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Example: The Generalized Roy Model for the Normal Case
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Y1 =m(X)+ U
Yo = po(X) + Uo
C=pc(Z)+ Uc
Net Benefit: 1 =Y; — Yy —C
/ :yl(X) — po(X) — uc(ZZerl — Uo— Uc

po(Z) -V

(Us, Uy, Uc) 1L (X, 2)
E(Uo, Ur, Uc) = (0,0,0)
V1 (X, 2)

e It is heuristically useful to think of V as an unobserved cost,
e.g., an unobserved cost for example?
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® Assume normally distributed errors.

® Assume Z contains X but may contain other variables
(exclusions)

Observed Y : Y=DY1+(1-D)Y,
D =1(1>0) = 1(uo(2) 2 V)

® Assume V ~ N(0,0%)
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® Propensity Score:

Pr(D:1|Z=z):¢(“D_(Z)>

Ov
E(Y|D=1,X=x,Z=2z)=m(X)+ E(U1]| pp(z) > V)
K1 (P(2))

because (X, Z) 1L (U, V).
¢ Under normality we obtain

E (ul uo(2) 1) _ Cov(Uh 7)< (MD(Z))

Var(£) ov

ov

ov Ov
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° Why?
%4
U1 Cov (Ul, > — +e&
Oy /) Oy
€1 v
kp(2)
}v t—Le> dt
(V@ L VY T s ()
oy oy oy “5\(/2) oy
J ﬁe%dt
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® Propensity score:

P(z)=Pr(D:1|zzz):¢(uo_(z>>

o (2)

(—) =o' (Pr(D=1|Z=2))

ov
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® Thus we can replace “Z—f/z) with a known function of P(z)
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* Notice that because (X, Z) 1L (U, V), Z enters the model
(conditional on X) only through P(Z).

e This is called index sufficiency.
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e Put all of these results together to obtain

E(YD=1.X=x.Z=2) = mix) + (CW(U“ U_Vv)> % (“D(Z))

Var(a—‘f/) ov
ov(Ui, X))\ ~ [ up(z
—EMY1|D=1,X=x,Z=2)=m(x)+ <M> A (“_()>

Var(g—‘f/) ov
X(z)=5(1|1<“’3—(z)> <0

oy oy oy
gy oy gy

E(Y|D=0X=x,2=2z)=po(x) + (Cov(uo,%)> \ (MD(Z))

Var(a—‘c) ov
|74
Var (—) =1
ov
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Vo (U= Uy~ Uc)

oy ov

Cov (Ul, L) = —Cov (Ul, ﬂ) + Cov (Uo, ﬂ) + Cov (Uc, E)
ov oy ov ov

In Roy model case (Uc = 0),

Cov (Ul7 L) = — Cov (Ul, Ul — UO)
ov ov

_COV(Ul — Uo, Ul)
Var(U1 - Uo)
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We can identify p1(x), to(x)

From Discrete Choice model we can identify

po(2) _ pa(x) = po(x) = pe(2)

ov Oy

If we have a regressor in X that does not affect uc(z) (say
regressor X;, so 8’“(2 = 0), we can identify oy and pc(z).

. We can |dent|fy the net benefit function and the cost
function up to scale.

*. We can compute ex-ante subjective net gains up to scale.
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¢ Method generalizes: Don't need normality
® Need “Large Support” assumption to identify ATE and TT

control function

E(Y|D=1,X=x,Z=2z)=mu(x)+ Ki(P(z))
E(YID=0X=x2=2)=po(x)+ KolP(2))

—

control function

lim E(Y|D=1,X=x,Z=2z)=pu(x)

P(z)—1

lim E(Y|D=0,X=x,Z=2z)= pup(x)

P(z)—0
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¢ If we have this condition satisfied, we can identify ATE
E(Y1— Yo | X =x) = pa(x) — po(x)

e ATE is defined in a limit set. This is true for any model with
selection on unobservables (1V; selection models)
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e What about treatment on the treated?

E(Yi— Yo | D=1,X=x,7=2z)
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® From the data, we observe
E(Y1|D=1,X=x,Z =2)

® Can also create it from the model
® E(Yo | D=1,X =x,Z = z) is a counterfactual
We know

E(Yo|D=0,X =x,Z = z) = jio(x) + Cov <U0,l) \ (MD_(Z))

Ov Oy
(this is data)
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® We seek

VY -
E(Y0 | D= 1.X=x.Z = 2) = () + Cov Uy, -* ) (212
[oAV4 oy

But under normality, we know Cov <U0, %)

o We know #2(2)
ov

A(-) is a known function.

Can form X (“g—f/z)) and can construct counterfactual.

Heckman Normal Gen Roy Model



——
® More generally, without normality (but with (X, Z) 1L (U, V))

EVi|D=1,X,2)=E(Y|D=1,X=x,Z=2)=p(x)+ Ki(P(2))

E(Yo|D=0,X,Z)=E(Y |D=0,X =x,Z = z) = po(x) + Ko(P(z))

where Ki(P(2)) = E(Uy | D=1,X=x,Z=2) = E (U1 LICAN l)
oy oy
Ki(P(2)) = E (Ul | “5(2) < g)
(@)~ € (w1122 < 1)
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® Use the transformation

F. (MD(Z)> _ P(2)

ov

%4
Fy (—> = Up (a uniform random variable)

D=1 (“;’(VZ) > %) = 1(P(z) > Up)

Ki(P(z)) = E(Uy | P(z) > Up)
Ki(P(2))P(2) + Ki(P(2))(1 — P(z)) = 0

. we can construct Ki(P(z))
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® Symmetrically

Ko(P(2)) = E(Us | P(2) < Up)
Ko(P(z)) = E(Uo | P(z) > Up)
(1= P(2))Ro(P(2)) + P(2)Ko(P(2)) = 0




e - If we have “identification at infinity,” we can construct
E(Yi— Yo | X = x) = pua(x) — po(x)
® We can construct TT

EVi—Yo|D=1,X=x,Z=2)=
= LMI(X) + Kl(P(z))l—Luo(x) + Ko(P(Z))l

vV
factual counterfactual

We can form p;(x) + K1(P(z)) from data

We get fi0(x) from limit set P(z) — 0 identifies jio(x)
We can form Ky(P(z)) = —RO(P(Z))%

e . Can construct the desired counterfactual mean.
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® Notice how we can get Effect of Treatment for People at the Margin of
Indifference:

E(Yi—Yo|l=0,X=x,Z=2)
¢ Under normality we have (as a result of independence)

E(Yi—Yo|l=0X=x,Z=2)

14
=M1(X)—uo(X)+E(U1— Uo | 1o(2) = —,X:X,Z:z>
ov oy
74
= p1(x) — po(x) + Cov (U1 - Uo,—> 1o(2)
oy oy

In the Roy model case where Uc = 0 but uc(z) #0
— ) - o) ~ ov (4212
ov
= pa(x) = po(x) = pp(2)
= pc(2)
(marginal gain = marginal cost)

Heckman Normal Gen Roy Model



e MTE for Normal Model:

EMi-Y|V=vX=x2Z=2)=

%4
= u1(x) — po(x) + Cov <U1 — Uy, —> v
Ov
e Effect of Treatment for People at the Margin picks v = “g—f/z)
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® Remember

oy

VvV {Ui—U —Uc}

oy

COV(Ul — Uo, V)/O'V
(Var(U1 — Uo)) + COV(Ul — Uo, Uc)

Oy

® Roy Model: Ucs =0
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Meritocratic Society (Becker, 1967)
¢ Remember: Think of V' as a cost component, i.e., psychic cost.

Cov (Uy = U, £) <0

(%) - M, (%)

MTE

Declining MTE
“diminishing returns”

0 v
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® Suppose

4
Cov (Ul - Uo, —) >0

av
~Cov(U; — Uy, Uc) -

oy

0

® Unobserved components of costs rise with gross gains
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Anti-Meritocratic Society

Rising MTE

MTE

e 1,00 - by (%)
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® Notice we can use the result that

po(z) o a >
TP
V= F(L)(UD)

v
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e Effect of Treatment for People at Margin of Indifference
Between Taking Treatment and Not:

E(Yl_YOIIZO,X:X,Z:z):

Propensity
score

=M1(x)—ﬂo(x)+C°V<U1 UO’V) (:L) i
v

can estimate this

e MTE:
EVi=Yo|Up=up, X =x,Z=2)=
%4
= pa(x) — po(x) + Cov (Ul — U, 0—) F(}/ )(UD)

4
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® Notice from definition of TT

E(Y1—Y%D=1,X=x,Z=2)P(z)

= [pa(x) = o (x)1P(2)
+E(Ui — WD =1,X=x,Z=2z)P(2)

IE(Y1 — Yo|D=1,X =x,Z = z)P(z)]

0P(z)
= p1(x) — po(x) + E(Ur — Up| X = x, P(z) = Up)
= MTE

® Marginal change in TT

_ OE(Y|Z=z
* Also MTE = 2E002=2)
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Problem: Prove this claim

¢ Hint: Read “Building Bridges”
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® Recent Advances in Econometrics:

® Relax normality

O Do not assume linearity of p1(X) and po(X) in terms of X

® Do not require identification at infinity but only because they
abandon pursuit of ATE, TT, TUT or else assume that
(Y1, Yo) LL D | X (matching assumption)

® ldentification at infinity in some version or the other is required
for ATE, TT, TUT as long as there is selection on
unobservables (i.e., (Y1, Yo) &£ D | X)
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