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Example: The Generalized Roy Model for the Normal Case
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Y1 = µ1(X ) + U1

Y0 = µ0(X ) + U0

C = µC (Z ) + UC

Net Benefit: I = Y1 − Y0 − C

I = µ1(X )− µ0(X )− µC (Z )︸ ︷︷ ︸
µD(Z)

+U1 − U0 − UC︸ ︷︷ ︸
−V

(U0,U1,UC ) ⊥⊥ (X ,Z )

E (U0,U1,UC ) = (0, 0, 0)

V ⊥⊥ (X ,Z )

• It is heuristically useful to think of V as an unobserved cost,
e.g., an unobserved cost for example?
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• Assume normally distributed errors.

• Assume Z contains X but may contain other variables
(exclusions)

Observed Y : Y = DY1 + (1− D)Y0

D = 1(I ≥ 0) = 1(µD(Z ) ≥ V )

• Assume V ∼ N(0, σ2
V )
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• Propensity Score:

Pr(D = 1 | Z = z) = Φ

(
µD(z)

σV

)
E (Y | D = 1,X = x ,Z = z) = µ1(X ) + E (U1 | µD(z) ≥ V )︸ ︷︷ ︸

K1(P(z))

because (X ,Z ) ⊥⊥ (U1,V ).

• Under normality we obtain

E

(
U1

∣∣∣∣µD(z)

σV
≥ V

σV

)
=

Cov(U1,
V
σV
)

Var( V
σV
)

λ̃

(
µD(z)

σV

)
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• Why?

U1 = Cov

(
U1,

V

σV

)
V

σV
+ ε1

ε1 ⊥⊥ V

E

(
V

σV
| µD(z)

σV
≥ V

σV

)
=

µD (z)

σV∫
−∞

t 1√
2π
e

−t2

2 dt

µD (z)

σV∫
−∞

1√
2π
e

−t2

2 dt

= λ̃

(
µD(z)

σV

)

=

−1√
2π
e(

− 1
2)

(
µD (z)

σV

)2

Φ
(

µD(z)
σV

) = λ̃

(
µD(z)

σV

)
=

−ϕ
(

µD(z)
σV

)
Φ
(

µD(z)
σV

)
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• Notice

lim
µD(z)→∞

λ̃

(
µD(z)

σV

)
=0

lim
µD(z)→−∞

λ̃

(
µD(z)

σV

)
=−∞

• Propensity score:

P(z) = Pr(D = 1 | Z = z) = Φ

(
µD(z)

σV

)
∴

(
µD(z)

σV

)
= Φ−1 (Pr(D = 1 | Z = z))

Heckman Normal Gen Roy Model



• Thus we can replace µD(z)
σV

with a known function of P(z)
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• Notice that because (X ,Z ) ⊥⊥ (U ,V ), Z enters the model
(conditional on X ) only through P(Z ).

• This is called index sufficiency.
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• Put all of these results together to obtain

E (Y | D = 1,X = x ,Z = z) = µ1(x) +

(
Cov(U1,

V
σV

)

Var( V
σV

)

)
λ̃

(
µD(z)

σV

)

= E (Y1 | D = 1,X = x ,Z = z) = µ1(x) +

(
Cov(U1,

V
σV

)

Var( V
σV

)

)
λ̃

(
µD(z)

σV

)
λ̃(z) = E

(
V

σV
| V

σV
<

µD(z)

σV

)
< 0

λ(z) = E

(
V

σV
| V

σV
≥ µD(z)

σV

)
> 0

E (Y | D = 0,X = x ,Z = z) = µ0(x) +

(
Cov(U0,

V
σV

)

Var( V
σV

)

)
λ

(
µD(z)

σV

)
Var

(
V

σV

)
= 1
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V

σV
= −(U1 − U0 − UC )

σV

Cov

(
U1,

V

σV

)
= −Cov

(
U1,

U1

σV

)
+ Cov

(
U0,

U0

σV

)
+ Cov

(
UC ,

UC

σV

)
In Roy model case (UC = 0),

Cov

(
U1,

V

σV

)
= −Cov

(
U1,

U1 − U0

σV

)
= −Cov (U1 − U0,U1)√

Var(U1 − U0)
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• We can identify µ1(x), µ0(x)

• From Discrete Choice model we can identify

µD(z)

σV
=

µ1(x)− µ0(x)− µC (z)

σV

• If we have a regressor in X that does not affect µC (z) (say

regressor xj , so
∂µC (z)
∂xj

= 0), we can identify σV and µC (z).

• ∴ We can identify the net benefit function and the cost
function up to scale.

• ∴ We can compute ex-ante subjective net gains up to scale.
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• Method generalizes: Don’t need normality

• Need “Large Support” assumption to identify ATE and TT

•

E (Y | D = 1,X = x ,Z = z) = µ1(x) +

control function︷ ︸︸ ︷
K1(P(z))

E (Y | D = 0,X = x ,Z = z) = µ0(x) + K0(P(z))︸ ︷︷ ︸
control function

lim
P(z)→1

E (Y | D = 1,X = x ,Z = z) = µ1(x)

lim
P(z)→0

E (Y | D = 0,X = x ,Z = z) = µ0(x)
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• If we have this condition satisfied, we can identify ATE

E (Y1 − Y0 | X = x) = µ1(x)− µ0(x)

• ATE is defined in a limit set. This is true for any model with
selection on unobservables (IV; selection models)
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• What about treatment on the treated?

E (Y1 − Y0 | D = 1,X = x ,Z = z)
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(a) From the data, we observe

E (Y1 | D = 1,X = x ,Z = z)

(b) Can also create it from the model

(c) E (Y0 | D = 1,X = x ,Z = z) is a counterfactual

We know

E (Y0 | D = 0,X = x ,Z = z) = µ0(x) + Cov

(
U0,

V

σV

)
λ

(
µD(Z )

σV

)
(this is data)
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(d) We seek

E (Y0 | D = 1,X = x ,Z = z) = µ0(x) + Cov

(
U0,

V

σV

)
λ̃

(
µD(z)

σV

)

• But under normality, we know Cov
(
U0,

V
σV

)
• We know µD(Z)

σV

• λ̃(·) is a known function.

• Can form λ̃
(
µD(z)
σV

)
and can construct counterfactual.
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• More generally, without normality (but with (X ,Z ) ⊥⊥ (U ,V ))

E (Y1 | D = 1,X ,Z ) = E (Y | D = 1,X = x ,Z = z) = µ1(x) + K1(P(z))

E (Y0 | D = 0,X ,Z ) = E (Y | D = 0,X = x ,Z = z) = µ0(x) + K̃0(P(z))

where K1(P(z)) = E (U1 | D = 1,X = x ,Z = z) = E

(
U1 |

µD(z)

σV
>

V

σV

)

K̃1(P(z)) = E

(
U1 |

µD(z)

σV
≤ V

σV

)

K̃0(P(z)) = E

(
U0 |

µD(z)

σV
≤ V

σV

)
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• Use the transformation

FV

(
µD(z)

σV

)
= P(z)

FV

(
V

σV

)
= UD (a uniform random variable)

D = 1

(
µD(z)

σV
≥ V

σV

)
= 1 (P(z) ≥ UD)

K1(P(z)) = E (U1 | P(z) > UD)

K1(P(z))P(z) + K̃1(P(z))(1− P(z)) = 0

∴ we can construct K̃1(P(z))
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• Symmetrically

K̃0(P(z)) = E (U0 | P(z) ≤ UD)

K0(P(z)) = E (U0 | P(z) > UD)

(1− P(z))K̃0(P(z)) + P(z)K0(P(z)) = 0
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• ∴ If we have “identification at infinity,” we can construct

E (Y1 − Y0 | X = x) = µ1(x)− µ0(x)

• We can construct TT

E (Y1 − Y0 | D = 1,X = x ,Z = z) =

= [µ1(x) + K1(P(z))]︸ ︷︷ ︸
factual

− [µ0(x) + K0(P(z))]︸ ︷︷ ︸
counterfactual

• We can form µ1(x) + K1(P(z)) from data

• We get µ0(x) from limit set P(z) → 0 identifies µ0(x)

• We can form K0(P(z)) = −K̃0(P(z))
P(z)

1−P(z)

• ∴ Can construct the desired counterfactual mean.
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• Notice how we can get Effect of Treatment for People at the Margin of
Indifference:

E (Y1 − Y0 | I = 0,X = x ,Z = z)

• Under normality we have (as a result of independence)

E (Y1 − Y0 | I = 0,X = x ,Z = z)

= µ1(x)− µ0(x) + E

(
U1 − U0 |

µD(z)

σV
=

V

σV
,X = x ,Z = z

)
= µ1(x)− µ0(x) + Cov

(
U1 − U0,

V

σV

)
µD(z)

σV

In the Roy model case where UC = 0 but µC (z) ̸= 0

= µ1(x)− µ0(x)− σV

(
µD(z)

σV

)
= µ1(x)− µ0(x)− µD(z)

= µC (z)

(marginal gain = marginal cost)
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• MTE for Normal Model:

E (Y1 − Y0 | V = v ,X = x ,Z = z) =

= µ1(x)− µ0(x) + Cov

(
U1 − U0,

V

σV

)
v

• Effect of Treatment for People at the Margin picks v = µD(z)
σV
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• Remember

V

σV
= −{U1 − U0 − UC}

σV

Cov(U1 − U0,V )/σV

= −(Var(U1 − U0)) + Cov(U1 − U0,UC )

σV

• Roy Model: UC ≡ 0
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Meritocratic Society (Becker, 1967)
• Remember: Think of V as a cost component, i.e., psychic cost.

Cov
(
U1 − U0,

V
σV

)
≤ 0

MTE

V0

µ
1
(x) - µ

0
 (x)

Declining MTE

“diminishing returns”
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• Suppose

Cov

(
U1 − U0,

V

σV

)
≥ 0

∴
Cov(U1 − U0,UC )

σV
> 0

• Unobserved components of costs rise with gross gains
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Anti-Meritocratic Society

MTE

V
0

µ
1
(x) - µ

0
 (x)

Rising MTE
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• Notice we can use the result that

µD(z)

σV
= F−1(

V
σV

)(P(z))
V = F−1(

V
σV

)(UD)
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• Effect of Treatment for People at Margin of Indifference
Between Taking Treatment and Not:

E (Y1 − Y0 | I = 0,X = x ,Z = z) =

= µ1(x)− µ0(x) + Cov

(
U1 − U0,

V

σV

)
F−1(

V
σV

)(P
Propensity

score
↓
(z))︸ ︷︷ ︸

can estimate this

• MTE:

E (Y1 − Y0 | UD = uD ,X = x ,Z = z) =

= µ1(x)− µ0(x) + Cov

(
U1 − U0,

V

σV

)
F−1(

V
σV

)(uD)
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• Notice from definition of TT

E (Y1 − Y0|D = 1,X = x ,Z = z)P(z)

= [µ1(x)− µ0(x)]P(z)

+ E (U1 − U0|D = 1,X = x ,Z = z)P(z)

∂[E (Y1 − Y0|D = 1,X = x ,Z = z)P(z)]

∂P(z)

= µ1(x)− µ0(x) + E (U1 − U0|X = x ,P(z) = UD)

= MTE

• Marginal change in TT

• Also MTE = ∂E(Y |Z=z)
∂P(z)
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Problem: Prove this claim

• Hint: Read “Building Bridges”

Heckman Normal Gen Roy Model



• Recent Advances in Econometrics:

(a) Relax normality
(b) Do not assume linearity of µ1(X ) and µ0(X ) in terms of X
(c) Do not require identification at infinity but only because they

abandon pursuit of ATE, TT, TUT or else assume that
(Y1,Y0) ⊥⊥ D | X (matching assumption)

(d) Identification at infinity in some version or the other is required
for ATE, TT, TUT as long as there is selection on
unobservables (i.e., (Y1,Y0) ⊥⧸⊥ D | X )
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