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Sampling plans and initial condition problems: Duration
Models

Consider a random sample of unemployment spells in progress.
For sampled spells, one of the following duration times may be
observed:

• time in state up to sampling date (Tb) (recall of time spent)

• time in state after sampling date (Ta) (sampling forward)

• total time in completed spell observed at origin of sample
(Tc = Ta + Tb)
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Duration of spells beginning after the origin date of the sample,
denoted Td , are not subject to initial condition problems. The
intake rate at time −tb (assuming sample occurs at time 0: the
proportion of the population entering a spell at −tb.

Assume:

• A time homogenous environment, i.e. constant intake rate,
k(−tb) = k ,∀b

• A model without observed or unobserved explanatory variables.

• No right censoring, so Tc = Ta + Tb

• Underlying distribution f (x) is nondefective

• m =
∫∞
0
(x)dx < ∞
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The proportion of the population experiencing a spell at t = 0, the
origin date of the sample, is

P0 =

∫ ∞

0

k(−tb)(1− F (tb))dtb = k

∫ ∞

0

(1− F (tb))dtb

= k

[
tb(1− F (tb))|∞0 −

∫ ∞

0

tbd(1− F (tb))

]
= k

∫ ∞

0

tbf (tb)dtb = km

where 1− F (tb) is the probability the spell lasts from −tb to 0 (or
equivalently, from 0 to −tb).
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So the density of a spell of length tb interrupted at the beginning of
the sample (t = 0) is

g(tb) =
proportion surviving til t = 0 from batch tb

total surviving til t = 0

=
k(−tb)(1− F (tb))

P0
=

1− F (tb)

m
̸= f (tb)

Notice: g is the distribution of Tb in the population constructed by
sampling rule of source population.
Distinguish from F : cdf of the true population. G : cdf of the
sampled spells.
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The probability that a spell lasts until tc given that it has lasted
from −tb to 0, is the conditional density of tc given 0 < tb < tc .

f (tc |t > tb > 0) =
f (tc)

1− F (tb)
; tc ≥ tb ≥ 0

So the density of a spell in the sampled population that lasts, tc
is

g(tc) =

∫ tc

0

f (tc |t ≥ tb)f (t ≥ tb)dtb

=

∫ tc

0

f (tc)

m
dtb =

f (tc)tc
m
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Likewise, the density of a sampled spell that lasts until ta is

g(ta) =

∫ ∞

0

f (ta + tb|tb)Pr(t ≥ ta ≥ 0))dtb

=

∫ ∞

0

f (ta + tb)

m
dtb

=
1

m

∫ ∞

ta

f (tb)dtb

=
1− F (ta)

m

(Stationarity, mirror images have same densities). So the functional
form of f (tb) = f (ta): Consequences of stationarity.
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Some useful results that follow from this model:

• If f (t) = θe−tθ, then g(tb) = θe−tbθ and g(ta) = θe−taθ.
Proof:

f (t) = θe−tθ → m =
1

θ
,

F (t) = 1− e−tθ → g(ta) =
1− F (t)

m
= θe−tθ

Heckman Sampling Plans



• E (Ta) =
m

2
(1 +

σ2

m2
).

Proof:

E (Ta) =

∫
taf (ta)dta =

∫
ta
1− G (ta)

m
dta

=
1

m

[
1

2
t2a (1− F (ta))|∞0 −

∫
1

2
t2ad(1− F (ta))

]
=

1

m

∫
1

2
t2aF (ta)dta =

1

2m
[var(ta) + E 2(ta)]

=
1

2m
[σ2 +m2]
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• E (Tb) =
m

2
(1 +

σ2

m2
). Proof: See proof of Proposition 2.

• E (Tc) = m(1 +
σ2

m2
). Proof:

E (Tc) =

∫
t2cF (tc)

m
dtc =

1

m
(var(tc) + E 2(tc))

→ E (Tc) = 2E (Ta) = 2E (Tb),E (Tc) > m unless σ2 = 0
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Some Additional Results:

h(t) = hazard : h(t) =
f (t)

1− F (t)
.

• h′(t) > 0 → E (Ta) = E (Tb) < m. Proof: See Barlow and
Proschan.

• h′(t) < 0 → E (Ta) = E (Tb) > m. Proof: See Barlow and
Proschan.
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Examples
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Specification of the Distribution

Weibull Distribution

• Parameters: λ > 0, k > 0

• Probability Density Function (PDF):

λ

k

( t

λ

)k−1

exp

(
−
( t

k

)k
)

• Cumulative Density Function:

1− exp

(
−
( t

k

)k
)

• Set of Parameters: 
λ1, k1 = 0.5
λ2, k1 = 1.0
λ3, k1 = 2.0
λ3, k1 = 3.0

 , respectively
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Basic Distribution Graphs

PDF for Weibull Distribution CDF of Weibull Distribution
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Weibull Distribution λ = 0.1, k = 0.5

Weibull Distribution λ = 0.5, k = 1.0

Weibull Distribution λ = 0.5, k = 2.0

Weibull Distribution λ = 1.0, k = 3.0
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Weibull Distribution λ = 0.1, k = 0.5

Weibull Distribution λ = 0.5, k = 1.0

Weibull Distribution λ = 0.5, k = 2.0

Weibull Distribution λ = 1.0, k = 3.0

Set of Parameters:






λ1 = 1, k1 = 0.5

λ2 = 2, k2 = 1.0

λ3 = 3, k3 = 2.0

λ4 = 3, k4 = 3.0






respectively.

g(t) =
λ

k

(
t

λ

)k−1
exp

(

−

(
t

λ

)k)
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Basic Duration Graphs

Hazard Function for Weibull Distribution Integrated Hazard Function for Weibull
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Weibull Distribution λ = 0.1, k = 0.5

Weibull Distribution λ = 0.5, k = 1.0

Weibull Distribution λ = 0.5, k = 2.0

Weibull Distribution λ = 1.0, k = 3.0
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Weibull Distribution λ = 0.1, k = 0.5

Weibull Distribution λ = 0.5, k = 1.0

Weibull Distribution λ = 0.5, k = 2.0

Weibull Distribution λ = 1.0, k = 3.0

Set of Parameters:






λ1 = 0.1, k1 = 0.5

λ2 = 0.5, k2 = 1.0

λ3 = 0.5, k3 = 2.0

λ4 = 1, k4 = 3.0






respectively

g(t) =
λ

k

(
t

λ

)k−1
exp

(

−

(
t

λ

)k)
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Observed and Original Distribution for Tb (Example 1)

Density of Observed Spells up to Sampling Date (Tb)

and Original Density g(t)
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The Observed PDF of Spells (T
b
)

The Original PDF (Weibull Distribution λ = 0.1, k = 0.5)

g(t) has a Weibull Distribution: g(t) =
λ

k

(
t

λ

)k−1
exp

(

−

(
t

λ

)k)

Set of Parameters:

(
λ1 = 0.1, k1 = 0.5

)
respectively
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Observed and Original Distribution for Tb (Example 3)

Density of Observed Spells up to Sampling Date (Tb)

and Original Density g(t)
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The Observed PDF of Spells (T
b
)

The Original PDF (Weibull Distribution λ = 0.5, k = 2.0)

g(t) has a Weibull Distribution: g(t) =
λ

k

(
t

λ

)k−1
exp

(

−

(
t

λ

)k)

Set of Parameters: (λ3 = 0.5, k3 = 2.0) respectively
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Observed and Original Distribution for Tb (Example 4)

Density of Observed Spells up to Sampling Date (Tb)

and Original Density g(t)
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The Observed PDF of Spells (T
b
)

The Original PDF (Weibull Distribution λ = 1.0, k = 3.0)

g(t) has a Weibull Distribution: g(t) =
λ

k

(
t

λ

)k−1
exp

(

−

(
t

λ

)k)

Set of Parameters:

(
λ4 = 1, k4 = 3.0

)
respectively
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Observed and Original Distribution for Tc (Example 1)

Density of Completed Observed Spells (TC)

and Original Density g(t)
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The Observed PDF of Spells (T
c
)

The Original PDF (Weibull Distribution λ = 0.1, k = 0.5)

g(t) has a Weibull Distribution: g(t) =
λ

k

(
t

λ

)k−1
exp

(

−

(
t

λ

)k)

Set of Parameters:

(
λ1 = 0.1, k1 = 0.5

)
respectively
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Observed and Original Distribution for Tc (Example 2)

Density of Completed Observed Spells (TC)

and Original Density g(t)
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The Observed PDF of Spells (T
c
)

The Original PDF (Weibull Distribution λ = 0.5, k = 1.0)

g(t) has a Weibull Distribution: g(t) =
λ

k

(
t

λ

)k−1
exp

(

−

(
t

λ

)k)

Set of Parameters:

(
λ2 = 0.5, k2 = 1.0

)
respectively
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Observed and Original Distribution for Tc (Example 3)

Density of Completed Observed Spells (TC)

and Original Density g(t)
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The Observed PDF of Spells (T
c
)

The Original PDF (Weibull Distribution λ = 0.5, k = 2.0)

g(t) has a Weibull Distribution: g(t) =
λ

k

(
t

λ

)k−1
exp

(

−

(
t

λ

)k)

Set of Parameters: (λ3 = 0.5, k3 = 2.0) respectively
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Observed and Original Distribution for Tc (Example 4)

Density of Completed Observed Spells (TC)

and Original Density g(t)
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The Observed PDF of Spells (T
c
)

The Original PDF (Weibull Distribution λ = 1.0, k = 3.0)

g(t) has a Weibull Distribution: g(t) =
λ

k

(
t

λ

)k−1
exp

(

−

(
t

λ

)k)

Set of Parameters:

(
λ4 = 1, k4 = 3.0

)
respectively
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