81)
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In our exponential example

E (t | Z ,T , t < T ) = βZ

{
1− (T/βZ ) exp(−T/βZ )

1− exp(−T/βZ )

}
. (82)

Again, a simple least squares regression of t on Z does not estimate
β for this sample. As T → ∞, the bias disappears. (Note that the
model could be consistently estimated by nonlinear least squares.)
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Clearly there is no selection bias when we analyze the expected
duration of a completed second spell of the event. Denote the
length of spell i by ti . The expected length of the second spell is

E (t2 | Z ,T , t1 + t2 < T ) (83)

=

∫ T

0

∫ T−t2

0

t2f (t2 | Z )f (t1 | Z )dt1dt2∫ T

0

∫ T−t2

0

f (t2 | Z )f (t1 | Z )dt1dt2
.
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Because t1 and t2 are conditionally independent, and hence the
subscripts 1 and 2 can be interchanged without affecting the validity
of the expression, this is also the conditional expectation of the
length of the first spell. For a sample of individuals with at least two
completed spells of the event

E(t2 |Z,T,t1+t2 < T)

= βZ

[
1- exp(-T/βZ )(1+T/βZ)-(βZ/2) exp(-T/βZ)

1− exp(−T/βZ )− (T/βZ ) exp(−T/βZ )

]
.

(84)
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Note further that

E (t1 | Z ,T , t1 + t2) ̸= E (t1 | Z ,T , t1 < T ).

The key point to extract from this discussion is that for short panels
in which T is “small,” regression estimators do not estimate the
parameters of regression function (72). Least squares estimators are
critically dependent on both the sample selection rule and the length
of the panel.
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A common functional form for the hazard function, h(·), is assumed
for all spells. V is a heterogeneity component common across all
spells. The density of duration time in the first spell, t1, is

First spell: h[t1,Z (t1),V ]exp

{
−
∫ t1

0

h[u,Z (u),V ]du

}
.
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The density for the duration time in the second spell t2 given that
the first spell ends at calendar time t1 is
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Conditional second spell density:
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h(t2,Z (t2 + t1),V ] exp

{
−
∫ t1

0

h[u,Z (u + t1),V ]du

}
.

The marginal second spell density is obtained by integrating out t1.
Thus f ∗(t2,Z ,V ) =
∞∫
0

(
h[t2,Z(t2 + t1),V ] exp

{
−

∫ t2
0 h[u,Z(u + t1),V ]du

})(
h[t1,Z(t1),V ] exp

{
−

∫ t1
0 h[u,Z(u),V ]du

})
dt1.
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In the case in which the distribution of Z (t) does not depend on
time (i .e., time stationarity in the exogenous variables),

f ∗(t2,V ) = h[t2,Z (t2 + t1),V ] exp

{
−
∫ t2

0

h[u,Z (u + t1),V ]du

}
.

Otherwise the marginal second spell density will be of a different
functional form than the marginal first spell density, and the
regression function for the second spell will have a functional form
different from the of the first spell regression function.
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A simple example may serve to clarify the main points. We first
demonstrate that the functional form of the regression will depend
on the time path of the exogenous variables that drive the model.
Consider the following exponential model for the first spell of an
event

f (t1 | Z ,V ) = θ(Z ,V ) exp[−θ(Z ,V )t1] 0 < t1 <∞

where θ(Z ,V ) = 1/(βZ + V ), and Z remains constant over the
entire spell. The regression function for duration in the first spell is

E (t1 | Z ,V ) =
1

θ(Z ,V )
= βZ + V . (85)
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Suppose we consider another individual who is subject to a different
value of Z before and after calendar time τ1. The density of t1 for
this person is derived most simply from the conditional density
before and after τ1, etc .

f (t1 | Z ,V , t1 < τ1) =
θ(Z1,V ) exp[−θ(Z1,V )t1]

1− exp[−θ(Z1,V )τ1]
0 < t1 < τ1

and

f (t1 | Z ,V , t1 > τ1) =
θ(Z2,V ) exp[−θ(Z2,V )t1]

exp[−θ(Z2,V )τ1]
t1 ≥ τ1.
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The conditional expectation of duration in the first spell is

E (t1 | Z1,Z2, τ1,V ) (86)

=
1

θ(Z1,V )
+ exp[−θ(Z1,V )τ1]

(
1

θ(Z2,V )
− 1

θ(Z1,V )

)
.

To show this, assume the same functional form for the hazard
function in all spells of the event. The conditional expectation of
duration in the second spell, given values of the exogenous variables
that confront the individual after the end of the first spell, is, for a
case of no time varying variables

E (t2 | Z ,V ) = 1/θ(Z ,V ). (87)
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For the case of time varying variables, the conditional expectation
depends on whether or not t1 > τ1. If t1 < τ1, the conditional
expectation is

E (t2 | Z1,Z2, t1 < τ1) =
1

θ(Z1,V )

+ exp[−θ(Z1,V )(τ1 − t1)]

[
1

θ(Z2,V )
− 1

θ(Z1,V )

]
(88)

t1 ≤ τ1.
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For t1 > τ1, the conditional expectation is

E (t2 | Z1, t1,V , t1 > τ1) =
1

θ(Z2,V )
t1 > τ1. (89)
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Although equations (83) and (85) are of the same functional form,
there is one important difference: in equation (85) t1 is an
explanatory variable. Since unobserved heterogeneity component V
is correlated across spells, t1 is an endogenous variable in a
regression model that treats V as a component of the error term of
the model (i.e. a model that is not computed conditional on V ).
Partitioning the data on the basis of tt < τ1 raises further problems.
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By Bayes theorem, the conditional mean of V in equations (85) and
(86) depends on t1 and the explanatory variables so that the error
term (inclusive of V ) associated with regression specifications for
equations (85) or (86) does not in general have a zero mean. A
standard least squares assumption is violated and least squares
estimators of duration equations will be biased and inconsistent.
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The main point is quite general: whenever there are time trended or
nonstationary explanatory variables in the model, conditioning the
durations of subsequent spells on explanatory variables measured
from the onset of those spells induces correlation between the
explanatory variables and the heterogeneity component in the model.

One solution to these problems is to use the marginal second spell
density and compute the conditional expectation of t2 with respect
to it. For the case of no time varying variables, and in the more
general case of time stationary exogenous variables, the marginal
and conditional densities coincide so that the right-hand side of
equation (68) is the density. In the presence of nonstationary
explanatory variables, the two distributions differ.
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In our example, the conditional expectation of t2 computed with
respect to the marginal distribution of t2 is

E (t2 | Z1,Z2, τ1,V )

=
1

θ(Z1,V )
+ exp [−θ(Z1,V )τ1]

[
θ(Z1,V )− θ(Z2,V )

θ(Z2,V )

] [
1

θ(Z1,V )
+ τ1

]
.

(90)
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Table 1: Ln Employment Durations (Based on Two Completed Spells)

Within spell averages Start of spell
of exogenous variables exogenous variables
Spell Spell Spell Spell
one t two t one t two t

Intercept 1.232 (2.16) -1.052 (1.25) 7.094 (2.1) -2.048 (3.2)
Marital status
(1 if married) .624 (1.43) -.449 (.72) -.409 (.81) -.490 (.75)
National
unemployment -2.020 (5.40) -.975 (.21) -6.523 (2.5) .531 (1.88)

Difference specifications
Intercept 2.502 (1.95) 12.423 (2.5)
∆ Marital status -.138 (.17) 0.112 (.01)
∆ Unemployment 185 (.56) .858 (.337)
Marital status
(first spell) -.570 (.49) -.496 (1.11)
National
unemployment
(first spell) 1.946 (2.41) 8.951 (2.43)

γt= 1.08 γt=.65
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Table 2: Ln Employment Durations (Based on Two Completed Spells)

Within spell averages Start of spell
of exogenous variables exogenous variables
Spell Spell Spell Spell
one t two t one t two t

Intercept -.398 (.97) .44 (.65) -1.051 (2.28) -1.011 (1.61)
Marital status
(1 if married,
spouse present) -.117 (.24) .16 (.44) -.375 (.764) -.093 (.25)
National
unemployment -.335 (1.46) -.53 (1.74) .057 (.21) .151 (.51)

Difference specifications
Intercept -.074 (0.84) 12.423 (2.5)
∆ Marital status -.342 (.645) 0.112 (.01)
∆ Unemployment -.402 (.85) .858 (.337)
Marital status
(first spell) .091 (-.13) -.496 (1.11)
∆ Unemployment
(first spell) -.252 (.60) -.653 (1.42)

γt = 1.23 γt = .74
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Table 3. Maximum Likelihood Estimates - Weibull Model1

Employment to Nonemployment Nonemployment to Employment
Panel A: Regressors Fixed at Average Value Over Spell

Intercept .971 -.093
(1.535) (.221)

ln Duration (γ) -.137 -.287
(1.571) (2.976)

MSP -1.093 .347
(2.679) (1.134)

Unemployment -1.800 -.577
(6.286) (3.119)

$ 2 = −711.457
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Table 3. Maximum Likelihood Estimates - Weibull Model1

Employment to Nonemployment Nonemployment to Employment
Panel B: Regressors Fixed at Value for First Month of Spell

Intercept -3.743 -1.054
(12.074) (3.464)

ln Duration (γ) -.230 -.363
(2.888) (4.049)

MSP -.921 .297
(2.310) (.902)

Unemployment .569 -.130
(3.951) (.900)

$ = −740.998

Heckman Duration Models



Table 3. Maximum Likelihood Estimates - Weibull Model1

Employment to Nonemployment Nonemployment to Employment
Panel C: Regressors Free to Vary Over the Spell

Intercept -3.078 -.899
(8.670) (2.742)

ln Duration (γ) -.341 -.316
(3.941) (3.279)

MSP -.610 .362
(1.971) (1.131)

Unemployment .209 -.204
(1.194) (1.321)

$ = −746.515
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Table 4. Maximum Likelihood Estimates with Time Varying
Variables and Heterogeneity1

Employment to Nonemployment Nonemployment to Employment
Intercept -3.600 -.879

(8.395) (2.525)

ln duration .015 -.312
(.121) (3.170)

MSP -.498 .320
(1.384) (.961)

Unemployment -.017 -.172
(.101) (1.056)

Cij 1.196 -.133
(4.651) (.756)

$ = −740.126
1Absolute value of asymptotic normal statistics in parentheses.
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common in many economic data sets.
Table 5. Maximum Likelihood Estimates with Time Varying
Variables, Heterogeneity, and General Duration Dependence1

Without heterogeneity With heterogeneity
E → N N → E E → N N → E

Const. -3.271 -.762 -3.565 -.748
(8.901) (2.425) (8.537) (2.247)

Tenure/10 -.806 -1.714 .045 -1.704
(1.858) (2.731) (.085) (2.685)

Tenure2/100 .028 .602 -.120 .603
(.145) (1.673) (.607) (1.666)

MSP -.568 .349 -.490 .313
(1.731) (1.089) (1.353) (.956)

Unemployment .329 -.192 .075 -.164
(1.865) (1.271) (.392) (1.042)

Cij 1.088 -.118
(3.572) (.650)

$ = −742.334 −739.177
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