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The Basic Principles Underlying the Identification of the
Main Econometric Evaluation Estimators
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• Two potential outcomes (Y0,Y1).

• D = 1 if Y1 is observed.

• D = 0 corresponds to Y0 being observed.

• Observed outcome:

Y = DY1 + (1− D)Y0. (1)

• As before, the evaluation problem arises because for each
person we observe either Y0 or Y1, but not both.
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• Not possible to identify the individual level treatment effect
Y1 − Y0 for any person.

• Question: Suppose Y1 − Y0 is a random variable that depends
on X . Can you identify individual-level treatment effects?

• Typical solution: reformulate the problem at the population
level rather than at the individual level.

• Identify certain mean outcomes or quantile outcomes or various
distributions of outcomes. See, e.g., Heckman and Vytlacil
(2007).

ATE = E (Y1 − Y0).
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• If treatment is assigned or chosen on the basis of potential
outcomes, so that

(Y0,Y1) ⊥⧸⊥ D,

where ⊥⧸⊥ denotes “is not independent” and ⊥⊥ denotes
independence, we encounter the problem of selection bias.

• Suppose that we observe people in each treatment state D = 0
and D = 1.

• If Yj ⊥⧸⊥ D, then the observed Yj will be selectively different
from randomly assigned Yj , j ∈ {0, 1}.

• Then E (Y0 | D = 0) ̸= E (Y0) and
E (Y1 | D = 1) ̸= E (Y1).
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• Using unadjusted data to construct E (Y1 − Y0) will produce
one source of evaluation bias:

E (Y1 | D = 1)− E (Y0 | D = 0) ̸= E (Y1 − Y0).

• Selection problem underlies the evaluation problem.

• Many methods have been proposed to solve both problems.
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Randomization
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• The method with the greatest intuitive appeal, which is
sometimes called the “gold standard” in policy evaluation
analysis, is the method of random assignment.

• Nonexperimental methods can be organized by how they
attempt to approximate what can be obtained by an ideal
random assignment.

• If treatment is chosen at random with respect to (Y0,Y1), or if
treatments are randomly assigned and there is full compliance
with the treatment assignment,

(Y0,Y1) ⊥⊥ D. (R-1)
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• It is useful to distinguish several cases where (R-1) will be
satisfied.

• The first is that agents (decision makers whose choices are
being analyzed) pick outcomes that are random with respect to
(Y0,Y1).

• Thus agents may not know (Y0,Y1) at the time they make
their choices to participate in treatment or at least do not act
on (Y0,Y1), so that Pr (D = 1 | X ,Y0,Y1) = Pr (D = 1 | X )
for all X .
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• Thus consider a Roy model where the agent information set is
I.

D = 1 [E (Y1 − Y0 | I) ≥ 0]

• If agents do not know (Y1,Y0) at the time they make their
decision or if they only know X (but not U0, U1), then

Pr (D = 1 | Y1,Y0,X ) = Pr (D = 1 | X )

• Matching assumes a version of (R-1) conditional on matching
variables X : (Y0,Y1) ⊥⊥ D | X .

• Z affects costs and affects C (Z ) and hence D, but is not in X .

• Question: In a Generalized Roy model in which agents have as
much information as the observing economist, and both use the
information in making decisions and forming estimates, show
that conditional on (X ,Z ) (the assumed information set) (R-1)
is satisfied.
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• A second case arises when individuals are randomly assigned to
treatment status even if they would choose to self select into
no-treatment status, and they comply with the randomization
protocols.

• Let ξ be randomized assignment status.

• With full compliance, ξ = 1 implies that Y1 is observed and
ξ = 0 implies that Y0 is observed.

• Then, under randomized assignment,

(Y0,Y1) ⊥⊥ ξ, (R-2)

even if in a regime of self-selection, (Y0,Y1) ⊥⧸⊥ D.
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• If randomization is performed conditional on X , we obtain

(Y0,Y1) ⊥⊥ ξ | X .

• Let A denote actual treatment status.

• If the randomization has full compliance among participants,
ξ = 1 ⇒ A = 1 and ξ = 0 ⇒ A = 0.

• This is entirely consistent with a regime in which a person
would choose D = 1 in the absence of randomization, but
would have no treatment (A = 0) if suitably randomized, even
though the agent might desire treatment.
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• If treatment status is randomly assigned, either through
randomization or randomized self-selection,

(Y0,Y1) ⊥⊥ A. (R-3)

• This version of randomization can also be defined conditional
on X .
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If (Y0,Y1) ⊥⊥ D, keeping X implicit, the parameters treatment on
the treated

TT = E (Y1 − Y0 | D = 1)

and treatment on the untreated

TUT = E (Y1 − Y0 | D = 0)

and the average treatment effect

ATE = E (Y1 − Y0)

and the marginal treatment effect for people right at the margin of
indifference:

MTE = E (Y1 − Y0 | Y1 − Y0 − C = 0)

are all the same (i.e., MTE for C = Y1 − Y0).
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• These parameters can be identified from population means:

TT = TUT = ATE = E (Y1 − Y0) = E (Y1)− E (Y0).

• Forming averages over populations of persons who are treated
(A = 1) or untreated (A = 0) suffices to identify this
parameter.

• If there are conditioning variables X , we can define the mean
treatment parameters for all X where (R-1), (R-2), or (R-3)
hold.
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• Observe that even with random assignment of treatment status
and full compliance, one cannot, in general, identify the
distribution of the treatment effects (Y1 − Y0).

• One can identify the marginal distributions

F1(Y1 | A = 1,X = x) = F1(Y1 | X = x)

and
F0(Y0 | A = 0,X = x) = F0(Y0 | X = x).
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• One special assumption, common in conventional econometrics,
is that Y1 − Y0 = ∆(x), a constant given X = x .

• Since ∆ (x) can be identified from
E (Y1 | A = 1,X = x)− E (Y0 | A = 0,X = x) if A is allocated
by randomization, in this special case the analyst can identify
the joint distribution of (Y0,Y1).

• This approach assumes that (Y0,Y1) have the same distribution
up to a parameter ∆(X ) (Y0 and Y1 are perfectly dependent).

• One can make other assumptions about the dependence across
ranks from perfect positive or negative ranking to
independence.
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• The joint distribution of (Y0,Y1) or of (Y1 − Y0) is not
identified unless the analyst can pin down the dependence
across (Y0,Y1).

• Thus, even with data from a randomized trial one cannot,
without further assumptions, identify the proportion of people
who benefit from treatment in the sense of gross gain
(Pr(Y1 ≥ Y0)).

• This problem plagues all evaluation methods.
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• Consider a model for (Y0,Y1)

Y1 = µ1(X ) + U1

Y0 = µ0(X ) + U0

• (µ1, µ0) are structural

• What does randomization of assignment with full compliance
identify?
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What Does Full Compliance Random Assignment Identify?

• We get

E (Y1|X ) = µ1(X ) + E (U1|X )

E (Y0|X ) = µ0(X ) + E (U0|X )

• Identifies

E (Y1|X )− E (Y0|X ) =

ATE︷ ︸︸ ︷
µ1(X )− µ0(X ) + E (U1|X )− E (U0|X )︸ ︷︷ ︸

constructed over the
whole population

• Does not induce X ⊥⊥ (U0,U1).

• Randomization with respect to X would.
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• Suppose

U1 = U0 = U (common coefficient model)

Y = DY1(1) + (1− D)Y0 = Y0 + D(Y1 − Y0)

Y = µ0(X ) + D(µ1(X )− µ0(X )) + U

• Suppose treatment assignment is randomized with perfect
compliance

E (Y |D,X ) = µ0(X ) + D(µ1(X )− µ0(X )) + E [U |D,X ]

• D = 1 means agent wants to go into program; D = 0
otherwise.

• But E (U |D,X ) = E (U |X )

• ∴ µ1(X )− µ0(X ) is identified.

• In this case, randomization balances the bias

• In this case, E (U1|D,X ) = E (U0|D,X ) = E (U |D,X ).
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• Assumption (R-1) is very strong.

• In many cases, it is thought that there is selection bias with
respect to (Y0,Y1), so persons who select into status 1 or 0 are
selectively different from randomly sampled persons in the
population.

• Purposive choice
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Imperfect Compliance

• If treatment status is chosen by self-selection,

D = 1 ⇒ A = 1 and D = 0 ⇒ A = 0.

• If there is imperfect compliance with randomization,

ξ = 1 ⇏ A = 1

because of agent choices.

• In general, A = ξD, so that A = 1 only if ξ = 1 and D = 1.

• Question: What causal parameter, if any, can be identified
from an experiment with imperfect compliance?
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• Specifically, compute the ITT reported in many journal articles
(especially in QJE) for persons who would have participated in
the program in absence of randomization (i.e., D = 1).

Heckman Principles Underlying Evaluation Estimators



R = 1 :(Randomized in)

R = 0 :(Randomized out)

For Two Outcome Model

D = 1 :(You want 1)

D = 0 :(You want 0)

• You cannot compel people to participate

Heckman Principles Underlying Evaluation Estimators



E (Y |R = 1)− E (Y |R = 0)

={E (Y1|D = 1,R = 1) Pr(D = 1|R = 1)

+E (Y0|D = 0,R = 1) Pr(D = 0|R = 1)}

−{E (Y1|D = 1,R = 0) Pr(D = 1|R = 0)(τ)

+E (Y0|D = 0,R = 0) Pr(D = 0|R = 0)

+E (Y0|D = 1,R = 0) Pr(D = 1|R = 0)(1− τ)}.

where τ is the proportion of people who want to go in among R = 0
people who do not comply with the assignment and, in fact, get into
treatment anyway

• This is a mix of people with different preferences for and access
to the program

• What interesting economic question does this estimate?
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• With “perfect compliance”

Pr(D = 1|R = 1) = 1 Pr(D = 0|R = 1) = 0

Pr(D = 1|R = 0) = 0 Pr(D = 0|R = 0) = 1

E (Y |R = 1)− E (Y |R = 0) = E (Y1 − Y0|D = 1)

• Question: Is full compliance credible? What is the
assumed decision problem?
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Method of Matching
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• One assumption commonly made to circumvent problems with
satisfying (R-1) is that even though D is not random with
respect to potential outcomes, the analyst has access to
variables X that effectively produce a randomization of D with
respect to (Y0,Y1) given X .
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Method of Matching

•
(Y0,Y1) ⊥⊥ D | X . (M-1)

• Conditioning on X randomizes D with respect to (Y0,Y1).

• (M-1) assumes that any selective sampling of (Y0,Y1) with
respect to D can be adjusted by conditioning on observed
variables.

• (R-1) and (M-1) are different assumptions and neither implies
the other.
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• In order to be able to compare X -comparable people in the
treatment regime a sufficient condition is

0 < Pr(D = 1 | X = x) < 1. (M-2)
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• Assumptions (M-1) and (M-2) justify matching.

• Assumption (M-2) is required for any evaluation estimator that
compares treated and untreated persons.

• Clearly we can invoke a restricted version (common support for
D = 1 and D = 0).

• It is produced by random assignment if the randomization is
conducted for all X = x and there is full compliance.
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• Observe that from (M-1) and (M-2), it is possible to identify
F1(Y1 | X = x) from the observed data F1(Y1 | D = 1,X = x),
since we observe the left hand side of

F1(Y1 | D = 1,X = x) = F1(Y1 | X = x)

= F1(Y1 | D = 0,X = x).

• The first equality is a consequence of conditional independence
assumption (M-1).

• The second equality comes from (M-1) and (M-2).

• X eliminates differences.
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• By a similar argument, we observe the left hand side of

F0(Y0 | D = 0,X = x) = F0(Y0 | X = x)

= F0(Y0 | D = 1,X = x).

• The equalities are a consequence of (M-1) and (M-2).

• Since the pair of outcomes (Y0,Y1) is not identified for anyone,
as in the case of data from randomized trials, the joint
distributions of (Y0,Y1) given X or of Y1 − Y0 given X are not
identified without further information.

• Problem plagues all selection estimators.
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• From the data on Y1 given X and D = 1 and the data on Y0

given X and D = 0 it follows that

E (Y1 | D = 1,X = x) = E (Y1 | X = x)

= E (Y1 | D = 0,X = x)

and

E (Y0 | D = 0,X = x) = E (Y0 | X = x)

= E (Y0 | D = 1,X = x).
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• Thus,

E (Y1 − Y0 | X = x) = E (Y1 − Y0 | D = 1,X = x)

= E (Y1 − Y0 | D = 0,X = x).

• Effectively, we have a randomization for the subset of the
support of X satisfying (M-2).
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Failure of (M-2)

• At values of X that fail to satisfy (M-2), there is no variation in
D given X . One can define the residual variation in D not
accounted for by X as

E(x) = D − E (D | X = x) = D − Pr(D = 1 | X = x).
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• If the variance of E(x) is zero, it is not possible to construct
contrasts in outcomes by treatment status for those X values
and (M-2) is violated.

• To see the consequences of this violation in a regression
setting, use Y = Y0 + D(Y1 − Y0) and take conditional
expectations, under (M-1), to obtain

E (Y | X ,D) = E (Y0 | X ) + D[E (Y1 − Y0 | X )].

• If Var(E(x)) > 0 for all x in the support of X , one can use
nonparametric least squares to identify

E (Y1 − Y0 | X = x) = ATE (x)

by regressing Y on D and X .
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• The function identified from the coefficient on D is the average
treatment effect.

• If Var(E(x)) = 0, ATE(x) is not identified at that x value
because there is no variation in D that is not fully explained by
X .

• Thus cannot make counterfactual comparisons.
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• A special case of matching is linear least squares where one can
write

Y0 = Xα + U0 Y1 = Xα + β + U1.

• U0 = U1 = U , and hence under (M-1)

E (Y | X ,D) = φ(X ) + βD,

where φ(X ) = Xα + E (U | X ).
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• If D is perfectly predictable by X , one cannot identify β.

• Multicollinearity problem.

• (M-2) rules out perfect collinearity.

• Matching is a nonparametric version of least squares that does
not impose functional form assumptions on outcome equations,
and that imposes support condition (M-2).

• It identifies β but not necessarily α (look at the term
E (U | X )).
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• Observe that we do not need E (U | X ) = 0 to identify β.
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• Conventional econometric choice models make a distinction
between variables that appear in outcome equations (X ) and
variables that appear in choice equations (Z ).

• The same variables may be in (X ) and (Z ), but more typically
there are some variables not in common.

• For example, the instrumental variable estimator (to be
discussed) next is based on variables that are not in X but that
are in Z .
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• Matching makes no distinction between the X and the Z .

• It does not rely on exclusion restrictions.

• The conditioning variables used to achieve conditional
independence can in principle be a set of variables Q distinct
from the X variables (covariates for outcomes) or the Z
variables (covariates for choices).

• I use X solely to simplify the notation.
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• The key identifying assumption is the assumed existence of a
random variable X with the properties satisfying (M-1) and
(M-2).

• Conditioning on a larger vector (X augmented with additional
variables) or a smaller vector (X with some components
removed) may or may not produce suitably modified versions of
(M-1) and (M-2).

• Without invoking further assumptions there is no objective
principle for determining what conditioning variables produce
(M-1).
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• Assumption (M-1) is strong.

• Many economists do not have enough faith in their data to
invoke it.

• Assumption (M-2) is testable and requires no act of faith.

• To justify (M-1), it is necessary to appeal to the quality of the
data.
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• Using economic theory can help guide the choice of an
evaluation estimator.

• Crucial distinction:
• The information available to the analyst.
• The information available to the agent whose outcomes

are being studied.

• Assumptions made about these information sets drive the
properties of all econometric estimators.

• Analysts using matching make strong informational
assumptions in terms of the data available to them.
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Implicit Information Assumptions

• All econometric estimators make assumptions about the
presence or absence of informational asymmetries.
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Five Distinct Information Sets

• To analyze the informational assumptions invoked in matching,
and other econometric evaluation strategies, it is helpful to
introduce five distinct information sets and establish some
relationships among them.

(1) An information set σ(IR∗) with an associated random variable
that satisfies conditional independence (M-1) is defined as a
relevant information set.

(2) The minimal information set σ(IR) with associated random
variable needed to satisfy conditional independence (M-1) is
defined as the minimal relevant information set.

(3) The information set σ(IA) available to the agent at the time
decisions to participate are made. Here A means agent, not
assignment.
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(4) The information available to the economist, σ(IE∗).

(5) The information σ(IE ) used by the economist in conducting an
empirical analysis.
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• Denote the random variables generated by these sets as IR∗ , IR ,
IA, IE∗ , and IE , respectively.
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Definition 1
Define σ(IR∗) as a relevant information set if the information set
is generated by the random variable IR∗ , possibly vector valued, and
satisfies condition (M-1), so

(Y0,Y1) ⊥⊥ D | IR∗ .

Definition 2
Define σ(IR) as a minimal relevant information set if it is the
intersection of all sets σ(IR∗) and satisfies (Y0,Y1) ⊥⊥ D | IR . The
associated random variable IR is a minimum amount of information
that guarantees that condition (M-1) is satisfied. There may be
no such set. But in most cases, there is.
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• The intersection of all sets σ(IR∗) may be empty and hence
may not be characterized by a (possibly vector valued) random
variable IR that guarantees (Y1,Y0) ⊥⊥ D | IR .

• If the information sets that produce conditional independence
are nested, then the intersection of all sets σ(IR∗) producing
conditional independence is well defined and has an associated
random variable IR with the required property, although it may
not be unique.

• E.g., strictly monotonic measure-preserving transformations and
affine transformations of IR also preserve the property.
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• In the more general case of non-nested information sets with
the required property, it is possible that no uniquely defined
minimal relevant set exists.

• Among collections of nested sets that possess the required
property, there is a minimal set defined by intersection but there
may be multiple minimal sets corresponding to each collection.
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• If one defines the relevant information set as one that produces
conditional independence, it may not be unique.

• If the set σ(IR∗) satisfies the conditional independence
condition, then the set σ(IR∗ ,Q) such that Q ⊥⊥ (Y0,Y1) | IR∗

would also guarantee conditional independence.

• For this reason, when it is possible to do so I define the
relevant information set to be minimal, that is, to be the
intersection of all relevant sets that still produce conditional
independence between (Y0,Y1) and D.

• However, no minimal set may exist.
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Definition 3
The agent’s information set, σ(IA), is defined by the information IA
used by the agent when choosing among treatments. Accordingly, I
call IA the agent’s information.

• By the agent I mean the person making the treatment decision,
not necessarily the person whose outcomes are being studied
(e.g., the agent may be the parent, the person being studied
may be a child).
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Definition 4
The econometrician’s full information set, σ(IE∗), is defined as all
of the information available to the econometrician, IE∗ .

Definition 5
The econometrician’s information set, σ(IE ), is defined by the
information used by the econometrician when analyzing the agent’s
choice of treatment, IE , in conducting an analysis.

Heckman Principles Underlying Evaluation Estimators



• For the case where a unique minimal relevant information set
exists, only three restrictions are implied by the structure of
these sets:

σ(IR) ⊆ σ(IR∗) , σ(IA) ⊆ σ(IR) , and σ(IE ) ⊆ σ(IE∗) .

• First restriction previously discussed.

• Second restriction requires that the minimal relevant
information set must include the information the agent uses
when deciding which treatment to take or assign.

• It is the information in σ(IA) that gives rise to the selection
problem which in turn gives rise to the evaluation problem.
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• The third restriction requires that the information used by the
econometrician must be part of the information that he/she
observes.

• Aside from these orderings, the econometrician’s information
set may be different from the agent’s or the relevant
information set.

• The econometrician may know something the agent doesn’t
know, for typically he is observing events after the decision is
made.

• At the same time, there may be private information known to
the agent but not the econometrician.
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• Matching assumption (M-1) implies that σ(IR) ⊆ σ(IE ), so that
the econometrician uses at least the minimal relevant
information set, but of course he or she may use more.

• However, using more information is not guaranteed to produce
a model with conditional independence property (M-1) satisfied
for the augmented model.

• Thus an analyst can “overdo” it.
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• The possibility of asymmetry in information between the agent
making participation decisions and the observing economist
creates the potential for a major identification problem that is
ruled out by assumption (M-1).

• The methods of control functions and instrumental variables
estimators (and closely related regression discontinuity design
methods) address this problem but in different ways.

• Accounting for this possibility is a more conservative approach
to the selection problem than the one taken by advocates of
least squares, or its nonparametric counterpart, matching.
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• Those advocates assume that they know the X that produces a
relevant information set.

• Conditional independence condition (M-1) cannot be tested
without maintaining other assumptions.

• Choice of the appropriate conditioning variables is a
problem that plagues all econometric estimators.
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Control Functions, Replacement Functions, Proxy Variables,
IV and Panel Approaches

• The methods of control functions, replacement functions, proxy
variables, and instrumental variables all recognize the possibility
of asymmetry in information between the agent being studied
and the econometrician.

• They recognize that even after conditioning on X (variables in
the outcome equation) and Z (variables affecting treatment
choices, which may include the X ), analysts may fail to satisfy
conditional independence condition (M-1).

• Agents generally know more than econometricians about their
choices and act on this information.
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• These methods postulate the existence of some unobservables θ
(which may be vector valued), with the property that

(Y0,Y1) ⊥⊥ D | X ,Z , θ, (U-1)

but allow for the possibility that

(Y0,Y1) ⊥⧸⊥ D | X ,Z . (U-2)
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• If (U-2) holds, these approaches model the relationships of the
unobservable θ with Y1, Y0, and D in various ways.

• The content in the control function principle is to specify the
exact nature of the dependence of the relationship between
observables and unobservables in a nontrivial fashion that is
consistent with economic theory.

• The early literature focused on mean outcomes conditional on
covariates.
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• Replacement functions: (Heckman and Robb, 1985) proxy θ.
They substitute out for θ using observables. Olley & Pakes
(1993) is an application.

• Aakvik, Heckman, and Vytlacil (1999, 2005), Carneiro, Hansen,
and Heckman (2001, 2003), Cunha, Heckman, and Navarro
(2005), and Cunha, Heckman, and Schennach (2006a,b)
develop methods that integrate out θ from the model,
assuming θ ⊥⊥ (X ,Z ), or invoking weaker mean independence
assumptions, and assuming access to proxy measurements for θ.
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• Central to both the selection approach and the instrumental
variable approach for a model with heterogenous responses is
the probability of selection.

• Let Z denote variables in the choice equation. Fixing Z at
different values (denoted z), define D(z) as an indicator
function that is “1” when treatment is selected at the fixed
value of z and that is “0” otherwise.

• In terms of a separable index model UD = µD(Z )− V , for a
fixed value of z ,

D(z) = 1 [µD(z) ≥ V ] ,

where Z ⊥⊥ V | X .
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The Method of Instrumental Variables
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• The method of instrumental variables (IV) postulates that(
Y0,Y1, {D(z)}z∈Z

)
⊥⊥ Z | X (Independence) (IV-1)

• E (D | X ,Z ) = P(X ,Z ) is random with respect to potential
outcomes.

• Thus (Y0,Y1) ⊥⊥ P (X ,Z ) | X .

• So are all other functions of Z given X .
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• The method of instrumental variables also assumes that

E (D | X ,Z ) = P(X ,Z ) is a nondegenerate (IV-2)

function of Z given X . (Rank Condition)

• Alternatively, one can write that

Var (E (D | X ,Z )) ̸= Var (E (D | X )) .
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Comparing Instrumental Variables and Matching

(Y0,Y1) ⊥⊥ Z |X IV

(Y0,Y1) ⊥⊥ D|X Matching

• In (IV-1), Z plays the role of D in matching condition (M-1).

• Comparing (IV-2) with (M-2).
• In the method of IV the choice probability Pr(D = 1 | X ,Z )
varies with Z conditional on X .

• In matching, D varies conditional on X . This is the source of
identifying information in this method.

• No explicit model of the relationship between D and (Y0,Y1) is
required in applying matching.

• An explicit model is required to interpret what IV estimates.
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• (IV-2) is a rank condition and can be empirically verified.

• (IV-1) is not testable as it involves assumptions about
counterfactuals.

• In a conventional common coefficient regression model

Y = α + βD + U ,

• β is a constant.

• If Cov(D,U) ̸= 0, (IV-1) and (IV-2) identify β.
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Opposite Roles for D − P(X ,Z)

• In matching, the variation in D that arises after conditioning
on X provides the source of randomness that switches people
across treatment status.

• Nature is assumed to provide an experimental manipulation
conditional on X that replaces the randomization assumed in
(R-1)–(R-3).

• When D is perfectly predictable by X , there is no variation in it
conditional on X , and the randomization by nature breaks
down.

• Heuristically, matching assumes a residual
E (X ) = D − E (D | X ) that is nondegenerate and is one
manifestation of the randomness that causes persons to switch
status.
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• In IV, the choice probability E (D | X ,Z ) = P (X ,Z ) is
random with respect to (Y0,Y1), conditional on X .

(Y0,Y1) ⊥⊥ P(X ,Z ) | X .

• Variation in P(X ,Z ) produces variations in D that switch
treatment status.
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• Components of variation in D not predictable by (X ,Z ) do not
produce the required independence.

• They are assumed to be the source of the problem.

• The predicted component provides the required independence.

• Just the opposite in matching where they are the source of
identification.
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Control and Replacement Functions
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• Versions of the method of control functions use measurements
to proxy θ in (U-1) and (U-2) and remove spurious dependence
that gives rise to selection problems.

• These are called “replacement functions” or “control variates”.
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• The methods of replacement functions and proxy variables all
start from characterizations (U-1) and (U-2).

• θ is not observed and (Y0,Y1) are not observed directly, but Y
is observed:

Y = DY1 + (1− D)Y0.

• Missing variables (θ) produce selection bias which creates a
problem with using observational data to evaluate social
programs.

• Missing data problem.
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• From (U-1), if one conditions on θ, condition (M-1) for
matching would be satisfied, and hence one could identify the
parameters and distributions that can be identified if the
conditions required for matching are satisfied.

• The most direct approach to controlling for θ is to assume
access to a function τ(X ,Z ,Q) that perfectly proxies θ:

θ = τ(X ,Z ,Q). (2)

• This approach based on a perfect proxy is called the method
of replacement functions (Heckman and Robb, 1985).
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• In (U-1), one can substitute for θ in terms of observables
(X ,Z ,Q).

• Then
(Y0,Y1) ⊥⊥ D | X ,Z ,Q.

• This is a version of matching.

• It is possible to condition nonparametrically on (X ,Z ,Q) and
without having to know the exact functional form of τ .

• θ can be a vector and τ can be a vector of functions.
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• This method has been used in the economics of education for
decades (see the references in Heckman and Robb, 1985).

• A version later used by Olley and Pakes (1996).
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• If θ is ability and τ is a test score, it is sometimes assumed that
the test score is a perfect proxy (or replacement function) for θ
and that one can enter it into the regressions of earnings on
schooling to escape the problem of ability bias.

• Thus if τ = α0 + α1X + α2Q + α3Z + θ,
one can write θ = τ − α0 − α1X − α2Q − α3Z , and use this as
the proxy function.

• Controlling for τ,X ,Q,Z controls for θ.

• Notice that one does not need to know the coefficients
(α0, α1, α2, α3) to implement the method. One can condition
on τ,X ,Q,Z .
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Factor Models
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• The method of replacement functions assumes that (2) is a
perfect proxy.

• In many applications, θ is measured with error.

• This produces a factor model or measurement error model.
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• One can represent the factor model in a general way by a
system of equations:

Yj = gj (X ,Z ,Q, θ, εj) , j = 0, 1. (3)

• A linear factor model separable in the unobservables writes

Yj = gj (X ,Z ,Q) + αjθ + εj , j = 0, 1, (4)

where
(X ,Z ) ⊥⊥ (θ, εj), εj ⊥⊥ θ , j = 0, 1, (5)

and the εj are mutually independent.
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• Observe that under (3) and (4), Yj controlling for X , Z , only
imperfectly proxies θ because of the presence of εj .

• θ is called a factor, αj factor loadings, and the εj
“uniquenesses”.
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• The key to identification is multiple, but imperfect (because of
εj), measurements on θ from the Yj , j = 0, 1, and X ,Z ,Q, and
possibly other measurement systems that depend on θ.

• Carneiro, Hansen, and Heckman (2003), Cunha, Heckman, and
Navarro (2005, 2006), and Cunha and Heckman (2006a,b)
apply and develop these methods.

• Under assumption (5), they show how to nonparametrically
identify the econometric model and the distributions of the
unobservables FΘ(θ) and Fξj (εj).

• See notes on Factor Models.
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Control Functions

Heckman Principles Underlying Evaluation Estimators



• The recent econometric literature applies in special cases the
idea of the control function principle introduced in Heckman
and Robb (1985).

• This principle, versions of which can be traced back to Telser
(1964), partitions θ in (U-1) into two or more components,
θ = (θ1, θ2), where only one component of θ is the source of
bias.

• Thus it is assumed that (U-1) is true, and (U-1′) is also true:

(Y0,Y1) ⊥⊥ D | X ,Z , θ1. (U-1′)

• Thus (U-2) holds, conditional on θ1.
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• For example, in a normal selection model with additive
separability, one can break U1, the error term associated with
Y1, into two components,

U1 = E (U1 | V ) + ε,

where V plays the role of θ1 and is associated with the choice
equation.

• Further,

E (U1 | V ) =
Cov(U1,V )

Var(V )
V , (6)

assuming E (U1) = 0 and E (V ) = 0.

• Under normality, ε ⊥⊥ E (U1 | V ).
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• Heckman and Robb (1985) show how to construct a control
function in the context of the choice model

D = 1 [µD(Z ) > V ] .

• Controlling for V controls for the component of θ1 in (U-1′)
that gives rise to the spurious dependence.
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• As developed in Heckman and Robb (1985) and Heckman and
Vytlacil (2007a,b), under additive separability for the outcome
equation for Y1, one can write

E (Y1 | X ,Z ,D = 1) = µ1(X ) + E (U1 | µD(Z ) > V )︸ ︷︷ ︸
control function

,
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• The analyst “expects out” rather than solves out the effect of
the component of V on U1, and thus controls for selection bias
under the maintained assumptions.

• In terms of the propensity score, under the conditions specified
in Heckman and Vytlacil (2007), one may write the preceding
expression in terms of P(Z ):

E (Y1 | X ,Z ,D = 1) = µ1(X ) + K1(P(Z )),

where
K1(P(Z )) = E (U1 | X ,Z ,D = 1).

Heckman Principles Underlying Evaluation Estimators



• The most commonly used panel data method is
difference-in-differences as discussed in Heckman and Robb
(1985), Blundell, Duncan, and Meghir (1998), Heckman,
LaLonde, and Smith (1999), and Bertrand, Duflo, and
Mullainathan (2004).

• All of the estimators can be adapted to a panel data setting.
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• Heckman, Ichimura, Smith, and Todd (1998): difference -in
-differences matching estimators.

• Abadie (2002) extends this work.

• Separability between errors and observables is a key feature of
the panel data approach in its standard application.

• Altonji and Matzkin (2005) and Matzkin (2003) present
analyses of nonseparable panel data methods.

• Regression discontinuity estimators, which are versions of IV
estimators, are discussed by Heckman and Vytlacil (2007b).
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• Table 1 summarizes some of the main lessons of this lecture.
The stated conditions are necessary. There are many versions
of the IV and control functions principle and extensions of these
ideas which refine these basic postulates.
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Table 1: Identifying Assumptions Under Commonly Used Methods

(Y0,Y1) are potential outcomes that depend on X .

D =

{
1 if assigned (or chose) status 1
0 otherwise.

Z are determinants of D, θ is a vector of unobservables.
For random assignments, A is a vector of actual treatment status.

A = 1 if treated; A = 0 if not.
ξ = 1 if a person is randomized to treatment status; ξ = 0 otherwise.

Identifies Exclusion
marginal condition

Identifying Assumptions distributions? needed?

Random (Y0,Y1) ⊥⊥ ξ, Yes No
Assignment ξ = 1 =⇒ A = 1, ξ = 0 =⇒ A = 0

(full compliance)
Alternatively, if self-selection is random with
respect to outcomes, (Y0,Y1) ⊥⊥ D.
Assignment can be conditional on X .

Matching (Y0,Y1) ⊥⧸⊥ D, but (Y0,Y1) ⊥⊥ D | X , Yes No
0 < Pr(D = 1 | X ) < 1 for all X .
D conditional on X is a nondegenerate
random variable



Table 1: Identifying Assumptions Under Commonly Used Methods, Cont.

(Y0, Y1) are potential outcomes that depend on X

D =

{
1 if assigned (or choose) status 1
0 otherwise

Z are determinants of D, θ is a vector of unobservables
For random assignments, A is a vector of actual treatment status. A = 1 if treated; A = 0 if not.

ξ = 1 if a person is randomized to treatment status; ξ = 0 otherwise.

Identifies Exclusion
marginal condition

Identifying Assumptions distributions? needed?

Control Functions (Y0, Y1) ⊥⧸⊥ D | X , Z , but (Y1, Y0) ⊥⊥ D | X , Z , θ. The Yes Yes
and Extensions method models dependence induced by θ or else proxies θ (for semiparam-

(replacement function). etric models)
Version (i) Replacement functions (substitute out θ
by observables) (Blundell and Powell, 2003;
Heckman and Robb, 1985; Olley and Pakes, 1994).
Factor models (Carneiro, Hansen and Heckman, 2003)
allow for measurement error in the proxies.
Version (ii) Integrate out θ assuming θ ⊥⊥ (X , Z)
(Aakvik, Heckman, and Vytlacil, 2005;
Carneiro, Hansen, and Heckman, 2003)
Version (iii) For separable models for mean response
expect θ conditional on X , Z , D as in standard selection models
(control functions in the same sense of Heckman and Robb).

IV (Y0, Y1) ⊥⧸⊥ D | X , Z , but (Y1, Y0) ⊥⊥ Z | X , Yes Yes
Pr(D = 1 | Z) is a nondegenerate function of Z .


