Econ 312 Part A, Spring 2023

Problem Set 4
James J. Heckman

Due April 17th, 2023 at Midnight

This draft: April 10, 2023

1. [2 pts] In a two sector Roy model for possible outcomes $\left(Y_{0}, Y_{1}\right)$, how can it be that agents who choose sector 1 can be below average compared to the population distribution of Y_{1} ?
2. [$\mathbf{3} \mathbf{~ p t s}]$ Answer questions in the "Normal Generalized Roy Model" handout.
3. [$\mathbf{5} \mathbf{~ p t s}$] Answer the questions in the "Notes on Identification of the Roy and Generalized Roy Model" handout. Give conditions under which you can identify the joint distribution of (Y_{1}, Y_{0}) in a Generalized Roy model.
4. [$\mathbf{5} \mathrm{pts}$] Give conditions under which you can identify the parameters " C " in the generalized Roy Model. $Y=D Y_{1}+(1-D) Y_{0}$ is observed.

$$
\begin{aligned}
& Y_{1}=\mu_{1}(X)+U_{1} \\
& Y_{0}=\mu_{U}(X)+U_{0} \\
& C=\mu_{C}(Z)+U_{C} \\
& \left(U_{1}, U_{0}, U_{C}\right) \sim N(0, \Sigma) \\
& D=1\left(Y_{1}-Y_{0}-C>0\right)
\end{aligned}
$$

Specifically, assume you observe D, X, Y and Z. Explain how to inden-
tify $\mu_{1}(X), \mu_{0}(X), \mu_{C}(Z)$ and the distribution of $\left(U_{0}, U_{1}, U_{C}\right)$.
5. [5 pts] Define and Compare ITT, PRTE, ATE, AMTE, PRTE, TT, the voting criterion for the model of Question 4. When are they the same? Express in terms of MTE.
6. [60 pts] Consider a normal selection model as in notes on generalized Roy Model and as presented in problem (4). Using the dataset titled 'ps4_dt.csv', fit a parametric selection model. Schooling D is:

$$
D=1\left(Y_{1}-Y_{0}-C \geq 0\right)
$$

You have data on Z, D, Y for iid samples. Consider two cases: $Y_{1 i}-Y_{0 i}=$ β, a constant, and $Y_{1 i}-Y_{0 i}=\beta_{i}$. In the dataset, variables without subscript were generated assuming $Y_{1 i}-Y_{0 i}=\beta_{i}$, and variables with the _hom subscript were generated assuming $Y_{1 i}-Y_{0 i}=\beta$.
(i) What is: the person-specific causal effect, the quantile treatment effect, AMTE, MPRTE, ATE, TT, MTE, PRTE (all policy changes are for a unit change in Z), the voting criterion, the distribution of C ?
(ii) Compare your estimates with estimates from matching (nearest neighbor). When should these estimates be the same? Why are they the same or different?
(iii) Are the data generated from a model with essential heterogeneity? (Give a non-parametric test.)
(iv) What does LATE estimate? (Compare the LATE estimates with the ones previously derived for Question (i).)
(v) What is the social surplus of treatment for a given $P(Z)$? (Define and estimate.)
7. [5 pts] When does RDD estimate the same parameter(s) as estimated by LATE? Matching? Selection models?
8. [5 pts] Express in terms of MTE. Explain and contrast the role of the probability of selection $(P(Z))$ in LATE, matching and Selection Models.
9. [5 pts] Answer the questions embedded in notes "The Principles Underlying Evaluation Estimators - An Extract."
10. Explain how factor models can aid in identification of the joint distributions of potential outcomes in a Roy model.

