Econ 312 Part A, Spring 2023 **Problem Set 3** James J. Heckman

Due April 9th, 2023 at Midnight This draft: April 3, 2023

- 1. **[15 pts]** Answer all of the questions embedded in the "Alternative Methods for Evaluating the Impact of Interventions" handout.
- 2. [40 pts] Using the posted data set ps3q23_dt.csv, consider the model

$$Y_i = \alpha_i + \beta_i D_i \quad (*)$$

where $D_i = 1$ if a person goes to training (say); $D_i = 0$ otherwise, and where

$$D_i = 1(\alpha_i + \beta_i - C(Z_i) > \alpha_i) \quad (**)$$
$$C(Z_i) = \gamma Z_i + \omega_i$$

where Z is the cost of schooling (the α_i on both sides of the indicator function for treatment choice is not a typo-what's the intuition? Hint: relate to potential outcomes). Assume observations are iid across i. $\alpha_i \perp \perp \omega_i$. β_i may be positively or negatively correlated with ω_i . $E(\omega_i) = 0$. NOTE: for question 2, the relevant outcome and treatment you should use from the dataset are called Y and D, which have been defined to follow this model. The variables Y_{alt} and D_{alt} will be used in question 3.

(i) Characterize ability bias (define).

- (ii) Characterize sorting bias (define).
- (iii) What is the marginal treatment effect?
- (iv) What does OLS applied to (*) identify?
- (v) Suppose $Z_i \perp \varepsilon_i$, what does IV estimate?
- (vi) Suppose $Z_i \perp (\varepsilon_i, \beta_i, \alpha_i)$, what is the "propensity score" for this model?
- (vii) How would you determine whether β_i is correlated with D_i only using cross section data?
- (viii) Give OLS, IV estimates for the posted sample and determine the answer to above.
 - (ix) Characterize selection-bias.
 - (x) Under what conditions is training meritocratic?
- 3. [10 pts] Suppose next, that agents don't know β_i before they enter that program but they know α_i. They anticipate E(β_i), and use this value instead of β_i in determining treatment in (**). How does this affect your answers to question (2)? Which of the available samples has agents without individual knowledge of β_i? Answer all of the questions in (2), again using the posted data set ps3q23_dt.csv. NOTE: for question 3, the relevant outcome and treatment you should use from the dataset are called Y_{alt} and D_{alt}, which have been defined to follow the new treatment choice rule that is based on E(β_i) rather than β_i.
- 4. [25 pts] Suppose you have panel data on earnings. Using the posted

data set ps3q4_dt.csv, consider:

$$Y_{it}(0) = \alpha + U_{it}$$

$$Y_{it}(1) = \alpha + \beta_i + U_{it}$$

where

$$U_{it} = \delta V_i + \varepsilon_{i,t}$$
$$\beta_i = \phi V_i + \omega_i$$

Observed outcome Y_{it} is

$$Y_{it} = \alpha + \beta_i D_i + U_{it}$$

The choice model at time period k is:

$$D_{i,k} = 1\left[\sum_{t=k+1}^{\infty} \frac{Y_{i,t}(1)}{(1+r)^{t-k}} - \sum_{t=k}^{\infty} \frac{Y_{i,t}(0)}{(1+r)^{t-k}} - C(Z_i) > 0\right]$$

where $C(Z_i) = \gamma Z_i + \tau_i$.

Assume that $V_i, \epsilon_{it}, \omega_i, \tau_i$ are all mutually independent and all have mean zero, and are also all jointly independent of Z_i .

- (i) Answer questions to (2) and (3) for this model.
- (ii) How does access to panel data aid identification?
- (iii) Suppose you only have aggregate time data on income by schooling before and after k? What can you identify? Use the posted data

set to illustrate your analysis.

5. [10 pts] Consider the discrete choice model, utility for $j \in \mathcal{J}$, U(j) is

$$U_i(j) = X(j)\beta_i + \varepsilon_{ij}$$

The choice set is $\mathcal{J} \leftarrow (\mathcal{J}) X(j)$ are attributes of good j.

$$\beta_i = Q_i V_j + e_i$$

where $e_i \perp \varepsilon_{i,j}$. The Q_i are personal attributes of i. Suppose $\overline{\mathcal{J}}$ has three elements. What is the probability that j is selected? (Give explicit calculations.) Consider several cases:

(i) β_i is the same for all i. ε_{i,j} is iid, ∀_{i,j} is extreme value distributed.
(ii) β_i varies,

$$\beta_i \sim N(\beta, \Sigma\beta)$$

 $\beta_i \perp \varepsilon_{i,j} \text{ all } i, j$

(iii) Show how you can use a model fit under cases (i) and (ii) above in a cross section to predict the demand for a new good with attributes X(J+1), where J+1 is a new good never observed, but attributes known.