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Policy adoption problem

Suppose a policy is proposed for adoption in a country.

What can we conclude about the likely effectiveness of the
policy in countries?

Build a model of counterfactuals.

Y1 = µ1(X ) + U1 (1)

Y0 = µ0(X ) + U0.
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Consider the basic generalized Roy model

Two potential outcomes (Y0,Y1).

A choice equation

D = 1[µD(Z ,V )︸ ︷︷ ︸
net utility

> 0].

Observed outcomes are

Y = DY1 + (1− D)Y0

Assume µD(Z ,V ) = µD(Z )− V .
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Switching Regression Notation

Y = Y0 + (Y1 − Y0)D (2)

= µ0 + (µ1 − µ0 + U1 − U0)D + U0.

(Quandt, 1958, 1972)

In Conventional Regression Notation

Y = α + βD + ε (3)

α = µ0, β = (Y1 − Y0) = µ1 − µ0 + U1 − U0, ε = U0.

β is the “treatment effect.”
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Figure 1: distribution of gains, a Roy economy
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The model

Outcomes Choice Model

Y1 = µ1 + U1 = α+ β̄ + U1 D =

{
1 if D∗ > 0
0 if D∗ ≤ 0

Y0 = µ0 + U0 = α+ U0

General Case

(U1 − U0) ⊥⧸⊥ D
ATE ̸=TT ̸=TUT
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The model

The Researcher Observes (Y ,D,C )

Y = α + βD + U0 where β = Y1 − Y0

Parameterization

α = 0.67 (U1,U0) ∼ N (0,Σ) D∗ = Y1 − Y0 − C

β̄ = 0.2 Σ =

[
1 −0.9

−0.9 1

]
C = 1.5
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In the case when U1 = U0 = ε0, simple least squares regression
of Y on D subject to a selection bias.

This is a form of endogeneity bias considered by the Cowles
analysts.

Upward biased for β if Cov(D, ε) > 0.
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Three main approaches have been adopted to solve this
problem:

1 Selection models
2 Instrumental variable models
3 Matching: assumes that ε ⊥⊥ D | X .

Matching is just nonparametric least squares and assumes
access to rich data which happens to guarantee this condition.
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Case I, the traditional case: β is a constant

If there is an instrument Z , with the property that

Cov(Z ,D) ̸= 0 (4)

Cov(Z , ε) = 0, (5)

then

plim β̂IV =
Cov(Z ,Y )

Cov(Z ,D)
= β.

If other instruments exist, each identifies the same β.
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Case II, heterogeneous response case: β is a random variable even
conditioning on X

Sorting bias or sorting on the gain which is distinct from sorting on
the level.

Essential heterogeneity

Cov(β,D) ̸= 0.

Suppose (4), (5) and
Cov(Z , β) = 0. (6)

Can we identify the mean of (Y1 − Y0) using IV?
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In general we cannot (Heckman and Robb, 1985).

Let

β̄ = (µ1 − µ0)

β = β̄ + η

U1 − U0 = η

Y = α + β̄D + [ε+ ηD] .

Need Z to be uncorrelated with [ε+ ηD] to use IV to
identify β̄.

This condition will be satisfied if policy adoption is made
without knowledge of η (= U1 − U0).

If decisions about D are made with partial or full knowledge of
η, IV does not identify β̄.
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The IV condition is

E [ε+ ηD | Z ] = 0.

E (ε | Z ) = 0, E (η | Z ) = 0.

Even if η ⊥⊥ Z , η ⊥⧸⊥ Z | D = 1.

E (ηD | Z ) = E (η | D = 1,Z ) Pr(D = 1 | Z ).

But E (η | Z ,D = 1) ̸= 0, in general, if agents have some
information about the gains.
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Draft Lottery example (Heckman, 1997).

Linear IV does not identify ATE or any standard treatment
parameters.
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Imbens Angrist conditions (1994)

Imbens and Angrist (1994) establish that IV can identify an
interpretable parameter in the model with essential
heterogeneity.

Their parameter is a discrete approximation to the marginal
gain parameter of Björklund and Moffitt (1987).

This parameter can be interpreted as the marginal gain to
outcomes induced from a marginal change in the costs of
participating in treatment (Björklund-Moffitt).
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Imbens Angrist conditions (1994)

Imbens and Angrist assume the existence of an instrument Z
that takes two or more distinct values.

Keep conditioning on X implicit.

Let Di (z) be the indicator (= 1 if adopted; = 0 if not)

It is a random variable for choice when we set Z = z .
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Imbens Angrist conditions (1994)

(IV-1) (Independence)

Z ⊥⊥
(
Y1,Y0, {D (z)}z∈Z

)
.

(IV-2) (Rank)

Pr(D = 1 | Z ) depends on Z.

They supplement the standard IV assumption with a
“monotonicity” assumption.

(IV-3) (Monotonicity or Uniformity)

Di (z) ≥ Di (z
′) or Di (z) ≤ Di (z

′) i = 1, . . . , I .
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Imbens Angrist conditions (1994)

Uniformity of responses across persons.

Uniformity is satisfied when, for z < z ′, Di (z) ≤ Di (z
′) for all

i , while for z ′′ > z ′, Di (z
′′) ≤ Di (z

′) for all i .
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Imbens Angrist conditions (1994)

These conditions imply the LATE parameter.

E (Y | Z = z)− E (Y | Z = z ′)

= E ((D(z)− D(z ′)) (Y1 − Y0)) (Independence)
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Imbens Angrist conditions (1994)

Using iterated expectations,

E (Y | Z = z)− E (Y | Z = z ′) (7)

=

(
E (Y1 − Y0 | D (z)− D (z ′) = 1)

·Pr (D (z)− D (z ′) = 1)

)

−
(

E (Y1 − Y0 | D (z)− D (z ′) = −1)
·Pr (D (z)− D (z ′) = −1)

)
.

Monotonicity allows us to drop out one term.
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Imbens Angrist conditions (1994)

Suppose, for example, that Pr(D(z)− D(z ′) = −1) = 0. Thus,

E (Y | Z = z)− E (Y | Z = z ′)

= E (Y1 − Y0 | D(z)− D(z ′) = 1) Pr (D(z)− D(z ′) = 1) .

LATE =
E (Y | Z = z)− E (Y | Z = z ′)

Pr(D = 1 | Z = z)− Pr(D = 1 | Z = z ′)

= E (Y1 − Y0 | D(z)− D(z ′) = 1) (8)

The mean gain to those induced to switch from “0” to “1” by
a change in Z from z ′ to z .

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 21 / 386



Adoption model IV General model Index Derivation Comparing models

Imbens Angrist conditions (1994)

Observe LATE = ATE if

Pr (D = 1 | Z = z) = 1 while Pr (D = 1 | Z = z ′) = 0.

“Identification at infinity” plays a crucial role throughout the
entire literature on policy evaluation.
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Imbens Angrist conditions (1994)

In general, LATE ̸= E (Y1 − Y0) = E (β).

Not treatment on the treated: E (β | D = 1).

Different instruments define different parameters.

Having a wealth of different strong instruments does not
improve the precision of the estimate of any particular
parameter (Heckman and Robb, 1986).

When there are more than two distinct values of Z , Imbens and
Angrist use Yitzhaki (1989) weights.
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Imbens Angrist conditions (1994)

Goal of our work: unify literature with a common set of
underlying parameters interpretable across studies.

To understand how to connect the results of various disparate
IV estimands within a unified framework.
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IV in choice models

D = 1 [D∗ > 0] (9)

1[·] is an indicator (1[A] = 1 if A true; 0 otherwise).

D∗ = µD(Z )− V (10)

Example: µD(Z ) = γZ

D∗ = γZ − V
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Examples

(V ⊥⊥ Z ) | X .

The propensity score:

P(z) = Pr(D = 1 | Z = z) = Pr(γz > V ) = FV (γz)

FV is the distribution of V .
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Examples

Generalized Roy model

D = 1[Y1 − Y0 − C > 0]

Costs C = µC (W ) + UC

Z = (X ,W )

µD (Z ) = µ1 (X )− µ0 (X )− µC (W )

V = − (U1 − U0 − UC ) .
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Heterogeneous response model

In a general model with heterogenous responses, specification of
P(Z ) and its relationship with the instrument play a crucial role.

Cov (Z , ηD) = E
((
Z − Z̄

)
ηD
)

= E
((
Z − Z̄

)
η | D = 1

)
Pr (D = 1)

= E (
(
Z − Z̄

)
η | γZ > V︸ ︷︷ ︸

FV (γZ ) > FV (V )
P(Z ) > UD

)Pr (γZ > V )︸ ︷︷ ︸
P(Z)

.

Probability of selection enters the covariance even though we
use only one component of Z as an instrument.
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Selection models control for this dependence induced by choice.
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Selection models

Assume
(U1,U0,V ) ⊥⊥ Z (11)

[Alternatively (ε, η,V ) ⊥⊥ Z ].

η = (U1 − U0), ε = U0 (12)

E (Y | D = 0,Z = z) = E (Y0 | D = 0,Z = z)

= α + E (U0 | γz < V )

E (Y | D = 0,Z = z) = α + K0(P(z)︸ ︷︷ ︸)
control function
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Selection models

E (Y | D = 1,Z = z) = E (Y1 | D = 1,Z = z)

= α + β̄ + E (U1 | γz > V )

= α + β̄ + K1(P(z))︸ ︷︷ ︸
control function

K0(P(z)) and K1(P(z)) are control functions in the sense of
Heckman and Robb (1985, 1986).

P(z) is an essential ingredient.

Matching: K1 (P(z)) = K0 (P(z)).
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In a model where β is variable and not independent of V ,
misspecification of Z affects the interpretation of what IV
estimates analogous to its role in selection models.

Misspecification of Z affects both approaches to identification.

This is a new phenomenon in models with heterogenous β.
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Model for outcomes

Y1 = µ1 (X ,U1) (13)

Y0 = µ0 (X ,U0) .

X are observed and (U1,U0) are unobserved by the analyst.

The X may be dependent on U0 and U1.

Generalize choice model (9) and (10) for D∗, a latent utility.
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Model for outcomes

D∗ = µD (Z )− V and D = 1 (D∗ ≥ 0) (14)

µD (Z )− V can be interpreted as a net utility for a person with
characteristics (Z ,V ).

β = Y1 − Y0 = µ1 (X ,U1)− µ0 (X ,U0) (Treatment Effect)
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Model for outcomes

A special case that links our analysis to standard models in
econometrics:

Y1 = Xβ1 + U1 and

Y0 = Xβ0 + U0; so

β = X (β1 − β0) + (U1 − U0).

In the case of separable outcomes, heterogeneity in β arises
because in general U1 ̸= U0 and people differ in their X .

Heckman-Vytlacil conditions (1999,2001, 2005)
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Assumptions

(A-1)

The distribution of µD (Z ) conditional on X is nondegenerate (Rank
Condition for IV). This says that we can vary Z (excluded from
outcome equations) given X . Key property of an instrument.

(A-2)

(U0,U1,V ) are independent of Z conditional on X (Independence
Condition for IV). Z is not affecting potential outcomes or affecting
the unobservables affecting choices.
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Assumptions

(A-3)

The distribution of V is continuous (not essential).

(A-4)

E |Y1| < ∞, and E |Y0| < ∞ (Finite Means).
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Assumptions

(A-5)

1 > Pr (D = 1 | X ) > 0 (For each X there is a treatment group and
a comparison group).

(A-6)

Let X0 denote the counterfactual value of X that would have been
observed if D is set to 0. X1 is defined analogously. Thus Xd = X ,
for d = 0, 1 (The Xd are invariant to counterfactual manipulations).
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Separability between V and µD(Z ) in choice equation is
conventional.

Plays an important role in the properties of instrumental
variable estimators in models with essential heterogeneity.

It implies monotonicity (uniformity) condition (IV-3) from
choice equation (14).

Vytlacil (2002) shows that independence and monotonicity
(IV-3) imply the existence of a V and representation (14) given
some regularity conditions.
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Use probability integral transform to write

D = 1 [FV (µD (Z )) > FV (V )] = 1 [P (Z ) > UD ] (15)

UD = FV (V ) and P (Z ) = FV (µD(Z )) = Pr[D = 1 | Z ]

P(Z ) is transformation of mean scale utility in a discrete choice
model.
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LATE, the marginal treatment effect and instrumental variables

A basic parameter that can be used to unify the treatment
effect literature:

∆MTE (x , uD) = E (Y1 − Y0 | X = x ,UD = uD).

= E (β | X = x ,V = v)

MTE and the local average treatment effect (LATE) parameter
are closely related.

For (z , z ′) ∈ Z(x)×Z(x) so that P(z) > P(z ′), under (IV-3)
and independence (A-2), LATE is:

∆LATE (z ′, z) = E (Y1 − Y0 | D (z) = 1,D (z ′) = 0) (16)
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LATE can be written in a fashion free of any instrument:

E (Y1 − Y0 | D(z) = 1,D(z ′) = 0) (17)

= E (Y1 − Y0 | u′
D < UD < uD)

= ∆LATE(u′
D , uD)

uD = Pr(D (z) = 1) = Pr (D (z) = 1 | Z = z) = Pr(D (z) = 1) = P(z),

u′
D = Pr (D (z ′) = 1 | Z = z ′) = Pr(D (z ′) = 1) = P(z ′)

The z just help us define evaluation points for the uD .
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Under (A-1)–(A-5), all standard treatment parameters are
weighted averages of MTE with weights that can be estimated.
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Table 1A: treatment effects and estimands as weighted averages of the
marginal treatment effect

ATE(x) = E (Y1 − Y0 | X = x) =
∫ 1

0
∆MTE(x , uD) duD

TT(x) = E (Y1 − Y0 | X = x ,D = 1) =
∫ 1

0
∆MTE(x , uD)ωTT(x , uD) duD

TUT(x) = E (Y1 − Y0 | X = x ,D = 0) =
∫ 1

0
∆MTE (x , uD) ωTUT (x , uD) duD

Policy Relevant Treatment Effect (x)

= E (Ya′ | X = x)− E (Ya | X = x) =
∫ 1

0
∆MTE (x , uD) ωPRTE (x , uD) duD

for two policies a and a′ that affect the Z but not the X

IVJ(x) =
∫ 1

0
∆MTE(x , uD)ω

J
IV(x , uD) duD , given instrument J

OLS(x) =
∫ 1

0
∆MTE(x , uD)ωOLS(x , uD) duD
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Table 1B: weights

ωATE(x , uD) = 1

ωTT(x , uD) =
[∫ 1

uD
f (p | X = x)dp

] 1

E (P | X = x)

ωTUT (x , uD) =
[∫ uD

0
f (p|X = x) dp

] 1

E ((1− P) |X = x)

ωPRTE(x , uD) =

[
FPa′ ,X (uD)− FPa,X (uD)

∆P

]
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Table 1B: weights

ωJ
IV(x , uD)

=

∫ 1

uD
(J(Z )− E (J(Z ) | X = x))

∫
fJ,P|X (j , t | X = x) dt dj

Cov(J(Z ),D | X = x)

ωOLS(x , uD)

= 1 +

{
E (U1 | X = x ,UD = uD)ω1(x , uD)
−E (U0 | X = x ,UD = uD)ω0(x , uD)

}

∆MTE(x , uD)

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 46 / 386



Adoption model IV General model Index Derivation Comparing models

Table 1B: weights

ω1(x , uD) =
[∫ 1

uD
f (p | X = x) dp

] [ 1

E (P | X = x)

]

ω0(x , uD) =
[∫ uD

0
f (p | X = x) dp

] 1

E ((1− P) | X = x)

Source: Heckman and Vytlacil (2005)
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Relationships Among Parameters Using the Index Structure

From the definition D(z) = 1 (UD ≤ P(z)),

∆TT(x ,P(z)) = E (∆|X = x ,UD ≤ P(z)). (18)

Consider ∆LATE(x ,P(z),P(z ′)).

E (Y |X = x ,P(Z ) = P(z))

= P(z)

[
E (Y1|X = x ,P(Z ) = P(z),D = 1)

]

+ (1− P(z))

[
E (Y0|X = x ,P(Z ) = P(z),D = 0)

]

=

∫ P(z)

0

E (Y1|X = x ,UD = uD)duD +

∫ 1

P(z)

E (Y0|X = x ,UD = uD)duD .
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So that

E (Y |X = x ,P(Z ) = P(z))− E (Y |X = x ,P(Z ) = P(z ′))

=

∫ P(z)

P(z′)

E (Y1|X = x ,UD = uD)duD −
∫ P(z)

P(z′)

E (Y0|X = x ,UD = uD)duD ,

and thus

∆LATE(x ,P(z),P(z ′)) = E (∆|X = x ,P(z ′) ≤ UD ≤ P(z)).
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Notice that this expression could be taken as an alternative
definition of LATE.

Note that in this expression we could replace P (z) and P (z ′)
with uD and u′

D .

No instrument needs to be available to define LATE.

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 50 / 386



Adoption model IV General model Index Derivation Comparing models

Rewrite these relationships in succinct form:

∆MTE(x , uD) = E (∆|X = x ,UD = uD) (19)

∆ATE(x) =

∫ 1

0

E (∆|X = x ,UD = uD)duD

P(z)[∆TT(x ,P(z))] =

∫ P(z)

0

E (∆|X = x ,UD = uD)duD

(P(z)− P(z ′))[∆LATE(x ,P(z),P(z ′))] =
∫ P(z)

P(z′)

E (∆|X = x ,UD = uD)duD
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Everywhere in these expressions can replace P (z) with uD and
P (z ′) with u′

D .

Each parameter is an average value of MTE,
E (∆ | X = x ,UD = uD), but for values of UD lying in different
intervals and with different weighting functions.

MTE defines the treatment effect more finely than do LATE,
ATE, or TT.

The relationship between MTE and LATE or TT conditional on
P(z) is analogous to the relationship between a probability
density function and a cumulative distribution function.
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The probability density function and the cumulative distribution
function represent the same information, but for some purposes
the density function is more easily interpreted.

Likewise, knowledge of TT for all P(z) evaluation points is
equivalent to knowledge of the MTE for all u evaluation points,
so it is not the case that knowledge of one provides more
information than knowledge of the other.

However, in many choice-theoretic contexts it is often easier to
interpret MTE than the TT or LATE parameters.

It has the interpretation as a measure of willingness to pay on
the part of people on a specified margin of participation in the
program.
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∆MTE(x , uD) is the average effect for people who are just
indifferent between participation in the program (D = 1) or not
(D = 0) if the instrument is externally set so that P(Z ) = uD .

For values of uD close to zero, ∆MTE(x , uD) is the average
effect for individuals with unobservable characteristics that
make them the most inclined to participate in the program
(D = 1), and for values of uD close to one it is the average
treatment effect for individuals with unobserved (by the
econometrician) characteristics that make them the least
inclined to participate.
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ATE integrates ∆MTE(x , uD) over the entire support of UD

(from uD = 0 to uD = 1).

It is the average effect for an individual chosen at random from
the entire population.
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∆TT(x ,P(z)) is the average treatment effect for persons who
chose to participate at the given value of P(Z ) = P(z); it
integrates ∆MTE(x , uD) up to uD = P(z).

As a result, it is primarily determined by the MTE parameter
for individuals whose unobserved characteristics make them the
most inclined to participate in the program.

LATE is the average treatment effect for someone who would
not participate if P(Z ) ≤ P(z ′) and would participate if
P(Z ) ≥ P(z).

The parameter ∆LATE(x ,P(z),P(z ′)) integrates ∆MTE(x , uD)
from uD = P(z ′) to uD = P(z).
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Using the third expression in equation (19) to substitute into
equation (18), we obtain an alternative expression for the TT
parameter as a weighted average of MTE parameters:

∆TT(x) =

∫ 1

0

1

p

[∫ p

0

E (∆|X = x ,UD = uD)duD

]
dFP(Z)|X ,D(p|x ,D = 1).

Using Bayes’ rule, it follows that

dFP(Z)|X ,D(p|x , 1) =
Pr(D = 1|X = x ,P(Z ) = p)

Pr(D = 1|X = x)
dFP(Z)|X (p|x).
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Since Pr(D = 1|X = x ,P(Z ) = p) = p, it follows that

∆TT(x) (20)

=
1

Pr(D = 1|X = x)

∫ 1

0

(∫ p

0

E (∆|X = x ,UD = uD)duD

)
dFP(Z)|X (p|x).
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Note further that since
Pr(D = 1|X = x) = E (P(Z )|X = x) =

∫ 1

0
(1−FP(Z)|X (t|x))dt,

we can reinterpret (20) as a weighted average of local IV
parameters where the weighting is similar to that obtained from
a length-biased, size-biased, or P-biased sample.
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∆TT(x)

=
1

Pr(D = 1|X = x)

·
∫ 1

0

(∫ 1

0

1(uD ≤ p)E (∆|X = x ,UD = uD)duD

)
dFP(Z)|X (p|x)

=
1∫

(1− FP(Z)|X (t|x))dt
∫ 1

0

(∫ 1

0

E (∆|X = x ,UD = uD)1(uD ≤ p)dFP(Z)|X (p|x)
)
duD

=

∫ 1

0

E (∆|X = x ,UD = uD)

(
1− FP(Z)|X (uD |x)∫
(1− FP(Z)|X (t|x))dt

)
duD

=

∫ 1

0

E (∆|X = x ,UD = uD)gx(uD)duD

where gx(uD) =
1−FP(Z)|X (uD |x)∫
(1−FP(Z)|X (t|x))dt .
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Thus gx(uD) is a weighted distribution (Rao, 1985).

Since gx(uD) is a nonincreasing function of uD , we have that
drawings from gx(uD) oversample persons with low values of
UD , i.e., values of unobserved characteristics that make them
the most likely to participate in the program no matter what
their value of P(Z ).

Since
∆MTE(x , uD) = E (∆|X = x ,UD = uD)

it follows that

∆TT(x) =

∫ 1

0

∆MTE(x , uD)gx(uD)duD .
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The TT parameter is thus a weighted version of MTE, where
∆MTE(x , uD) is given the largest weight for low u values and is
given zero weight for uD ≥ pmax

x , where pmax
x is the maximum

value in the support of P(Z ) conditional on X = x .
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Figure A-1 graphs the relationship between ∆MTE(uD), ∆
ATE

and ∆TT(P(z)), assuming that the gains are the greatest for
those with the lowest UD values and that the gains decline as
UD increases.

The curve is the MTE parameter as a function of uD , and is
drawn for the special case where the outcome variable is binary
so that MTE parameter is bounded between −1 and 1.

The ATE parameter averages ∆MTE(uD) over the full unit
interval (i.e. is the area under A minus the area under B and C
in the figure).
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Figure A-1. MTE Integrates to ATE and TT Under Full Support (for
dichotomous outcome)

Figure A-1. MTE Integrates to ATE and TT Under Full Support
(for dichotomous outcome)
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Figure 9: treatment parameters and OLS matching as a function of
P(Z ) = p

Figure 7. Treatment Parameters and OLS/Matching as a function of P (Z) = p
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∆TT(P(z)) averages ∆MTE(uD) up to the point P(z) (is the
area under A minus the area under B in the figure).

Because ∆MTE(uD) is assumed to be declining in u, the TT
parameter for any given P(z) evaluation point is larger then the
ATE parameter.
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Equation (19) relates each of the other parameters to the MTE
parameter.

One can also relate each of the other parameters to the LATE
parameter.

This relationship turns out to be useful later on in this chapter
when we encounter conditions where LATE can be identified
but MTE cannot.

MTE is the limit form of LATE:

∆MTE(x , p) = lim
p′→p

∆LATE(x , p, p′).

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 67 / 386



Adoption model IV General model Index Derivation Comparing models

Direct relationships between LATE and the other parameters
are easily derived.

The relationship between LATE and ATE is immediate:

∆ATE(x) = ∆LATE(x , 0, 1).

Using Bayes’ rule, the relationship between LATE and TT is

∆TT(x) =

∫ 1

0

∆LATE(x , 0, p)
p

Pr(D = 1|X = x)
dFP(Z)|X (p|x).

(21)
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Derivation of PRTE and Implications of Noninvariance for PRTE

E (Yp | X ) =

∫ 1

0

E (Yp|X ,Pp(Zp) = t) dFPp|X (t)

=

∫ 1

0

[∫ 1

0

[1[0,t](uD)E (Y1,p | X ,UD = uD)

+1(t,1](uD)E (Y0,p | X ,UD = uD)] du
]
dFPp|X (t)

=

∫ 1

0

[∫ 1

0

[1[uD ,1](t)E (Y1,p | X ,UD = uD)

+1(0,uD ](t)E (Y0,p | X ,UD = uD)] dFPp|X (t)
]
duD

=

∫ 1

0

[
(1− FPp|X (uD))E (Y1,p | X ,UD = uD)

+FPp|X (uD)E (Y0,p | X ,UD = uD)
]
duD .
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This derivation involves changing the order of integration.

Note that from (A-4),

E
∣∣∣1[0,t](uD)E (Y1,p | X ,UD = uD) + 1(t,1](uD)E (Y0,p | X ,UD = uD)

∣∣∣
≤ E (|Y1|+ |Y0|) < ∞,

so the change in the order of integration is valid by Fubini’s
theorem.
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Figure 2: weights for the marginal treatment effect for different parameters
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E (β | UD = uD) does not vary with uD .

“Standard case.”

ATE = TT = LATE = policy counterfactuals = plim IV.
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When will E (β | UD = uD) not vary with uD?

1 If U1 = U0 ⇒ β a Constant.

2 More Generally, if U1 − U0 is mean independent of UD , so
treatment effect heterogeneity is allowed but individuals do not
act upon their own idiosyncratic effect.
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Consider standard analysis.

lnY = α + (β̄ + U1 − U0)D + U0

plim of OLS:

E (lnY | D = 1)− E (lnY | D = 0)

= β̄ + E (U1 − U0 | D = 1) +

{
E (U0 | D = 1)
−E (U0 | D = 0)

}

= ATE + Sorting Gain︸ ︷︷ ︸ + Ability Bias

= TT + Ability Bias
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If ATE is a parameter of interest, OLS suffers from both sorting
bias and ability bias.

If TT is parameter of interest, OLS suffers from ability bias.

Using IV removes ability bias, but changes the parameter being
estimated (neither ATE nor TT in general).

Different IV Weight MTE differently.

We derive IV weights below.
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∴ IV Instrument Dependent (which Z used and which values of
Z used).

Hence studies using different Z are not comparable.

How to make studies comparable?

We can test to see if these complications are required in any
particular empirical analysis.
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Testing for essential heterogeneity

E (Y | Z = z) = E (Y | P(Z ) = p) (index sufficiency)

= E (DY1 + (1− D)Y0 | P (Z ) = p)

= E (Y0) + E (D (Y1 − Y0) |P (Z ) = p)

= E (Y0) +

[
E (Y1 − Y0|D = 1,P (Z ) = p)

·Pr (D = 1 | Z = z)

]

= E (Y0) +

∫ p

0

E (Y1 − Y0|UD = uD) duD .
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Testing for essential heterogeneity

As a consequence, we get LIV (Local Instrumental Variables), which
identifies MTE

∂

∂P(z)
E (Y | Z = z)

∣∣∣∣
P(Z)=uD︸ ︷︷ ︸

LIV

= E (Y1 − Y0|UD = uD)︸ ︷︷ ︸
MTE

. (22)

When β ⊥⊥ D, Y is linear in P (Z ):

E (Y | Z ) = a + bP (Z ) (23)

where b = ∆MTE = ∆ATE = ∆TT.

These results are valid whether or not Y1 and Y0 are separable
in U1 and U0.

Therefore we can identify the treatment parameters using
estimated weights and estimated MTE.
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Example: college attendance on wages for high school graduates

E(Y | X ,P) as a function of P for average X

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3.5

−3.4

−3.3

−3.2

−3.1

−3

−2.9

−2.8

−2.7

P

E
(Y
|P
)

Source: Carneiro, Heckman and Vytlacil (2006)
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Example: college attendance on wages for high school graduates

E(Y1 − Y0 | X ,US ) estimated using locally quadratic regression (averaged over X )
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Understanding what linear IV estimates

Consider J(Z ) as an instrument, a scalar function of Z .

∆IV
J =

Cov(Y , J(Z ))

Cov(D, J(Z ))

Express it as a weighted average of MTE.

Z can be a vector of instruments.
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Digression: Yitzhaki’s theorem and extensions

Theorem
Assume (Y ,X ) i.i.d. E (|Y |) < ∞ E (|X |) < ∞

µY = E (Y ) µX = E (X )

E (Y | X ) = g(X )
Assume g ′(X ) exists and E (|g ′(X )|) < ∞.
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Yitzhaki’s theorem

Theorem (cont.)
Then,

Cov(Y ,X )

Var(X )
=

∫ ∞

−∞
g ′(t)ω(t) dt,

where

ω(t) =
1

Var(X )

∫ ∞

t
(x − µX ) fX (x) dx

=
1

Var(X )
E (X − µX | X > t) Pr (X > t) .

Y = πX + η,

π =
Cov(Y ,X )

Var(X )
.
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Proof of Yitzhaki’s theorem

Proof.

Cov(Y ,X ) = Cov (E (Y | X ),X ) = Cov (g(X ),X )

=

∫ ∞

−∞
g(t)(t − µX ) fX (t) dt

where t is an argument of integration.
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Proof of Yitzhaki’s theorem

cont.
Integration by parts:

Cov(Y ,X ) = g(t)

∫ t

−∞
(x − µX ) fX (x) dx

∣∣∣∣
∞

−∞

−
∫ ∞

−∞
g ′(t)

∫ t

−∞
(x − µX ) fX (x) dx dt

=

∫ ∞

−∞
g ′(t)

∫ ∞

t

(x − µX ) fX (x) dx dt,

since E (X − µX ) = 0.
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Proof of Yitzhaki’s theorem

cont.
Therefore,

Cov(Y ,X ) =

∫ ∞

−∞
g ′(t)E (X − µX | X > t) Pr (X > t) dt.

∴ Result follows with

ω(t) =
1

Var(X )
E (X − µX | X > t) Pr (X > t)
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Weights positive.

Integrate to one (use integration by parts formula).

= 0 when t → ∞ and t → −∞.

Weight reaches its peak at t = µX , if fX has density at x = µX :

d

dt

∫ ∞

t

(x − µX ) fX (x) dx dt = −(t − µX )fX (t)

= 0 at t = µX .
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Yitzhaki’s weights for X ∼ BetaPDF(x , α, β)���������� ������� �
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Yitzhaki’s weights for X ∼ BetaPDF(x , α, β)
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Can apply Yitzhaki’s analysis to the treatment effect model

Y = α + βD + ε

P(Z ), the propensity score is the instrument:

E (Y | Z = z) = E (Y | P(Z ) = p)
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E (Y | P(Z ) = p) = α + E (βD | P(Z ) = p)

= α + E (β | D = 1,P(Z ) = p) p

= α + E (β | P(Z ) > UD ,P(Z ) = p) p

= α + E (β | p > UD) p

= α +

∫
β

∫ p

0

f (β, uD) duD
︸ ︷︷ ︸

g(p)

Derivative with respect to p is MTE.

g ′(p) =MTE and weights as before.
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Under uniformity,

∂E (Y | P (Z ) = p)

∂p
= E (Y1 − Y0 | UD = uD)

= ∆MTE (uD) .

More generally, it is LIV = ∂E(Y |P(Z)=p)
∂p

.

Yitzhaki’s result does not rely on uniformity; true of any
regression of Y on P .

Estimates a weighted net effect.

The expression can be generalized.

It produces Heckman-Vytlacil weights.
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The Heckman-Vytlacil weight as a Yitzhaki weight

Proof.

Cov (J (Z ) ,Y ) = E
(
Y · J̃

)
= E

(
E (Y | Z ) · J̃ (Z )

)

= E
(
E (Y | P (Z )) · J̃ (Z )

)

= E
(
g (P (Z )) · J̃ (Z )

)
.

J̃ = J (Z )− E (J (Z ) | P (Z ) ≥ uD) ,
E (Y | P (Z )) = g (P (Z )).
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The Heckman-Vytlacil weight as a Yitzhaki weight

cont.

Cov (J (Z ) ,Y ) =

∫ 1

0

∫ J

J

g (uD) j̃ fP,J (uD , j) djduD

=

∫ 1

0

g (uD)

∫ J

J

j̃ fP,J (uD , j) djduD .
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The Heckman-Vytlacil weight as a Yitzhaki weight

cont.
Use integration by parts:

Cov (J (Z ) ,Y )

= g (uD)

∫ uD

0

∫ J

J

j̃ fP,J (p, j) djdp

∣∣∣∣∣

1

0

−
∫ 1

0

g ′ (uD)

∫ uD

0

∫ J

J

j̃ fP,J (p, j) djdpduD

=

∫ 1

0

g ′ (uD)

∫ 1

uD

∫ J

J

j̃ fP,J (p, j) djdpduD

=

∫ 1

0

g ′ (uD)E
(
J̃ (Z ) | P (Z ) ≥ uD

)
Pr (P (Z ) ≥ uD) duD .

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 95 / 386



Adoption model IV General model Index Derivation Comparing models

The Heckman-Vytlacil weight as a Yitzhaki weight

cont.
Thus:

g ′ (uD) =
∂E (Y | P (Z ) = p)

∂P (Z )

∣∣∣∣
p=uD

= ∆MTE (uD) .
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Under our assumptions the Yitzhaki weights and ours are
equivalent.

Cov (J (Z ) ,Y ) (24)

=

∫ 1

0

∆MTE(uD)E (J(Z )− E (J(Z )) | P(Z ) ≥ uD) Pr(P(Z ) ≥ uD)duD .

Using (24),

Cov (J (Z ) ,Y ) = E
(
Y · J̃

)
= E

(
E (Y | Z ) · J̃ (Z )

)

= E
(
E (Y | P (Z )) · J̃ (Z )

)

= E
(
g (P (Z )) · J̃ (Z )

)
.
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The third equality follows from index sufficiency and
J̃ = J (Z )− E (J (Z ) | P (Z ) ≥ uD), where
E (Y | P (Z )) = g (P (Z )).

Writing out the expectation and assuming that J (Z ) and
P (Z ) are continuous random variables with joint density fP,J

and that J (Z ) has support
[
J , J
]
,

Cov (J (Z ) ,Y ) =

∫ 1

0

∫ J

J

g (uD) j̃ fP,J (uD , j) djduD

=

∫ 1

0

g (uD)

∫ J

J

j̃ fP,J (uD , j) djduD .
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Using an integration by parts argument as in Yitzhaki (1989)
and as summarized in Heckman, Urzua, Vytlacil (2006), we
obtain

Cov (J (Z ) ,Y )

= g (uD)

∫ uD

0

∫ J

J

j̃ fP,J (p, j) djdp

∣∣∣∣∣

1

0

−
∫ 1

0

g ′ (uD)
∫ uD

0

∫ J

J

j̃ fP,J (p, j) djdpduD

=

∫ 1

0

g ′ (uD)
∫ 1

uD

∫ J

J

j̃ fP,J (p, j) djdpduD

=

∫ 1

0

g ′ (uD)E
(
J̃ (Z ) | P (Z ) ≥ uD

)
Pr (P (Z ) ≥ uD) duD ,

which is then exactly the expression given in (24), where

g ′ (uD) =
∂E (Y | P (Z ) = p)

∂P (Z )

∣∣∣∣
p=uD

= ∆MTE (uD) .
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Under (A-1)–(A-5) and separable choice model

∆IV
J =

∫ 1

0

∆MTE (uD) ω
J
IV (uD) duD (25)

ωJ
IV (uD) =

E
(
J (Z )− J̄(Z ) | P (Z ) > uD

)
Pr (P (Z ) > uD)

Cov (J (Z ) ,D)
. (26)

J(Z ) and P(Z ) do not have to be continuous random variables.

Functional forms of P(Z ) and J(Z ) are general.
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Dependence between J(Z ) and P(Z ) gives shape and sign to
the weights.

If J(Z ) = P(Z ), then weights obviously non-negative.

If E (J(Z )− J̄(Z ) | P(Z ) ≥ uD) not monotonic in uD , weights
can be negative.
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J̃ = J − E (J)

E
(J̃

|P
)

monotonic in p
(positive weight)

nonmonotonic in p 
(possible negative weight)

p

Therefore, with positive (or negative) regression, can get negative
IV weight.
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When J(Z ) = P(Z ), weight (26) follows from Yitzhaki (1989).

He considers a regression function E (Y | P (Z ) = p).

Linear regression of Y on P identifies

βY ,P =

1∫

0

[
∂E (Y | P (Z ) = p)

∂p

]
ω (p) dp,

ω (p) =

1∫
p

(t − E (P)) dFP (t)

Var (P)
.

This is the weight (26) when P is the instrument.

This expression does not require uniformity or monotonicity
for the model; consistent with 2-way flows.
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Understanding the structure of the IV weights

Recapitulate:

∆J
IV =

∫
∆MTE(uD)ω

J
IV(uD) duD

ωJ
IV (uD) =

∫
(j − E (J (Z )))

∫ 1

uD
fJ,P (j , t) dt dj

Cov (J (Z ) ,D)
(27)

The weights are always positive if J (Z ) is monotonic in the
scalar Z .

In this case J (Z ) and P (Z ) have the same distribution and
fJ,P (j , t) collapses to a single distribution.
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The possibility of negative weights arises when J(Z ) is not a
monotonic function of P(Z ).

It can also arise when there are two or more instruments, and
the analyst computes estimates with only one instrument or a
combination of the Z instruments that is not a monotonic
fuction of P(Z ) so that J(Z ) and P(Z ) are not perfectly
dependent.
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The weights can be constructed from data on (J ,P ,D).

Data on (J (Z ) ,P (Z )) pairs and (J (Z ) ,D) pairs (for each X
value) are all that is required.
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Discrete instruments J (Z )

Discrete Case

Support of the distribution of P(Z ) contains a finite number of
values p1 < p2 < · · · < pK .

Support of the instrument J (Z ) is also discrete, taking I
distinct values.

E (J(Z )|P(Z ) ≥ uD) is constant in uD for uD within any
(pℓ, pℓ+1) interval, and Pr(P(Z ) ≥ uD) is constant in uD for uD
within any (pℓ, pℓ+1) interval.

Let λℓ denote the weight on the LATE for the interval
(pℓ, pℓ+1).
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Discrete instruments J (Z )

Under monotonicity, or uniformity

∆IV
J =

∫
E (Y1 − Y0|UD = uD)ω

J
IV (uD) duD (28)

=
K−1∑

ℓ=1

λℓ

∫ pℓ+1

pℓ

E (Y1 − Y0|UD = uD)
1

(pℓ+1 − pℓ)
duD

=
K−1∑

ℓ=1

∆LATE(pℓ, pℓ+1)λℓ.
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Discrete instruments J (Z )

Let ji be the i th smallest value of the support of J(Z ).

λℓ =

I∑
i=1

(ji − E (J(Z )))
K∑
t>ℓ

(f (ji , pt))

Cov (J (Z ) ,D)
(pℓ+1 − pℓ) (29)
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Discrete instruments J (Z )

In general, this formula is true, under index sufficiency even if
monotonicity is violated.

It’s certainly true under (A-1)–(A-5).

True where ∆LATE (pℓ, pℓ+1) is replaced by the Wald estimator,
based on P(zℓ), ℓ = 1, . . . , L, instruments.

Observe, LATE here defined in terms of P(Z ), the “natural”
instrument.
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Discrete instruments J (Z )

Generalizes the expression presented by Imbens and Angrist
(1994) and Yitzhaki (1989, 1996)

Their analysis of the case of vector Z only considers the case
where J(Z ) and P(Z ) are perfectly dependent because J(Z ) is
a monotonic function of P (Z ).

More generally, the weights can be positive or negative for any
ℓ but they must sum to 1 over the ℓ.
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The central role of the propensity score

For the IV weight to be correctly constructed and interpreted,
we need to know the correct model for P (Z ).

IV depends on:
1 the choice of the instrument J (Z ),
2 its dependence with P (Z ),
3 the specification of the propensity score (i.e., what variables go

into Z ).

“Structural” LATE or MTE identified by P(Z ).

Can derive all other instrumental variable estimators in terms of
weighted averages of MTE or LATE.
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Monotonicity, uniformity and conditional instruments

Monotonicity or uniformity condition (IV-3) rules out general
heterogeneous responses to treatment choices in response to
changes in Z .

The recent literature on instrumental variables with
heterogeneous responses is asymmetric.

The uniformity condition can be violated even when all
components of γ are of the same sign if Z is a vector and γ is
a nondegenerate random variable.

D = 1 [γZ > γ]
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Uniformity is a condition on a vector.

Changing one coordinate of Z , holding the other coordinates at
different values across people, will not necessarily produce
uniformity.

Let µD (z) = γ0 + γ1z1 + γ2z2 + γ3z1z2, where γ0, γ1, γ2 and
γ3 are constants.

Consider changing z1 from a common base state while holding
z2 fixed at different values across people.

If γ3 < 0 then µD (z) does not necessarily satisfy the uniformity
condition.
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Positive weights and uniformity are distinct issues.

Under uniformity, and assumptions (A-1)–(A-5), the weights on
MTE or LIV for any particular instrument may be positive or
negative.
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If we condition on Z2 = z2, . . . ,ZK = zK using Z1 as an
instrument, then uniformity is satisfied.

Effectively convert the problem back to that of a scalar
instrument where the weights must be positive.

The concept of conditioning on other instruments to produce
positive weights for the selected instrument is a new idea.

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 116 / 386



Adoption model IV General model Index Derivation Comparing models

Monotonicity and weights

Monotonicity is a property needed to get treatment effects with
just two values of Z , Z = z1 and Z = z2, to guarantee that IV
estimates a treatment effect.

With multiple values of Z we need to weight to produce linear
IV.

If our IV shifts P(Z ) in same way for everyone, it shifts D in
the same way for everyone,

D = 1 [P(Z ) ≥ UD ] .
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If P(Z ) is instrument, monotonicity is obviously satisfied.

If J(Z ) is an instrument and not a monotonic function of
P(Z ), may not shift P(Z ) in same way for all people.

We can get two-way flows if, e.g., we use only one Z or else
have a random coefficient model,

D = 1 [γZ ≥ V ] .

Negative weights are a tip off of two-way flows.
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If we do not want a treatment effect, who cares?

We do not always want a treatment effect.

Go back to ask “What economic question am I trying to
answer?”
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Treatment effects vs. policy effects

Even if uniformity condition (IV-3) fails, IV may answer
relevant policy questions.

IV or TSLS estimates a weighted average of marginal responses
which may be pointwise positive or negative.

Policies may induce some people to switch into and others to
switch out of choices.

Net effects are sometimes of interest in many policy analyses.
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Thus, subsidized housing in a region supported by higher taxes
may attract some to migrate to the region and cause others to
leave. The net effect on earnings from the policy is all that is
required to perform cost benefit calculations of the policy on
outcomes.

If the housing subsidy is the instrument, the issue of
monotonicity is a red herring.

If the subsidy is exogenously imposed, IV estimates the net
effect of the policy on mean outcomes.

Only if the effect of migration induced by the subsidy on
outcomes is the question of interest, and not the effect of the
subsidy, does uniformity emerge as an interesting question.
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Comparing selection and IV models

Angrist and Krueger (1999) compare IV with selection models
and view the former with favor.

Useful to understand this comparison in a model with essential
heterogeneity.

IV is estimating the derivative (or finite changes) of the
parameters of a selection model.

IV only conditions on Z (and X ).
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Comparing selection and IV models

The control function approach conditions on Z and D (and X ).

From index sufficiency, equivalent to conditioning on P (Z ) and
D:

E (Y | X ,D,Z ) (30)

= µ0 (X ) + [µ1 (X )− µ0 (X )]D

+ K1 (P (Z ) ,X )D + K0 (P (Z ) ,X ) (1− D)

K1 (P(Z ),X ) = E (U1 | D = 1,X ,P (Z ))

and

K0 (P(Z ),X ) = E (U0 | D = 0,X ,P (Z )) .
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Comparing selection and IV models

IV approach does not condition on D.

It works with the integral (over D) of (30).

E (Y | X ,P(Z )) (31)

= µ0 (X ) + [µ1 (X )− µ0 (X )]P(Z )

+ K1 (P (Z ) ,X )P(Z ) + K0 (P (Z ) ,X ) (1− P(Z ))

Under monotonicity and (A-1)–(A-5)

∂E (Y | X ,P(Z ))

∂P(Z )

∣∣∣∣
P(Z)=p

= LIV (X , p) = MTE (X , p) .

Control function builds up MTE from components.

IV gets it in one fell swoop.
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Comparing selection and IV models

With rank and limit conditions (Heckman, 1990; Heckman and
Robb, 1985), using control functions, one can identify µ1 (X ),
µ0 (X ), K1 (P (Z ) ,X ), and K0 (P (Z ) ,X ).

The selection (control function) estimator identifies the
conditional means

E (Y1 | X ,P(Z ),D = 1) = µ1 (X ) + K1 (X ,P(Z )) (32a)

and

E (Y0 | X ,P(Z ),D = 0) = µ0 (X ) + K0 (X ,P(Z )) . (32b)
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Comparing selection and IV models

To decompose these means and separate µ1 (X ) from
K1 (X ,P(Z )) without invoking functional form assumptions, it
is necessary to have an exclusion (a Z not in X ).

This allows µ1 (X ) and K1 (X ,P (Z )) to be independently
varied with respect to each other.

We can also invoke curvature conditions without exclusion of
variables.

In addition there must exist a limit set for Z given X such that
K1 (X ,P(Z )) = 0 for Z in that limit set.
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Comparing selection and IV models

Limit set not required for selection model if we are interested
only in MTE or LATE.

Not required in IV either if we only seek MTE or LATE.
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Comparing selection and IV models

Without functional form assumptions, it is not possible to
disentangle µ1 (X ) from K1 (X ,P(Z )) which may contain
constants and functions of X that do not interact with P(Z )
(see Heckman (1990)).

These limit set arguments are needed for ATE or TT, not
LATE or LIV.
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IV method

IV method works with derivatives of (31) and not levels.

Cannot directly recover the constant terms in (32a) and (32b).
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IV method

In summary, the control function method directly identifies
levels while the LIV approach works with slopes.

Constants that do not depend on P(Z ) disappear from the LIV
estimates of the model.
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IV method

The distributions of U1,U0 and V do not need to be specified
to estimate control function models (see Powell, 1994).

In particular, there is no reliance on normality.
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Support problems for IV

Support conditions with control function models have their
counterparts in IV models.

One common criticism of selection models is that without
invoking functional form assumptions, identification of
µ1(X ) and µ0(X ) requires that P(Z ) → 1 and P(Z ) → 0 in
limit sets.

Identification in limit sets is sometimes called “identification at
infinity.”

In order to identify ATE = E (Y1 − Y0|X ), IV methods also
require that P(Z ) → 1 and P(Z ) → 0 in limit sets, so an
identification at infinity argument is implicit when IV is used to
identify this parameter.
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Support problems for IV

The LATE parameter avoids this problem by moving the goal
posts and redefining the parameter of interest from a level
parameter like ATE or TT to a slope parameter like LATE
which differences out the unidentified constants.

We can identify this parameter by selection models or IV
models without invoking identification at infinity.
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Support problems for IV

The IV estimator is model dependent, just like the selection
estimator, but in application, the model does not have to be
fully specified to obtain ∆IV using Z (or J(Z )).

However the distribution of P (Z ) and the relationship between
P (Z ) and J (Z ) generates the weights on MTE (or LIV).

The interpretation placed on ∆IV in terms of weights on ∆MTE

depends crucially on the specification of P (Z ). In both control
function and IV approaches for the general model of
heterogeneous responses, P (Z ) plays a central role.
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Support problems for IV

Two economists using the same instrument will obtain the
same point estimate using the same data.

Their interpretation of that estimate will differ depending on
how they specify the arguments in P(Z ), even if neither uses
P(Z ) as an instrument.

By conditioning on P (Z ), the control function approach makes
the dependence of estimates on the specification of P (Z )
explicit.

The IV approach is less explicit and masks the assumptions
required to economically interpret the empirical output of an IV
estimation.

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 135 / 386



Examples GED Separability Conclusion Ext References Appendix A Appendix B

Examples based on choice theory

Suppose cost of adopting the policy C is the same across all
countries.

Countries choose to adopt the policy if D∗ > 0 where D∗ is the
net benefit: D∗ = (Y1 − Y0 − C ) and

ATE = E (β) = E (Y1 − Y0) = µ1 − µ0

Treatment on the treated is

E (β | D = 1) = E (Y1 − Y0 | D = 1)

= µ1 − µ0 + E (U1 − U0 | D = 1) .
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Figure 1: distribution of gains

The Roy Economy
U1 − U0 ⊥⧸⊥ D

5 0 5
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0.05

0.1

0.15

0.2

0.25
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T U T

=Y
1
 -Y

0

0.2 C=1.5

     Return to Marginal Agent

β = Y1 − Y0
TT= 2.666, TUT= −0.632

Return to Marginal Agent = C = 1.5, ATE = µ1 − µ0 = β̄ = 0.2
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The model

Outcomes Choice Model

Y1 = µ1 + U1 = α+ β̄ + U1 D =

{
1 if D∗ > 0
0 if D∗ ≤ 0

Y0 = µ0 + U0 = α+ U0

General Case

(U1 − U0) ⊥⧸⊥ D
ATE ̸=TT ̸=TUT
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The model

The Researcher Observes (Y ,D,C )

Y = α + βD + U0 where β = Y1 − Y0

Parameterization

α = 0.67 (U1,U0) ∼ N (0,Σ) D∗ = Y1 − Y0 − C

β̄ = 0.2 Σ =

[
1 −0.9

−0.9 1

]
C = 1.5

Let C = γZ , γ ≥ 0.
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Figure 4A: monotonicity, the extended Roy economy
Standard case

Figure 2. Monotonicity
The Extended Roy Economy

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case
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Outcomes Choice Model

Y1 = α + β̄ + U1 D =

{
1 if Y1 − Y0 − γZ > 0
0 if Y1 − Y0 − γZ ≤ 0

Y0 = α + U0 with γZ = γ1Z1 + γ2Z2

Parameterization

(U1, U0) ∼ N (0,Σ) , Σ =

[
1 −0.9

−0.9 1

]
, α = 0.67, β̄ = 0.2, γ = (0.5, 0.5) (except in Case C)

Z1 = {−1, 0, 1} and Z2 = {−1, 0, 1}

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case

z −→ z′ z −→ z′ or z −→ z′′ z −→ z′

z = (0, 1) and z′ = (1, 1) z = (0, 1), z′ = (1, 1) and z′′ = (1,−1) z = (0, 1) and z′ = (1, 1)

γ is a random vector

γ̃ = (0.5, 0.5) and ˜̃γ = (−0.5, 0.5)

where γ̃ and ˜̃γ are two realizations of γ

D(γz) ≥ D(γz′) D(γz) ≥ D(γz′) or D(γz) < D(γz′′) D
(
˜̃γz

)
≥ D

(
˜̃γz′

)
and D (γ̃z) < D (γ̃z′)

For all individuals Depending on the value of z′ or z′′ Depending on value of γ
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Figure 4B: monotonicity, the extended Roy economy
Changing Z1 without controlling for Z2

Figure 2. Monotonicity
The Extended Roy Economy

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case
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β = Y1 - Y0

Outcomes Choice Model

Y1 = α + β̄ + U1 D =

{
1 if Y1 − Y0 − γZ > 0
0 if Y1 − Y0 − γZ ≤ 0

Y0 = α + U0 with γZ = γ1Z1 + γ2Z2

Parameterization

(U1, U0) ∼ N (0,Σ) , Σ =

[
1 −0.9

−0.9 1

]
, α = 0.67, β̄ = 0.2, γ = (0.5, 0.5) (except in Case C)

Z1 = {−1, 0, 1} and Z2 = {−1, 0, 1}

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case

z −→ z′ z −→ z′ or z −→ z′′ z −→ z′

z = (0, 1) and z′ = (1, 1) z = (0, 1), z′ = (1, 1) and z′′ = (1,−1) z = (0, 1) and z′ = (1, 1)

γ is a random vector

γ̃ = (0.5, 0.5) and ˜̃γ = (−0.5, 0.5)

where γ̃ and ˜̃γ are two realizations of γ

D(γz) ≥ D(γz′) D(γz) ≥ D(γz′) or D(γz) < D(γz′′) D
(
˜̃γz

)
≥ D

(
˜̃γz′

)
and D (γ̃z) < D (γ̃z′)

For all individuals Depending on the value of z′ or z′′ Depending on value of γ
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Figure 4C: monotonicity, the extended Roy economy
Random coefficient case

Figure 2. Monotonicity
The Extended Roy Economy

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case
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β = Y1 - Y0

Outcomes Choice Model

Y1 = α + β̄ + U1 D =

{
1 if Y1 − Y0 − γZ > 0
0 if Y1 − Y0 − γZ ≤ 0

Y0 = α + U0 with γZ = γ1Z1 + γ2Z2

Parameterization

(U1, U0) ∼ N (0,Σ) , Σ =

[
1 −0.9

−0.9 1

]
, α = 0.67, β̄ = 0.2, γ = (0.5, 0.5) (except in Case C)

Z1 = {−1, 0, 1} and Z2 = {−1, 0, 1}

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case

z −→ z′ z −→ z′ or z −→ z′′ z −→ z′

z = (0, 1) and z′ = (1, 1) z = (0, 1), z′ = (1, 1) and z′′ = (1,−1) z = (0, 1) and z′ = (1, 1)

γ is a random vector

γ̃ = (0.5, 0.5) and ˜̃γ = (−0.5, 0.5)

where γ̃ and ˜̃γ are two realizations of γ

D(γz) ≥ D(γz′) D(γz) ≥ D(γz′) or D(γz) < D(γz′′) D
(
˜̃γz

)
≥ D

(
˜̃γz′

)
and D (γ̃z) < D (γ̃z′)

For all individuals Depending on the value of z′ or z′′ Depending on value of γ
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Figure 4: monotonicity, the extended Roy economy

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case

z −→ z0 z −→ z0 or z −→ z00 z −→ z0

z = (0, 1) and z0 = (1, 1) z = (0, 1), z0 = (1, 1) and z00 = (1,−1) z = (0, 1) and z0 = (1, 1)

γ is a random vectoreγ = (0.5, 0.5) and eeγ = (−0.5, 0.5)
where eγ and eeγ are two realizations of γ

D(γz) ≥ D(γz0) D(γz) ≥ D(γz0) or D(γz) < D(γz00) D
³eeγz´ ≥ D

³eeγz0´ and D (eγz) < D (eγz0)
For all individuals Depending on the value of z0 or z00 Depending on value of γ

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 143 / 386



Examples GED Separability Conclusion Ext References Appendix A Appendix B

Figure 4: monotonicity, the extended Roy economy model

Outcomes Choice Model

Y1 = α+ β̄ + U1 D =

{
1 if Y1 − Y0 − γZ > 0
0 if Y1 − Y0 − γZ ≤ 0

Y0 = α+ U0 with γZ = γ1Z1 + γ2Z2

Parameterization

(U1,U0) ∼ N (0,Σ) , Σ =

[
1 −0.9

−0.9 1

]
,

α = 0.67, β̄ = 0.2,
γ = (0.5, 0.5) (except in Case C)

Z1 = {−1, 0, 1} and Z2 = {−1, 0, 1}
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Figure 5: IV weights and its components under discrete instruments when
P(Z ) is the instrument

∆LATE (pℓ, pℓ+1)

=
E (Y |P(Z ) = pℓ+1)− E (Y |P(Z ) = pℓ)

pℓ+1 − pℓ

=
β (pℓ+1 − pℓ) + σU1−U0

(
ϕ
(
Φ−1 (1− pℓ+1)

)
− ϕ

(
Φ−1 (1− pℓ)

))

pℓ+1 − pℓ

λℓ = (pℓ+1 − pℓ)

K∑
i=1

(pi − E (P (Z )))
K∑
t>ℓ

f (pi , pt)

Cov (Z1,D)

= (pℓ+1 − pℓ)

K∑
t>ℓ

(pt − E (P (Z ))) f (pt)

Cov (Z1,D)
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Joint probability distribution of (Z1,Z2) and the propensity score

Z1\Z2 −1 0 1
−1 0.02 0.02 0.36

0.7309 0.6402 0.5409
0 0.3 0.01 0.03

0.6402 0.5409 0.4388
1 0.2 0.05 0.01

0.5409 0.4388 0.3408

Cov(Z1,Z2) = −0.5468

(joint probabilities in ordinary type (Pr(Z1 = z1,Z2 = z2));
propensity score in italics (Pr (D = 1|Z1 = z1,Z2 = z2)))
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Figure 5: IV weights and its components under discrete instruments when
P(Z ) is the instrument

ATE = 0.2, TT = 0.5942, TUT = −0.4823

and

∆IV
P(Z) =

K−1∑

ℓ=1

∆LATE (pℓ, pℓ+1)λℓ = −0.09
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Figure 5A: IV weights and its components under discrete instruments when P(Z )

is the instrument (IV Weights)Figure 3. IV Weight and Its Components under Discrete Instruments when P (Z) is the Instrument
The Extended Roy Economy

A. IV Weights B. E(P (Z)|P (Z) > p`) and E(P (Z))

-0. 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ
1

λ
2

λ
3

λ
4

0

0.2

0.4

0.6

0.8

1

E(P(Z)|P(Z)>p
1
) E(P(Z)|P(Z)>p

2
)E(P(Z)|P(Z)>p

3
)E(P(Z)|P(Z)>p

4
)
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C. Local Average Treatment Effects
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The model is the same as the one presented below Figure 2.

ATE = 0.2, TT = 0.5942, TUT = −0.4823 and ∆IV
P (Z) =

K−1∑

`=1

∆LATE (p`, p`+1) λ` = −0.09

∆LATE (p`, p`+1) =
E (Y |P (Z) = p`+1) − E (Y |P (Z) = p`)

p`+1 − p`
=

β (p`+1 − p`) + σU1−U0

(
φ
(
Φ−1 (1 − p`+1)

)
− φ

(
Φ−1 (1 − p`)

))

p`+1 − p`

λ` = (p`+1 − p`)

K∑
i=1

(pi − E (P (Z)))
K∑

t>`

f (pi, pt)

Cov (Z1, D)
= (p`+1 − p`)

K∑
t>`

(pt − E (P (Z))) f (pt)

Cov (Z1, D)

Joint Probability Distribution of (Z1, Z2) and the Propensity Score
(joint probabilities in ordinary type (Pr(Z1 = z1, Z2 = z2)); propensity score in italics (Pr (D = 1|Z1 = z1, Z2 = z2)))

Z1\Z2 −1 0 1
−1 0.02 0.02 0.36

0.7309 0.6402 0.5409
0 0.3 0.01 0.03

0.6402 0.5409 0.4388
1 0.2 0.05 0.01

0.5409 0.4388 0.3408

Cov(Z1, Z2) = −0.5468
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Figure 5B: IV weights and its components under discrete instruments when P(Z )

is the instrument (E (P(Z ) | P(Z ) > pℓ) and E (P(Z )))Figure 3. IV Weight and Its Components under Discrete Instruments when P (Z) is the Instrument
The Extended Roy Economy

A. IV Weights B. E(P (Z)|P (Z) > p`) and E(P (Z))
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The model is the same as the one presented below Figure 2.

ATE = 0.2, TT = 0.5942, TUT = −0.4823 and ∆IV
P (Z) =

K−1∑

`=1

∆LATE (p`, p`+1) λ` = −0.09

∆LATE (p`, p`+1) =
E (Y |P (Z) = p`+1) − E (Y |P (Z) = p`)

p`+1 − p`
=

β (p`+1 − p`) + σU1−U0

(
φ
(
Φ−1 (1 − p`+1)

)
− φ

(
Φ−1 (1 − p`)

))

p`+1 − p`

λ` = (p`+1 − p`)

K∑
i=1

(pi − E (P (Z)))
K∑

t>`

f (pi, pt)

Cov (Z1, D)
= (p`+1 − p`)

K∑
t>`

(pt − E (P (Z))) f (pt)

Cov (Z1, D)

Joint Probability Distribution of (Z1, Z2) and the Propensity Score
(joint probabilities in ordinary type (Pr(Z1 = z1, Z2 = z2)); propensity score in italics (Pr (D = 1|Z1 = z1, Z2 = z2)))

Z1\Z2 −1 0 1
−1 0.02 0.02 0.36

0.7309 0.6402 0.5409
0 0.3 0.01 0.03

0.6402 0.5409 0.4388
1 0.2 0.05 0.01

0.5409 0.4388 0.3408

Cov(Z1, Z2) = −0.5468
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Figure 5C: IV weights and its components under discrete instruments when P(Z )

is the instrument (Local average treatment effects)

Figure 3. IV Weight and Its Components under Discrete Instruments when P (Z) is the Instrument
The Extended Roy Economy

A. IV Weights B. E(P (Z)|P (Z) > p`) and E(P (Z))
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The model is the same as the one presented below Figure 2.

ATE = 0.2, TT = 0.5942, TUT = −0.4823 and ∆IV
P (Z) =

K−1∑

`=1

∆LATE (p`, p`+1) λ` = −0.09

∆LATE (p`, p`+1) =
E (Y |P (Z) = p`+1) − E (Y |P (Z) = p`)

p`+1 − p`
=

β (p`+1 − p`) + σU1−U0

(
φ
(
Φ−1 (1 − p`+1)

)
− φ

(
Φ−1 (1 − p`)

))

p`+1 − p`

λ` = (p`+1 − p`)

K∑
i=1

(pi − E (P (Z)))
K∑

t>`

f (pi, pt)

Cov (Z1, D)
= (p`+1 − p`)

K∑
t>`

(pt − E (P (Z))) f (pt)

Cov (Z1, D)

Joint Probability Distribution of (Z1, Z2) and the Propensity Score
(joint probabilities in ordinary type (Pr(Z1 = z1, Z2 = z2)); propensity score in italics (Pr (D = 1|Z1 = z1, Z2 = z2)))

Z1\Z2 −1 0 1
−1 0.02 0.02 0.36

0.7309 0.6402 0.5409
0 0.3 0.01 0.03

0.6402 0.5409 0.4388
1 0.2 0.05 0.01

0.5409 0.4388 0.3408

Cov(Z1, Z2) = −0.5468
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Consider using Z1 as instrument

If Z1 and Z2 are negatively dependent and E (Z1 | P(Z ) > uD)
is not monotonic in uD , weights negative.

This nonmonotonicity is evident in Figure 6B.

This produces the pattern of negative weights shown in
Figure 6A.

Associated with two way flows.

Two way flows are induced by uncontrolled variation in Z2.
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Figure 4B: monotonicity, the extended Roy economy
Changing Z1 without controlling for Z2

Figure 2. Monotonicity
The Extended Roy Economy

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case
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Outcomes Choice Model

Y1 = α + β̄ + U1 D =

{
1 if Y1 − Y0 − γZ > 0
0 if Y1 − Y0 − γZ ≤ 0

Y0 = α + U0 with γZ = γ1Z1 + γ2Z2

Parameterization

(U1, U0) ∼ N (0,Σ) , Σ =

[
1 −0.9

−0.9 1

]
, α = 0.67, β̄ = 0.2, γ = (0.5, 0.5) (except in Case C)

Z1 = {−1, 0, 1} and Z2 = {−1, 0, 1}

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case

z −→ z′ z −→ z′ or z −→ z′′ z −→ z′

z = (0, 1) and z′ = (1, 1) z = (0, 1), z′ = (1, 1) and z′′ = (1,−1) z = (0, 1) and z′ = (1, 1)

γ is a random vector

γ̃ = (0.5, 0.5) and ˜̃γ = (−0.5, 0.5)

where γ̃ and ˜̃γ are two realizations of γ

D(γz) ≥ D(γz′) D(γz) ≥ D(γz′) or D(γz) < D(γz′′) D
(
˜̃γz

)
≥ D

(
˜̃γz′

)
and D (γ̃z) < D (γ̃z′)

For all individuals Depending on the value of z′ or z′′ Depending on value of γ
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Figure 6: IV weights and its components under discrete instruments when
Z1 is the instrument

Figure 4. IV Weight and Its Components under Discrete Instruments when Z1 is the Instrument
The Extended Roy Economy

A. IV Weights B. E(Z1|P (Z) > pc) and E(Z1)

0

0.2

0.4

0.6

0.8

1

λ
1

λ
2

λ
3

λ
4

-0.2

-1

-0.8

-0.6

-0.4

-0. 2

0

E(Z
1
)=-0.14

E(Z
1
|P(Z)>p

1
) E(Z

1
|P(Z)>p

2
) E(Z

1
|P(Z)>p

3
) E(Z

1
|P(Z)>p

4
)

The model is the same as the one presented below Figure 2. The values of the treatment parameters are the same as the
ones presented below Figure 3.

The model is the same as the one presented after figure 4.
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Figure 5C: IV weights and its components under discrete instruments when P(Z )

is the instrument (local average treatment effects)

Figure 3. IV Weight and Its Components under Discrete Instruments when P (Z) is the Instrument
The Extended Roy Economy

A. IV Weights B. E(P (Z)|P (Z) > p`) and E(P (Z))
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The model is the same as the one presented below Figure 2.

ATE = 0.2, TT = 0.5942, TUT = −0.4823 and ∆IV
P (Z) =

K−1∑

`=1

∆LATE (p`, p`+1) λ` = −0.09

∆LATE (p`, p`+1) =
E (Y |P (Z) = p`+1) − E (Y |P (Z) = p`)

p`+1 − p`
=

β (p`+1 − p`) + σU1−U0

(
φ
(
Φ−1 (1 − p`+1)

)
− φ

(
Φ−1 (1 − p`)

))

p`+1 − p`

λ` = (p`+1 − p`)

K∑
i=1

(pi − E (P (Z)))
K∑

t>`

f (pi, pt)

Cov (Z1, D)
= (p`+1 − p`)

K∑
t>`

(pt − E (P (Z))) f (pt)

Cov (Z1, D)

Joint Probability Distribution of (Z1, Z2) and the Propensity Score
(joint probabilities in ordinary type (Pr(Z1 = z1, Z2 = z2)); propensity score in italics (Pr (D = 1|Z1 = z1, Z2 = z2)))

Z1\Z2 −1 0 1
−1 0.02 0.02 0.36

0.7309 0.6402 0.5409
0 0.3 0.01 0.03

0.6402 0.5409 0.4388
1 0.2 0.05 0.01

0.5409 0.4388 0.3408

Cov(Z1, Z2) = −0.5468
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∆IV
Z1

=
K−1∑

ℓ=1

∆LATE (pℓ, pℓ+1)λℓ = 0.1833

λℓ = (pℓ+1 − pℓ)

I∑
i=1

(z1,i − E (Z1))
K∑
t>ℓ

f (z1,i , pt)

Cov (Z1,D)
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Joint probability distribution of (Z1,Z2) and the propensity score

Z1\Z2 −1 0 1
−1 0.02 0.02 0.36

0.7309 0.6402 0.5409
0 0.3 0.01 0.03

0.6402 0.5409 0.4388
1 0.2 0.05 0.01

0.5409 0.4388 0.3408

Cov(Z1,Z2) = −0.5468

(joint probabilities in ordinary type (Pr(Z1 = z1,Z2 = z2));
propensity score in italics (Pr (D = 1|Z1 = z1,Z2 = z2)))
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Conditional variable estimator and conditional local average treatment
effect when Z1 is the instrument (given Z2 = z2)

Z2 = −1 Z2 = 0 Z2 = 1

P (−1,Z2) = p3 0.7309 0.6402 0.5409
P (0,Z2) = p2 0.6402 0.5409 0.4388
P (1,Z2) = p1 0.5409 0.4388 0.3408

λ1 0.8418 0.5384 0.2860
λ2 0.1582 0.4616 0.7140

∆LATE (p1, p2) −0.2475 0.2497 0.7470
∆LATE (p2, p3) −0.7448 −0.2475 0.2497

∆IV
Z1|Z2=z2

−0.3262 0.0202 0.3920
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Conditional instrumental variable estimator

∆IV
Z1|Z2=z2

=

I−1∑
ℓ=1

∆LATE (pℓ, pℓ+1|Z2 = z2)λℓ|Z2=z2 =

I−1∑
ℓ=1

∆LATE (pℓ, pℓ+1|Z2 = z2)λℓ|Z2=z2

∆LATE (pℓ, pℓ+1|Z2 = z2) =
E (Y |P(Z) = pℓ+1,Z2 = z2)− E (Y |P(Z) = pℓ,Z2 = z2)

pℓ+1 − pℓ

λℓ|Z2=z2 = (pℓ+1 − pℓ)

I∑
i=1

(
z1,i − E (Z1|Z2 = z2)

) I∑
t>ℓ

f
(
z1,i , pt |Z2 = z2

)
Cov (Z1,D)

= (pℓ+1 − pℓ)

I∑
t>ℓ

(z1,t − E (Z1|Z2 = z2)) f (z1,t , pt |Z2 = z2)

Cov (Z1,D)
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Conditional instrumental variable estimator

Probability Distribution of Z1 Conditional on Z2 (Pr(Z1 = z1|Z2 = z2))

z1 Pr(Z1 = z1|Z2 = −1) Pr(Z1 = z1|Z2 = 0) Pr(Z1 = z1|Z2 = 1)
−1 0.0385 0.25 0.9
0 0.5769 0.125 0.075
1 0.3846 0.625 0.025
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Continuous instruments

Figure 7 plots E (Y | P(Z )) and MTE for the models displayed
at the base of the figure. In cases I and II, β ⊥⊥ D.

In case I, this is trivial since β is a constant. In case II, β is
random but selection into D does not depend on β.

Case III is the model with essential heterogeneity (β ⊥⧸⊥ D).

Figure 7A depicts E (Y | P(Z )) in the three cases.
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Figure 7: conditional expectation of Y on P(Z ) and the marginal
treatment effect (MTE)

Figure 5. Conditional Expectation of Y on P (Z) and the Marginal Treatment Effect (MTE)
The Extended Roy Economy

A. E(Y |P (Z) = p) B. ∆MTE(uD)
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Outcomes Choice Model

Y1 = α+ β̄ + U1 D =

{
1 if D∗ > 0
0 if D∗ ≤ 0

Y0 = α+ U0

Case I Case II Case III

U1 = U0 U1 − U0 ⊥⊥ D U1 − U0 ⊥⧸⊥ D
β̄ =ATE=TT=TUT=IV β̄ =ATE=TT=TUT=IV β̄ =ATE̸=TT̸=TUT̸=IV

Parameterization

Cases I, II and III Cases II and III Case III

α = 0.67 (U1,U0) ∼ N (0,Σ) D∗ = Y1 − Y0 − γZ

β̄ = 0.2 with Σ =

[
1 −0.9

−0.9 1

]
Z ∼ N (µZ ,ΣZ )

µZ = (2,−2) and ΣZ=

[
9 −2
−2 9

]
γ = (0.5, 0.5)
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Cases I and II make E (Y | P(Z )) linear in P(Z ) (see equation
23). Case III is nonlinear in P(Z ) which arises when β ⊥⧸⊥ D.
The derivative of E (Y | P(Z )) is presented in the right panel
(Figure 7B).

It is a constant in cases I and II (flat MTE) but declining in
UD = P(Z ) for the case with selection on the gain.
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MTE gives the mean marginal return for persons who have
utility P(Z ) = uD (P(Z ) = uD is the margin of indifference).

Figure 7 highlights that MTE (and LATE) identify average
returns for persons at the margin of indifference at different
levels of the mean utility function P(Z ).

Figure 8 plots MTE and LATE for different intervals of uD
using the model plotted in Figure 7.

LATE is the chord of E (Y | P(Z )) evaluated at different
points.

The relationship between LATE and MTE is presented in the
right panel of Figure 8.
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Figure 8: the local average treatment effect

Figure 6. The Local Average Treatment Effect
The Extended Roy Economy

A. E(Y |P (Z) = p) and ∆LATE(pc, pc+1) B. ∆MTE(uD) and ∆LATE(pc, pc+1)
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LATE(0.1,0.35)= 1.797
LATE(0.6,0.9)= -1.17
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Figure 8: the local average treatment effect

∆LATE(pℓ, pℓ+1) =
E (Y |P(Z ) = pℓ+1)− E (Y |P(Z ) = pℓ)

pℓ+1 − pℓ

=

pℓ+1∫
pℓ

∆MTE(uD)duD

pℓ+1 − pℓ

∆LATE(0.1, 0.35) = 1.719

∆LATE(0.6, 0.9) = −1.17
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Figure 8: the local average treatment effect

Outcomes Choice Model

Y1 = α+ β̄ + U1 D =

{
1 if D∗ > 0
0 if D∗ ≤ 0

Y0 = α+ U0 with D∗ = Y1 − Y0 − γZ

Parameterization

(U1,U0) ∼ N (0,Σ) and Z ∼ N (µZ ,ΣZ )

Σ =

[
1 −0.9

−0.9 1

]
, µZ = (2,−2) and ΣZ=

[
9 −2
−2 9

]

α = 0.67, β̄ = 0.2, γ = (0.5, 0.5)
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The treatment parameters as a function of p associated with
case III are plotted in Figure 9.

MTE is the same as that reported in Figure 7.

ATE is the same for all p.

∆TT (p) = E (Y1 − Y0 | D = 1,P(Z ) = p) declines in p
(equivalently, it declines in uD).

LATE (p, p′) =
∆TT (p′)p′ −∆TT (p)p

p′ − p
, p′ ̸= p

MTE =
∂[∆TT (p)p]

∂p
.
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Parameter Definition Under Assumptions (*)

Marginal Treatment Effect E [Y1 − Y0|D∗ = 0, P (Z) = p] β̄ + σU1−U0Φ−1(1− p)

Average Treatment Effect E [Y1 − Y0|P (Z) = p] β

Treatment on the Treated E [Y1 − Y0|D∗ > 0, P (Z) = p] β̄ + σU1−U0
φ(Φ−1(1−p))

p

Treatment on the Untreated E [Y1 − Y0|D∗ ≤ 0, P (Z) = p] β̄ − σU1−U0
φ(Φ−1(1−p))

1−p

OLS/Matching on P (Z) E [Y1|D∗ > 0, P (Z) = p]−E [Y0|D∗ ≤ 0, P (Z) = p] β̄ +

µ
σ2U1−σU1,U0√

σU1−U0

¶³
1−2p
p(1−p)

´
φ
¡
Φ−1(1− p)

¢
Note: Φ (·) and φ (·) represent the cdf and pdf of a standard normal distribution, respectively. Φ−1 (·) represents the inverse of Φ (·) .

(*): The model in this case is the same as the one presented below Figure 6.
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Figure 9: treatment parameters and OLS matching as a function of
P(Z ) = p

Figure 7. Treatment Parameters and OLS/Matching as a function of P (Z) = p
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Another nonmonotonicity example

A mixture of two normals:

Z ∼ P1N(µ1,Σ1) + P2N(µ2,Σ2)

P1 is the proportion in population 1, P2 is the proportion in
population 2 and P1 + P2 = 1.
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Another nonmonotonicity example

Conventional normal outcome selection model generated by the
parameters at the base of Figure 11.

The discrete choice equation is a conventional probit:

Pr (D = 1 | Z = z) = Φ
(

γz
σV

)
.

The ∆MTE(v),

E (Y1 − Y0 | V = v) = µ1 − µ0 +
Cov (U1 − U0,V )

Var (V )
v .

We show results for models with vector Z that satisfies (IV-1)
and (IV-2) and with γ > 0 componentwise.
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Outcomes Choice Model

Y1 = α+ β̄ + U1 D =

{
1 if D∗ > 0
0 if D∗ ≤ 0

Y0 = α+ U0 D∗ = Y1 − Y0 − γZ
and V = − (U1 − U0)

Parameterization

(U1,U0) ∼ N (0,Σ) , Σ =

[
1 −0.9

−0.9 1

]
, α = 0.67, β̄ = 0.2
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Z = (Z1,Z2) ∼ p1N(κ1,Σ1) + p2N(κ2,Σ2)

p1 = 0.45, p2 = 0.55 ; Σ1 =

[
1.4 0.5
0.5 1.4

]

Cov(Z1, γZ ) = γΣ1
1 = 0.98 ; γ = (0.2, 1.4)
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Figure 11: marginal treatment effect and IV weights using Z1 as the
instrument when Z = (Z1,Z2) ∼ p1N(µ1,Σ1) + p2N(µ2,Σ2) for different
values of Σ2

Weights MTE

Figure 8. Marginal Treatment Effect and IV Weights using Z1 as the Instrument when
Z = (Z1, Z2) ∼ p1N(κ1,Σ1) + p2N(κ2,Σ2) for different values of Σ2

A. IV Weights B. ∆MTE (v)
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Outcomes Choice Model

Y1 = α + β̄ + U1 D =

{
1 if D∗ > 0
0 if D∗ ≤ 0

Y0 = α + U0 D∗ = Y1 − Y0 − γZ and V = − (U1 − U0)

Parameterization

(U1, U0) ∼ N (0,Σ) , Σ =

[
1 −0.9

−0.9 1

]
, α = 0.67, β̄ = 0.2

Z = (Z1, Z2) ∼ p1N(κ1,Σ1) + p2N(κ2,Σ2)

p1 = 0.45, p2 = 0.55 ; Σ1 =

[
1.4 0.5
0.5 1.4

]

Cov(Z1, γZ) = γΣ1
1 = 0.98 ; γ = (0.2, 1.4)

Table 3. IV estimator and Cov(Z2, γZ) associated with each value of Σ2

Weights Σ2 κ1 κ2 IV ATE TT TUT Cov(Z2, γZ) = γΣ1
2

ω1

[
0.6 −0.5
−0.5 0.6

] [
0 0

] [
0 0

]
0.434 0.2 1.401 −1.175 −0.58

ω2

[
0.6 0.1
0.1 0.6

] [
0 0

] [
0 0

]
0.078 0.2 1.378 −1.145 0.26

ω3

[
0.6 −0.3
−0.3 0.6

] [
0 −1

] [
0 1

]
−2.261 0.2 1.310 −0.859 −0.30
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Table 3: IV estimator and Cov(Z2, γ
′Z ) associated with each value of Σ2

Table 3. IV estimator and Cov(Z2, γZ) associated with each value of Σ2
Weights Σ2 κ1 κ2 IV ATE TT TUT Cov(Z2, γZ) = γΣ12

ω1

∙
0.6 −0.5
−0.5 0.6

¸ £
0 0

¤ £
0 0

¤
0.434 0.2 1.401 −1.175 −0.58

ω2

∙
0.6 0.1
0.1 0.6

¸ £
0 0

¤ £
0 0

¤
0.078 0.2 1.378 −1.145 0.26

ω3

∙
0.6 −0.3
−0.3 0.6

¸ £
0 −1 ¤ £

0 1
¤ −2.261 0.2 1.310 −0.859 −0.30

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 176 / 386



Examples GED Separability Conclusion Ext References Appendix A Appendix B

Consider the study of the GED.

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 177 / 386



Examples GED Separability Conclusion Ext References Appendix A Appendix B

Figure 12: frequency of the propensity score by final schooling decision

Dropouts and GEDs – males of the NLSY at age 30

Figure 1. Frequency of the Propensity Score by 
Final Schooling Decision

Dropouts and GEDs - Males of the NLSY at age 30
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Table 4: instrumental variables estimates

Sample of GEDs and dropouts – males at age 30

Instruments

Full Sample
(a)

Common Support
(b)

Parametric
(c)

Polynomial
(d)

Nonparametric
(e)

Father Highest Grade Completed 0.194 0.005 -0.254 -0.360 -0.333

(0.384) (0.391) (0.151) (0.160) (0.153)

Mother Highest Grade Completed 1.106 0.588 -0.276 -0.380 -0.334

(3.030) (2.981) (0.153) (0.172) (0.166)

Number of Siblings -0.311 -0.471 -0.239 -0.327 -0.311

(0.618) (0.725) (0.149) (0.155) (0.153)

Ged Cost 1.938 1.994 -0.269 -0.222 -0.266

(2.414) (2.544) (0.204) (0.380) (0.389)

Family income in 1979 0.656 0.636 -0.252 -0.363 -0.335

(0.534) (0.571) (0.149) (0.161) (0.157)

Dropout's local wage at age 17 -1.812 -1.612 0.150 -0.503 -0.776

(1.228) (1.037) (0.499) (0.674) (0.593)

High School Graduate's local wage at age 17 -2.197 -1.872 -0.618 -0.232 0.039

(1.441) (1.143) (0.406) (0.993) (1.709)

Dropout's local unemployment rate at age 17 0.164 0.203 -0.216 -0.269 -0.318

(1.071) (0.853) (0.305) (0.559) (0.288)

High School Graduate's local unemployment rate at age 17 0.142 0.202 0.041 -0.205 -0.396

(1.537) (1.261) (6.440) (3.108) (2.987)

Propensity Score 
(d)

-0.276 -0.305 -0.257 -0.349 -0.328

(0.134) (0.140) (0.150) (0.157) (0.155)

(f) The propensity score (Prob(D=1|Z=z)) is computed using as controls the instruments presented in the table as well as two dummy variables controlling for the place 

of residente at age 14 (south and urban), and a set of dummy variables controlling for the year of birth (1958-1963).

Standard IV 
(f)

Notes: (*) We excluded the oversample of poor whites, the military sample, and those who attended college. The cost of the GED corresponds to the average testing fee

per GED battery by state among 1993 and 2000 (Source: GED Statistical Report). Average local wage for dropouts and high school graduates correspond to the average

blue-collar wages in the state of residence for each group respectively, and local unemployment rate corresponds to the unemployment rate in the county of residence.

Average local wages, local unemployment rates, mother's and father's education all refer the level at age 17.

Table1. Instrumental Variables Estimates 

Sample of GED and Dropouts - Males at age 30 
(*)

IV-MTE
(f)

(Common Support)

(a) The IV estimates and the standard deviations (in parenthesis) are computed applying the traditional formulae to the full sample. The number of observations in our

sample is 780. (b) The IV estimates and the standard deviations (in parenthesis) are computed applying the traditional formulae to the common support sample. This

sample contains only observations for which the estimated propensity score belongs to the common support of the propensity score between the control (dropouts) and

treatment group (GEDs). The number of observations in our sample is 756. (c) The treatment parameters are estimated by taking the weighted sum of the MTE

estimated using the parametric approach. (d) The treatment parameters are estimated by taking the weighted sum of the MTE estimated using a polynomial of degree 4 to

approximate E(Y|P). (e) The treatment parameters are estimated by taking the weighted sum of the MTE estimated using the nonparametric approach. In (c), (d) and (e)

the standard deviations (in parenthesis) are computed using bootstrapping (100 draws).
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Figure 13: MTE of the GED with confidence interval

NLSY – sample of the GEDs and dropouts – males at age 30
2
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MTE CI(0.025,0.975)

The dependent variable in the outcome equation is hourly earnings at age 30. The controls in the outcome equations are tenure, tenure squared, experience,
corrected AFQT, black (dummy), hispanic (dummy), marital status, and years of schooling. Let D=0 denote dropout status, and D=1 denote GED status. The model
for D (choice model) includes as controls the corrected AFQT, number of siblings, father’s education, mother’s education, family income at age 17, local GED
costs, broken home at age 14, average local wage at age 17 for dropouts and high school graduates, local unemployment rate at age 17 for dropouts and high
school graduates, the dummy variables black and hispanics,  and a set of dummy variables controlling for the year of birth. The choice model is estimated
using a probit model. In computing the MTE, the bandwidth in the first step is selected using the leave one out cross validation method. In the 
second step, following Carneiro (2003) and Heckman et.al. (1998), we set the bandwidht to 0.3. We use biweight kernel functions.

NLSY  Sample of GEDs and Dropouts  Males at age 30

Figure 2. MTE of the GED with Confidence Interval
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Figure 14: IV weights
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The dependent variable in the outcome equation is hourly earnings at age 30. The controls in the outcome equations are tenure, tenure squared, experience,
corrected AFQT, black (dummy), hispanic (dummy), marital status, and years of schooling. Let D=0 denote dropout status, and D=1 denote GED status. The model
for D (choice model) includes as controls the corrected AFQT, number of siblings, father’s education, mother’s education, family income at age 17, local GED
costs, broken home at age 14, average local wage at age 17 for dropouts and high school graduates, local unemployment rate at age 17 for dropouts and high
school graduates, the dummy variables black and hispanics,  and a set of dummy variables controlling for the year of birth. The choice model is estimated
using a probit model. In computing the MTE, the bandwidth in the first step is selected using the leave one out cross validation method. In the 
second step, following Carneiro (2003) and Heckman et.al. (1998), we set the bandwidht to 0.3. We use biweight kernel functions.

Propensity Score vs Father’s Highest Grade Completed as the Instrument
NLSY  Sample of GEDs and Dropouts  Males at age 30

Figure 3. IV Weights 
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Figure 15: IV weights
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HS graduates’s local wage at age 17 Propensity Score

The dependent variable in the outcome equation is hourly earnings at age 30. The controls in the outcome equations are tenure, tenure squared, experience,
corrected AFQT, black (dummy), hispanic (dummy), marital status, and years of schooling. Let D=0 denote dropout status, and D=1 denote GED status. The model
for D (choice model) includes as controls the corrected AFQT, number of siblings, father’s education, mother’s education, family income at age 17, local GED
costs, broken home at age 14, average local wage at age 17 for dropouts and high school graduates, local unemployment rate at age 17 for dropouts and high
school graduates, the dummy variables black and hispanics,  and a set of dummy variables controlling for the year of birth. The choice model is estimated
using a probit model. In computing the MTE, the bandwidth in the first step is selected using the leave one out cross validation method. In the 
second step, following Carneiro (2003) and Heckman et.al. (1998), we set the bandwidht to 0.3. We use biweight kernel functions.

Propensity Score vs HS graduates’s local wage at age 17 as the Instrument
NLSY  Sample of GEDs and Dropouts  Males at age 30

Figure 5. IV Weights 
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Table 5: treatment parameter estimates

Treatment Parameter Parametric 
(b)

Polynomial
(c)

Nonparametric
(d)

Treatment on the Treated -0.152 -0.183 -0.241

(0.166) (0.201) (0.180)

Treatment on the Untreated -0.369 -0.119 -0.304

(0.170) (0.231) (0.223)

Average Treatment Effect -0.279 -0.145 -0.278

(0.151) (0.184) (0.174)

LATE(0.38,0.62) -0.335 -0.404 -0.261

(0.160) (0.275) (0.221)

LATE(0.55,0.79) -0.453 0.106 -0.327

(0.205) (0.377) (0.416)

LATE(0.21,0.45) -0.216 -0.462 -0.396

(0.153) (0.210) (0.164)

Table 2. Treatment Parameter Estimates 

Sample of GED and Dropouts - Males at age 30 
(a)

Notes: (a) We excluded the oversample of poor whites, the military sample, and those who attended college. (b) The

treatment parameters are estimated by taking the weighted sum of the MTE estimated using the parametric approach.

(c) The treatment parameters are estimated by taking the weighted sum of the MTE estimated using A polynomial of

degree 4 to approximate E(Y|P). (d) The treatment parameters are estimated by taking the weighted sum of the MTE

estimated using the nonparametric approach. The standard deviations (in parenthesis) are computed using

bootstrapping (100 draws).
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Relaxing additive separability in the choice equation and allowing for
random coefficient choice models

The analysis of this lecture and the entire recent literature on
instrumental variables estimators for models with essential
heterogeneity relies on the assumption that the treatment
choice equation is in additively separable form (14).

Imparts an asymmetry to the entire instrumental variable
enterprise for estimating treatment effects.
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Relaxing additive separability in the choice equation and allowing for
random coefficient choice models

This asymmetry is also present in conventional selection models
even in their semiparametric version.

Parameters can be defined as weighted averages of an MTE
but MTE and the derived parameters cannot be identified using
any instrumental variables strategy.
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Relaxing additive separability in the choice equation and allowing for
random coefficient choice models

Natural benchmark nonseparable model:

random coefficient model of choice D = 1 (γZ ≥ 0)
γ is a random coefficient vector and γ ⊥⊥ (Z ,U0,U1) .
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Relaxing additive separability in the choice equation and allowing for
random coefficient choice models

Consider a more general case.

Relax the separability assumption of equation (14).

D∗ = µD (Z ,V ) , D = 1 (D∗ ≥ 0) , (33)

µD (Z ,V ) is not necessarily additively separable in Z and V , and V
is not necessarily a scalar.
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Relaxing additive separability in the choice equation and allowing for
random coefficient choice models

We maintain assumptions (A-1)–(A-2) and (A-5).

As we have shown, relationships among treatment parameters
as weighted averages of generator functions (not MTEs) hold
in this case even if we fail monotonicity.
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Figure 4C: monotonicity, the extended Roy economy
Random coefficient case

Figure 2. Monotonicity
The Extended Roy Economy

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case
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Outcomes Choice Model

Y1 = α + β̄ + U1 D =

{
1 if Y1 − Y0 − γZ > 0
0 if Y1 − Y0 − γZ ≤ 0

Y0 = α + U0 with γZ = γ1Z1 + γ2Z2

Parameterization

(U1, U0) ∼ N (0,Σ) , Σ =

[
1 −0.9

−0.9 1

]
, α = 0.67, β̄ = 0.2, γ = (0.5, 0.5) (except in Case C)

Z1 = {−1, 0, 1} and Z2 = {−1, 0, 1}

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case

z −→ z′ z −→ z′ or z −→ z′′ z −→ z′

z = (0, 1) and z′ = (1, 1) z = (0, 1), z′ = (1, 1) and z′′ = (1,−1) z = (0, 1) and z′ = (1, 1)

γ is a random vector

γ̃ = (0.5, 0.5) and ˜̃γ = (−0.5, 0.5)

where γ̃ and ˜̃γ are two realizations of γ

D(γz) ≥ D(γz′) D(γz) ≥ D(γz′) or D(γz) < D(γz′′) D
(
˜̃γz

)
≥ D

(
˜̃γz′

)
and D (γ̃z) < D (γ̃z′)

For all individuals Depending on the value of z′ or z′′ Depending on value of γ
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Figure 4C: monotonicity, the extended Roy economy
Random coefficient case

z −→ z ′

z = (0, 1) and z ′ = (1, 1)

γ is a random vector

γ̃ = (0.5, 0.5) and ˜̃γ = (−0.5, 0.5)

where γ̃ and ˜̃γ are two realizations of γ

D
(
˜̃γz
)
≥ D

(
˜̃γz ′
)
and D (γ̃z) < D (γ̃z ′)

Depending on value of γ
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Relaxing additive separability in the choice equation and allowing for
random coefficient choice models

In the additively separable case, MTE has three equivalent
interpretations:

1 UD(= FV (V )) is the only unobservable in the first stage
decision rule, and MTE is the average effect of treatment given
the unobserved characteristics in the decision rule (UD = uD);

2 MTE is the average effect of treatment given that the
individual would be indifferent between treatment or not if
P (Z ) = uD , where P(Z ) is a mean utility function;

3 the MTE is an average effect conditional on the additive error
term from the first stage choice model.
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Relaxing additive separability in the choice equation and allowing for
random coefficient choice models

Under all interpretations of the MTE, and under the
assumptions (A-1)–(A-5), MTE can be identified by LIV.

Three definitions are not the same in the general nonseparable
case (33). Heckman and Vytlacil (2001, 2005) extend MTE to
the nonseparable case.
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Failure of index sufficiency in general nonseparable models

For any version of the nonseparable model, index sufficiency
fails.

Define Ω (z) = {v : µD (z , v) ≥ 0}.

In the additively separable case, P (z) ≡ Pr (D = 1 | Z = z)
= Pr (VD ∈ Ω (z)) , P (z) = P (z ′) ⇔ Ω (z) = Ω (z ′) .
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This produces index sufficiency so the propensity score orders
the unobservables generating choices.

In the more general case (33), it is possible to have (z , z ′)
values such that P (z) = P (z ′) and Ω (z) ̸= Ω(z ′) so index
sufficiency does not hold.

The Z ’s enter the model more generally, and the propensity
score no longer plays the central role it plays in separable
models.
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The support of the propensity score

The nonseparable model can also restrict the support of P (Z ).

For example, consider a normal random coefficient choice
model with a scalar regressor (Z = (1,Z1)).

Assume γ0 ∼ N (0, σ2
0), γ1 ∼ N (γ̄1, σ

2
1), and γ0 ⊥⊥ γ1.

P (z1) = Φ

(
γ̄1z1√

σ2
0 + σ2

1z
2
1

)
.

Φ is the cumulative distribution of a standard normal.

σ2
1 > 0.
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The support is strictly within the unit interval.

The case when σ2
0 = 0, the support is one point,

(
P (z) = Φ

(
γ̄1
σ1

))
.

Cannot, in general, identify ATE, TT or any treatment effect
requiring the endpoints 0 or 1 using IV or control function
strategies.
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Violations of uniformity

One source of violations of monotonicity is nonseparability
between Z and V in (33).

The random coefficient model is one intuitive model where
separability fails.

Even if (33) is separable in Z and V , uniformity may fail in the
case of vector Z , where we use only one function of Z as the
instrument, and do not condition on the remaining sources of
variation in Z .

If we condition appropriately, we retain monotonicity but get a
new form of instrumental variable estimator that is sensitive to
the specification of the Z not used as an instrument.

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 197 / 386



Examples GED Separability Conclusion Ext References Appendix A Appendix B

Summary and conclusion

We have studied the estimation of treatment effects in a model

Y = α + βD + ε

We have contrasted this with a structural Roy model.

Considered cases where β is constant and where β is
heterogeneous.

In the heterogeneous case D ⊥⧸⊥ ε; β ⊥⧸⊥ D; β ⊥⧸⊥ ε.
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Summary and conclusion

Consider what IV estimates and its relationship with Economic
Choice and Selection Models.

In general heterogeneous response models, the two approaches
have strong similarities.

Selection models identify levels (conditional means).

IV models identify slopes.
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Summary and conclusion

We lose constants in estimating IV models.

We get back level parameters by integration.

This accounts for the weighting schemes that appear in the
literature.

We must recover the constants to get levels parameters.
(Classical treatment effects like ATE and TT).

We restore the constants to estimate classical treatment
parameters using the same limit arguments used to identify
selection models.
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Summary and conclusion

If we are only concerned with slope treatment parameters, we
can avoid limit arguments in IV or selection models.

Explore the role of “monotonicity” or “uniformity” assumptions
in IV.

Concept used by Imbens and Angrist (1994) to define LATE.

Monotonicity is not needed to define treatment parameters or
establish the relationship among them (Heckman and Vytlacil).

Under monotonicity or uniformity, LIV = MTE.
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Summary and conclusion

Can express all classical treatment parameters as weighted
averages of MTE.

Monotonicity is needed to use IV to identify MTE and LATE.

Treatment parameters can be defined; relationships among
them established and IV weights defined without monotonicity
or uniformity.
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Summary and conclusion

Much of the literature is for two outcome models.

Angrist and Imbens (1995) consider the case of an ordered
choice model with a scalar instrument that affects choices at all
margins.

We develop the case of a general ordered choice model with
transition-specific instruments.

We also develop a general unordered model.

The most general case requires a marriage of semiparametric
selection models (e.g. Heckman, 1990) and IV intuition to
identify general parameters.
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Summary and conclusion

Need to identify semiparametric discrete choice models to get
classical pairwise properties.

We have an analysis for bounds which we defer to another
occasion.
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Extensions to More than Two Outcomes

Angrist and Imbens (1995) extend their analysis of LATE to an
ordered choice model with outcomes generated by a scalar
instrument that can assume multiple values.

From their analysis of the effect of schooling on earnings, it is
unclear even under a strengthened “monotonicity” condition,
whether IV estimates the effect of a change of schooling on
earnings for a well defined margin of choice.

To summarize their analysis, let S̄ be the number of possible
outcome states with associated outcomes Ys and choice
indicators Ds , s = 1, . . . , S̄ .
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The s in their analysis correspond to different levels of
schooling.

For any two instrument values Z = zi and Z = zj with zi > zj ,

we can define associated indicators {Ds(zi)}S̄s=1 and

{Ds(zj)}S̄s=1, where Ds(zi) = 1 if a person assigned instrument
value zi chooses state s.

As in the two outcome model, the instrument Z is assumed to
be independent of the potential outcomes {Ys}S̄s=1 as well as
the associated indicator functions defined by fixing Z at zi and
zj .

Observed schooling for instrument zj is S(zj) =
∑S̄

s=1 sDs(zj).

Observed outcomes with this instrument are
Y (zj) =

∑S̄
s=1 YsDs(zj).
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Angrist and Imbens show that IV (with Z = zi and zj) applied
to S in a two stage least squares regression of Y on S identifies
a “causal parameter”

∆IV =
S̄∑

s=2

{E (Ys − Ys−1 | S(zi) ≥ s > S(zj))} (34)

× Pr (S(zi) ≥ s > S(zj))∑S̄
s=2 Pr (S(zi) ≥ s > S(zj))

.

This “causal parameter” is a weighted average of the gross
return from going from s − 1 to s for persons induced by the
change in the instrument to move from any schooling level
below s to any schooling level s or above.
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Thus the conditioning set defining the s component of IV
includes people who have schooling below s − 1 at instrument
value Z = zj and people who have schooling above level s at
instrument value Z = zi .

In this sum, the average return experienced by some of the
people in the conditioning set for each component conditional
expectation does not correspond to the average outcome
corresponding to the gain in the argument of the expectation.

In the case where S̄ = 2, agents face only two choices and the
margin of choice is well defined.
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Agents in each conditioning set are at different margins of
choice.

The weights are positive but, as noted by Angrist and Imbens,
persons can be counted multiple times in forming the weights.

When they generalize their analysis to multiple-valued
instruments, they use the Yitzhaki (1989) weights.
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Whereas the weights in equation (34) can be constructed
empirically, the terms in braces cannot be identified by any
standard IV procedure.

We present decompositions with components that are
recoverable, whose weights can be estimated from the data and
that are economically interpretable.
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We generalize LATE to a multiple outcome case where we can
identify agents at different well defined margins of choice.

Specifically, we (1) analyze both ordered and unordered choice
models; (2) analyze outcomes associated with choices at
various well defined margins; and (3) develop models with
multiple instruments that can affect different margins of choice
differently.

With our methods, we can define and estimate a variety of
economically interpretable parameters whereas the
Angrist-Imbens analysis produces a single “causal parameter”
(34) that does not answer any well defined policy problem.

We first consider an explicit ordered choice model and
decompose the IV into policy useful, identifiable, components.
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Analysis of an Ordered Choice Model

Ordered choice models arise in many settings.

In schooling models, there are multiple grades.

One has to complete grade s − 1 to proceed to grade s.

The ordered choice model has been widely used to fit data on
schooling transitions (Cameron and Heckman, 1998; Harmon
and Walker, 1999).
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Its nonparametric identifiability has been studied (Carneiro,
Hansen, and Heckman, 2003) and Cunha and Heckman (2007).

It can also be used as a duration model for dynamic treatment
effects with associated outcomes as in Cunha and Heckman
(2007).

It also represents the “vertical” model of the choice of product
quality (Bresnahan, 1987; Prescott and Visscher, 1977; Shaked
and Sutton, 1982) .
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Our analysis generalizes the preceding analysis for the binary
model in a parallel way.

Write potential outcomes as

Ys = µs(X ,Us) s = 1, . . . , S̄ .

The S̄ could be different schooling levels or product qualities.

We define latent variables D∗
S = µD(Z )− V where

Ds = 1[Cs−1(Ws−1) < µD(Z )−V ≤ Cs(Ws)], s = 1, . . . , S̄ ,

and the cutoff values satisfy

Cs−1(Ws−1) ≤ Cs(Ws), C0(W0) = −∞ and CS̄(WS̄) = ∞.

The cutoffs used to define the intervals are allowed to depend
on observed (by the economist) regressors Ws .

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 215 / 386



Examples GED Separability Conclusion Ext References Appendix A Appendix B

We extend the analysis to allow the cutoffs to depend on
unobserved regressors as well, following structural analysis
along these lines by Carneiro et al. (2003) and Cunha and

Heckman (2007). Observed outcomes are: Y =
∑S̄

s=1 YsDs .

The Z shift the index generally, the Ws affect s-specific
transitions.

Thus, in a schooling example, Z could include family
background variables while Ws could include college tuition or
opportunity wages for unskilled labor.
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Collect the Ws into W = (W1, . . . ,WS̄), and the Us into
U = (U1, . . . ,US̄).

Larger values of Cs(Ws) make it more likely that Ds = 1.

The inequality restrictions on the Cs(Ws) functions play a
critical role in defining the model and producing its statistical
implications.
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Analogous to the assumptions made for the binary outcome
model, we assume

(OC-1)

(Us ,V ) ⊥⊥ (Z ,W )|X, s = 1, . . . , S̄ . (Conditional Independence
of the Instruments).
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(OC-2)

µD(Z ) is a nondegenerate random variable conditional on X and W .
(Rank Condition).
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(OC-3)

The distribution of V is continuous.
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(OC-4)

E (|Ys |) < ∞, s = 1, . . . , S̄ . (Finite Means).
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(OC-5)

0 < Pr(Ds = 1|X ) < 1 for s = 1, . . . , S̄ for all X . ( In large
samples, there are some persons in each treatment state).
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(OC-6)

For s = 1, . . . , S̄ − 1, the distribution of Cs (Ws) conditional on X ,
Z and the other Cj (Wj), j = 1, . . . , S̄ j ̸= s, is nondegenerate and
continuous.
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Assumption (OC-1) to (OC-5) play roles analogous to their
counterparts in the two outcome model.

(OC-6) is a new condition that is key to identification of the
∆MTE defined below for each transition.

It assumes that we can vary the choice sets of agents at
different margins of schooling choice without affecting other
margins of choice.

A necessary condition for (OC-6) to hold is that at least one
element of Ws is nondegenerate and continuous conditional on
X ,Z and Cj(Wj) for j ̸= s.
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Intuitively, one needs an instrument (or source of variability) for
each transition.

The continuity of the regressor allows us to differentiate with
respect to Cs(Ws), like we differentiated with respect to P(Z )
to estimate the MTE in the analysis of the two outcome model.
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The analysis of Angrist and Imbens (1995) discussed in the
introduction to this section makes independence and
monotonicity assumptions that generalize their earlier work.

They do not consider estimation of transition-specific
parameters as we do, or even transition-specific LATE.

We present a different decomposition of the IV estimator where
each component can be recovered from the data, and where
the transition-specific MTEs answer well defined and
economically interpretable policy evaluation questions.
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The probability of Ds = 1 given X ,Z and W is generated by an
ordered choice model:

Pr (Ds = 1 | W ,Z ,X ) ≡ Ps(Z ,W ,X )

= Pr (Cs−1(Ws−1) < µD(Z )− V ≤ Cs(Ws) | X ) .

Analogous to the binary case, we can define
UD = FV (V |X = x) so UD ∼ Unif[0, 1] under our assumption
that the distribution of V is absolutely continuous with respect
to Lebesgue measure.

The probability integral transformation used extensively in the
binary choice model is somewhat less useful for analyzing
ordered choices, so we work with both UD and V in this section
of the paper.
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Monotonic transformations of V induce monotonic
transformations of µD (Z )− Cs (Ws), but one is not free to
form arbitrary monotonic transformations of µD (Z ) and
Cs (Ws) separately.

Using the probability integral transformation, the expression for
choice s is Ds = 1[FV (µD(Z )− Cs−1(Ws−1)) > UD ≥
FV (µD(Z )− Cs(Ws))].

Keeping the conditioning on X implicit, we define
Ps(Z ,W ) = FV (µD(Z )−Cs−1(Ws−1))−FV (µD(Z )−Cs(Ws)).

It is convenient to work with the probability that S > s,
πs(Z ,Ws) = FV (µD(Z )− Cs(Ws)) =

Pr
( ∑S̄

j=s+1 Dj = 1
∣∣∣ Z ,Ws

)
, πS̄(Z ,WS̄) = 0, π0(Z ,W0) = 1

and Ps(Z ,W ) = πs−1(Z ,Ws−1)− πs(Z ,Ws).
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The transition-specific ∆MTE for the transition from s to s + 1
is defined in terms of UD .

∆MTE
s,s+1(x , uD) = E (Ys+1 − Ys | X = x ,UD = uD), s = 1, . . . , S̄ − 1.

Alternatively, one can condition on V .

Analogous to the analysis of the earlier sections of this paper,
when we set uD = πs(Z ,Ws) we obtain the mean return to
persons indifferent between s and s + 1 at mean level of utility
πs(Z ,Ws).
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In this notation, keeping X implicit, the mean outcome Y ,
conditional on (Z ,W ), is the sum of the mean outcomes
conditional on each state weighted by the probability of being
in each state summed over all states:

E (Y |Z ,W ) =
S̄∑

s=1

E (Ys | Ds = 1,Z ,W ) Pr(Ds = 1 | Z ,W ) (35)

=
S̄∑

s=1

∫ πs−1(Z ,Ws−1)

πs (Z ,Ws )

E (Ys | UD = uD)duD ,

where we use conditional independence assumption (OC-1) to
obtain the final expression.
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Analogous to the result for the binary outcome model, we
obtain the index sufficiency restriction
E (Y |Z ,W ) = E (Y | π(Z ,W )), where
π(Z ,W ) = [π1(Z ,W1), . . ., πS̄−1(Z ,WS̄−1)].

The choice probabilities encode all of the influence of (Z ,W )
on outcomes.
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We can identify πs(z ,ws) for (z ,ws) in the support of the
distribution of (Z ,Ws) from the relationship

πs(z ,ws) = Pr(
∑S̄

j=s+1Dj = 1 | Z = z ,Ws = ws).

Thus E (Y | π(Z ,W ) = π) is identified for all π in the support
of π(Z ,W ).

Assumptions (OC-1), (OC-3), and (OC-4) imply that
E (Y | π(Z ,W ) = π) is differentiable in π.
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So ∂
∂π
E (Y | π(Z ,W ) = π) is well-defined.

Thus analogous to the result obtained in the binary case

∂E (Y | π(Z ,W ) = π)

∂πs
= ∆MTE

s,s+1(UD = πs) (36)

= E (Ys+1 − Ys | UD = πs).

Equation (36) is the basis for identification of the
transition-specific MTE from data on (Y ,Z ,X ).
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From index sufficiency, we can express (35) as

E (Y | π(Z ,W ) = π) =
S̄∑

s=1

E (Ys | πs ≤ UD < πs−1)(πs−1 − πs)(37)

=
S̄−1∑

s=1

[
E (Ys+1 | πs+1 ≤ UD < πs)
−E (Ys | πs ≤ UD < πs−1)

]
πs

+E (Y1 | π1 ≤ UD < 1)

=
S̄−1∑

s=1

{ms+1(πs+1, πs)−ms(πs , πs−1)}πs

+E (Y1 | π1 ≤ UD < 1)

where ms(πs , πs−1) = E [Ys | πs ≤ UD < πs−1].

In general this expression is a nonlinear function of (πs , πs−1).
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This model has a testable restriction of index sufficiency in the
general case: E (Y |π(Z ,W ) = π) is a nonlinear function that is
additive in functions of (πs , πs−1) so there are no interactions
between πs and πs′ if |s − s ′| > 1, i.e.,

∂2E (Y | π(Z ,W ) = π)

∂πs∂πs′
= 0 if |s − s ′| > 1.
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Observe that if UD ⊥⊥ Us for s = 1, . . . , S̄ ,

E (Y | π(Z ,W ) = π) =
S̄∑

s=1

E (Ys)(πs−1 − πs)

=
S̄−1∑

s=1

[E (Ys+1)− E (Ys)]πs + E (Y1).

Defining E (Ys+1)− E (Ys) = ∆ATE
s,s+1,

E (Y | π(Z ,W ) = π) =
∑S̄−1

s=1 ∆
ATE
s,s+1πs + E (Y1).

Thus, under full independence, we obtain linearity of the
conditional mean of Y in the πs ’s.
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This result generalizes the test for the presence of essential
heterogeneity to the ordered case.

We can ignore the complexity induced by the model of essential
heterogeneity if E (Y | π (Z ,W ) = π) is linear in the π’s and
can use conventional IV estimators to identify well-defined
treatment effects.
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What do Instruments Identify in the Ordered Choice Model?

We now characterize what scalar instrument J(Z ,W ) identifies.

When Y is log earnings, it is common practice to regress Y on
D where D is completed years of schooling and call the
coefficient on D a rate of return.

We seek an expression for the instrumental variables estimator
of the effect of D on Y in the ordered choice model:

Cov(J(Z ,W ),Y )

Cov(J(Z ,W ),D)
, (38)

where D =
∑S̄

s=1 sDs the number of years of schooling
attainment.
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We keep the conditioning on X implicit.

We now present the weights for IV.

Define Ks(v) =

E
(
J̃(Z ,W ) | µD(Z )− cs(Ws) > v

)
Pr (µD(Z )− Cs(W ) > v),

where J̃(Z ,W ) = J(Z ,W )− E (J(Z ,W )).

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 239 / 386



Examples GED Separability Conclusion Ext References Appendix A Appendix B

Thus,

∆IV
j =

Cov(J ,Y )

Cov(J ,D)
(39)

=
S̄−1∑

s=1

∫
E (Ys+1 − Ys | V = v)ω(s, v) fV (v)dv ,

where

ω(s, v) =
Ks(v)∑S̄

s=1s
∫
[Ks−1(v)− Ks(v)] fV (v)dv

=
Ks (v)∑S̄−1

s=1

∫
Ks (v) fV (v) dv

,

and clearly
∑S̄−1

s=1

∫
ω(s, v) fV (v) dv = 1, ω(0, v) = 0, and

ω(S̄ , v) = 0.

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 240 / 386



Examples GED Separability Conclusion Ext References Appendix A Appendix B

We can rewrite this result in terms of the MTE, expressed in
terms of uD

∆MTE
s,s+1(uD) = E (Ys+1 − Ys | UD = uD)

so that

Cov(J,Y )

Cov(J,D)
=

S̄−1∑

s=1

∫
∆MTE

s,s+1(uD)ω̃(s, u) duD ,

where

ω̃(s, uD) =
K̃s(uD)

∑S̄
s=1s

∫ 1
0

[
K̃s−1(uD)− K̃s(uD)

]
duD

(40)

=
K̃s (uD)∑S̄−1

s=1

∫ 1
0 K̃s (uD) duD

and

K̃s(uD) = E
(
J̃(Z ,W ) | πs(Z ,Ws) > uD

)
Pr (πs(Z ,Ws) ≥ uD) . (41)
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The numerator of the weights for the ∆MTE for a particular
transition in the ordered choice model is exactly the numerator
of the weights implied for the binary choice model, substituting
πs(Z ,Ws) = Pr(D > s | Z ,Ws) for P(Z ) = Pr(D = 1 | Z ).
The numerator for the weights for IV in the binary choice model
is driven by the connection between the instrument and P(Z ).

The numerator for the weights for IV in the ordered choice
model for a particular transition is driven by the connection
between the instrument and πs(Z ,Ws).
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The denominator of the weights is the covariance between the
instrument and D for both the binary and ordered cases.

However, in the binary case the covariance between the
instrument and D is completely determined by the covariance
between the instrument and P(Z ), while in the ordered choice
case the covariance depends on the relationship between the
instrument and the full vector [π1(Z ,W1), . . . , πS̄−1(Z ,WS̄−1)].

Comparing our decomposition of ∆IV to decomposition (34),
ours corresponds to weighting up marginal outcomes across
well defined and adjacent boundary values experienced by
agents having their instruments manipulated whereas the
Angrist-Imbens decomposition corresponds to outcomes not
experienced by some of the persons whose instruments are
being manipulated.
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From equation (41), the IV estimator using J(Z ,W ) as an
instrument satisfies the following properties.

(a) The numerator of the weights on ∆MTE
s,s+1(uD) is

non-negative for all uD if E (J(Z ,Ws) | πs(Z ,Ws) ≥ πs) is
weakly monotonic in πs .

For example, if Cov(πs(Z ,Ws),D) > 0, setting
J(Z ,W ) = πs(Z ,Ws) will lead to nonnegative weights on
∆MTE

s,s+1(uD), though it may lead to negative weights on other
transitions.
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A second property (b) is that the support of the weights on

∆MTE
s,s+1 using πs(Z ,Ws) as the instrument is (πMin

s , πMax
s )

where πMin
s and πMax

s are the minimum and maximum values
in the support of πs(Z ,Ws), respectively, and the support of
the weights on ∆MTE

s,s+1 using any other instrument is a subset of

(πMin
s , πMax

s ).

A third property (c) is that the weights on ∆MTE
s,s+1 implied by

using J(Z ,W ) as an instrument are the same as the weights on
∆MTE

s,s+1 implied by using E (J(Z ,W ) | πs(Z ,W )) as the
instrument.
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Suppose that the distributions of Ws , s = 1, . . . , S̄ , are
degenerate so that the Cs are constants satisfying
C1 < · · · < CS̄−1.

This is the classical ordered choice model.

In this case, πs(Z ,Ws) = FV (µD(Z )−Cs) for any s = 1, . . . , S̄ .

For this special case, using J as an instrument will lead to
nonnegative weights on all transitions if J(Z ,Ws) is a
monotonic function of µD(Z ).

For example, note that µD(Z )− Cs > v can be written as
µD(Z ) > Cs + F−1

V (uD).
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Using µD(Z ) as the instrument leads to weights on ∆MTE
s,s+1(uD)

of the form specified above with

K̃s(uD) =

[
E (µD(Z ) | µD(Z ) >

F−1
V (uD) + Cs)− E (µD(Z ))

]
Pr(µD(Z ) > F−1

V (uD) + Cs).

Clearly, these weights will be nonnegative for all points of
evaluation and will be strictly positive for any evaluation point
uD such that 1 > Pr(µD(Z ) > F−1

V (uD) + Cs) > 0.

We now present some examples of the weights for IV.
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Examples of Weights for IV

Figures 1 and 2 plot the transition-specific MTEs and the IV
weights for the models and distributions of the data at the base
of each of the figures.

We work with a normal V and Us , so we get linear in V MTEs
from standard normal regression theory.

The IV estimates using Z and W1 as instruments are reported
transition by transition, along with the overall IV representation
(39) into its transition-specific components.

The IV weights are defined by equations (40) and (41). The
bottom table presents the transition-specific treatment
parameters.
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Figure 1:
Figure 10. Treatment Parameters and IV

The Generalized Ordered Choice Roy Model under Normality: Case I
A. Z as Instrument B. W1 as Instrument
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Outcomes Choice Model
Y1 = α + β1 + U1 Ds = 1[Ws−1 < γZ − V � Ws]
Y2 = α + β2 + U2 s = 1, 2, 3
Y3 = α + β3 + U3

Parameterization

(U1, U2, U3, V ) ∼ N (0,ΣUV ) , (Z,W1,W2) ∼ N (µZW ,ΣZW ) and W0 = −∞;W3 = ∞.

ΣUV =

⎡
⎢⎢⎣

1 0.16 0.2 −0.3
0.16 0.64 0.16 −0.32
0.2 0.16 1 −0.4
−0.3 −0.32 −0.4 1

⎤
⎥⎥⎦ , µZW = (−0.6,−1.08, 0.08) and ΣZW=

⎡
⎣

0.1 0 0
0 0.1 −0.09
0 −0.09 0.25

⎤
⎦

Cov(U2 − U1, V ) = −0.02 Cov(U3 − U2, V ) = −0.08
β1 = 0; β2 = 0.025; β3 = 0.3; γ = 1

IV Estimates and Their Components∗

Parameter Value
∆IVZ 0.1489

∆IVZ
12 0 .0117

∆IVZ
23 0 .1372

∆IVW1 0.0017

∆
IVW1
12 0 .0325

∆
IVW1
23 −0 .0308

Treatment Parameters and Their Values
Parameter Value

ATE12 = E (Y2 − Y1) 0.025
ATE23 = E (Y3 − Y2) 0.275

TT12 = E (Y2 − Y1|D2 = 1) 0.0271
TT23 = E (Y3 − Y2|D3 = 1) 0.1871

TUT12 = E (Y2 − Y1|D1 = 1) 0.0047
TUT23 = E (Y3 − Y2|D2 = 1) 0.2854

∗∆IVZ is decomposed as:

∆IVZ =

Z
E (Y2 − Y1|V = v)ωZ (1, v) fV (v) dv +

Z
E (Y3 − Y2|V = v)ωZ (2, v) fV (v) dv = ∆

IVZ
12 +∆

IVZ
23

An analogous decomposition applies to ∆IVW1 .
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Figure 10. Treatment Parameters and IV
The Generalized Ordered Choice Roy Model under Normality: Case I

A. Z as Instrument B. W1 as Instrument
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Outcomes Choice Model
Y1 = α + β1 + U1 Ds = 1[Ws−1 < γZ − V � Ws]
Y2 = α + β2 + U2 s = 1, 2, 3
Y3 = α + β3 + U3

Parameterization

(U1, U2, U3, V ) ∼ N (0,ΣUV ) , (Z,W1,W2) ∼ N (µZW ,ΣZW ) and W0 = −∞;W3 = ∞.

ΣUV =

⎡
⎢⎢⎣

1 0.16 0.2 −0.3
0.16 0.64 0.16 −0.32
0.2 0.16 1 −0.4
−0.3 −0.32 −0.4 1

⎤
⎥⎥⎦ , µZW = (−0.6,−1.08, 0.08) and ΣZW=

⎡
⎣

0.1 0 0
0 0.1 −0.09
0 −0.09 0.25

⎤
⎦

Cov(U2 − U1, V ) = −0.02 Cov(U3 − U2, V ) = −0.08
β1 = 0; β2 = 0.025; β3 = 0.3; γ = 1

IV Estimates and Their Components∗

Parameter Value
∆IVZ 0.1489

∆IVZ
12 0 .0117

∆IVZ
23 0 .1372

∆IVW1 0.0017

∆
IVW1
12 0 .0325

∆
IVW1
23 −0 .0308

Treatment Parameters and Their Values
Parameter Value

ATE12 = E (Y2 − Y1) 0.025
ATE23 = E (Y3 − Y2) 0.275

TT12 = E (Y2 − Y1|D2 = 1) 0.0271
TT23 = E (Y3 − Y2|D3 = 1) 0.1871

TUT12 = E (Y2 − Y1|D1 = 1) 0.0047
TUT23 = E (Y3 − Y2|D2 = 1) 0.2854

∗∆IVZ is decomposed as:

∆IVZ =

Z
E (Y2 − Y1|V = v)ωZ (1, v) fV (v) dv +

Z
E (Y3 − Y2|V = v)ωZ (2, v) fV (v) dv = ∆

IVZ
12 +∆

IVZ
23

An analogous decomposition applies to ∆IVW1 .
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Figure 2:
Figure 11. Treatment Parameters and IV

The Generalized Ordered Choice Roy Model under Normality: Case II
A. Z as Instrument B. W1 as Instrument
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Outcomes Choice Model
Y1 = α + β1 + U1 Ds = 1[Ws−1 < γZ − V � Ws]
Y2 = α + β2 + U2 s = 1, 2, 3
Y3 = α + β3 + U3

Parameterization

(U1, U2, U3, V ) ∼ N (0,ΣUV ) , (Z,W1,W2) ∼ N (µZW ,ΣZW ) and W0 = −∞; W3 = ∞.

ΣUV =

⎡
⎢⎢⎣

1 0.16 0.2 −0.3
0.16 0.64 0.16 −0.32
0.2 0.16 1 −0.4
−0.3 −0.32 −0.4 1

⎤
⎥⎥⎦ , µZW = (−0.6,−1.08, 0.08) and ΣZW=

⎡
⎣

0.1 0.092 −0.036
0.092 0.1 −0.09
−0.036 −0.09 0.25

⎤
⎦

Cov(U2 − U1, V ) = −0.02 Cov(U3 − U2, V ) = −0.08
β1 = 0; β2 = 0.025; β3 = 0.3; γ = 1

IV Estimates and Their Components†

Parameter Value
∆IVZ −1.8091

∆IVZ
12 0.2866

∆IVZ
23 -2.0957

∆IVW1 −0.4284

∆
IVW1
12 0.0909

∆
IVW1
23 -0.5193

Treatment Parameters and Their Values
Parameter Value

ATE12 = E (Y2 − Y1) 0.025
ATE23 = E (Y3 − Y2) 0.275

TT12 = E (Y2 − Y1|D2 = 1) 0.0283
TT23 = E (Y3 − Y2|D3 = 1) 0.1754

TUT12 = E (Y2 − Y1|D1 = 1) 0.0025
TUT23 = E (Y3 − Y2|D2 = 1) 0.2898

†See the footnote below Figure 10 for details of the decomposition of ∆IVZ . An analogous decomposition is used for ∆IVW1 .
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Figure 11. Treatment Parameters and IV
The Generalized Ordered Choice Roy Model under Normality: Case II

A. Z as Instrument B. W1 as Instrument
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Outcomes Choice Model
Y1 = α + β1 + U1 Ds = 1[Ws−1 < γZ − V � Ws]
Y2 = α + β2 + U2 s = 1, 2, 3
Y3 = α + β3 + U3

Parameterization

(U1, U2, U3, V ) ∼ N (0,ΣUV ) , (Z,W1,W2) ∼ N (µZW ,ΣZW ) and W0 = −∞; W3 = ∞.

ΣUV =

⎡
⎢⎢⎣

1 0.16 0.2 −0.3
0.16 0.64 0.16 −0.32
0.2 0.16 1 −0.4
−0.3 −0.32 −0.4 1

⎤
⎥⎥⎦ , µZW = (−0.6,−1.08, 0.08) and ΣZW=

⎡
⎣

0.1 0.092 −0.036
0.092 0.1 −0.09
−0.036 −0.09 0.25

⎤
⎦

Cov(U2 − U1, V ) = −0.02 Cov(U3 − U2, V ) = −0.08
β1 = 0; β2 = 0.025; β3 = 0.3; γ = 1

IV Estimates and Their Components†

Parameter Value
∆IVZ −1.8091

∆IVZ
12 0.2866

∆IVZ
23 -2.0957

∆IVW1 −0.4284

∆
IVW1
12 0.0909

∆
IVW1
23 -0.5193

Treatment Parameters and Their Values
Parameter Value

ATE12 = E (Y2 − Y1) 0.025
ATE23 = E (Y3 − Y2) 0.275

TT12 = E (Y2 − Y1|D2 = 1) 0.0283
TT23 = E (Y3 − Y2|D3 = 1) 0.1754

TUT12 = E (Y2 − Y1|D1 = 1) 0.0025
TUT23 = E (Y3 − Y2|D2 = 1) 0.2898

†See the footnote below Figure 10 for details of the decomposition of ∆IVZ . An analogous decomposition is used for ∆IVW1 .
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In Figure 1, the IV weights based on Z and W1 are very
different.

So, correspondingly, are the IV estimates produced from each
instrument, which are far off the mark of the standard
treatment parameters shown at the bottom of the table.

Observe that the IV weight for W1 in the second transition is
negative for an interval of values.

This accounts for the dramatically lower IV estimate based on
W1 as the instrument.

Figure 2 shows a different configuration of (Z ,W1,W2).

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 253 / 386



Examples GED Separability Conclusion Ext References Appendix A Appendix B

This produces negative weights for Z for both transitions and a
negative weight for W1 in the second transition.

For both instruments, IV is negative even though both MTEs
are positive throughout most of their range.

IV provides a misleading summary of the underlying marginal
treatment effects.

In digesting Figures 1 and 2, it is important to recall that all
are based on the same structural model.

All have the same MTE and average treatment effects.

But the IV estimates are very different solely as a consequence
of the differences in the distributions of instruments across
examples.
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These simulations show a rich variety of shapes and signs for
the weights.

They illustrate a main point of this paper—that standard IV
methods are not guaranteed to weight marginal treatment
effects positively or to produce estimates close to any of the
standard treatment effects.

Estimators based on LIV and its extension to the ordered model
(36) identify ∆MTE for each transition and answer policy
relevant questions.

We now turn to development of a more general unordered
model.
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Extension to Multiple Treatments that are Unordered

In this section, we develop a framework for multiple treatments
with a choice equation that is based on a nonparametric version
of the classical multinomial choice model.

Within this framework, treatment effects can be defined as the
difference in the counterfactual outcomes that would have been
observed if the agent faced different choice sets, i.e., the effect
of the individual being forced to choose from one choice set
instead of another.
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We analyze the return to the agent of choosing between option
j and the next best option.

The analysis of this case is very similar because it converts a
multiple choice problem to a binary choice problem.

Exclusion restrictions allow analysts to identify generalizations
of the LATE parameter and MTE parameters corresponding to
the effect of one choice versus the “next-best” alternative.

This identification analysis does not require large support
assumptions.
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Consider the following model with multiple outcome states.

Let J denote the agent’s choice set, where J contains a finite
number of elements.

The reward (psychic and monetary) of choosing j ∈ J is

Rj(Zj) = ϑj(Zj)− Vj , (42)

where Zj are the agent’s observed characteristics that affect the
utility from choosing choice j , and Vj is the unobserved shock
to the agent’s utility from choice j .
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Let Z denote the random vector containing all unique elements
of {Zj}j∈J , i.e., Z = union of {Zj}j∈J .
We write Rj(Z ) for Rj(Zj), leaving implicit that Rj(·) only
depends on those elements of Z that are contained in Zj .

Let DJ ,j be an indicator variable for whether the agent would
choose option j if confronted with choice set J :

DJ ,j =

{
1 if Rj ≥ Rk ∀k ∈ J
0 otherwise.
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Let IJ denote the choice that would be made by the agent if
confronted with choice set J : IJ = j ⇐⇒ DJ ,j = 1.

Let YJ be the outcome variable that would be observed if the
agent faced choice set J .

It is
YJ =

∑

j∈J
DJ ,jYj , (43)

where Yj is the potential outcome, observed only if option j is
chosen.
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We assume that Yj is determined by Yj = µj(Xj ,Uj), where Xj

is a vector of the agent’s observed characteristics and Uj is an
unobserved random vector.

Let X denote the random vector containing all unique elements
of {Xj}j∈J , i.e., X is the union of {Xj}j∈J .
We assume that (Z ,X , IJ ,YJ ) is observed.
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Define RJ as the maximum obtainable value given choice set
J :

RJ = max
j∈J

{Rj} =
∑

j∈J
DJ ,jRj .

We obtain the traditional representation of the decision process
that if choice j is optimal, choice j is better than the “next
best” option:

IJ = j ⇐⇒ Rj ≥ RJ\j ,

where J \ j means J removing the j th element from the set.
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More generally, a choice with K optimal is equivalent to the
highest value obtainable from choices in K being higher than
the highest value that can be obtained from choices outside
that set,

IJ ∈ K ⇐⇒ RK ≥ RJ\K.

As we will show, this well-known representation used by Lee
(1983), Dahl (2002) and others, is key for understanding how
nonparametric instrumental variables estimates the effect of a
given choice versus the “next best” alternative.
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Analogous to our definition of RJ , we define RJ (z) to be the
maximum attainable value given choice set J when
instruments are fixed at Z = z ,

RJ (z) = max
j∈J

{Rj(z)}.

Thus, for example, a choice from K is optimal when
instruments are fixed at Z = z if RK(z) ≥ RJ\K(z).
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We make the following assumptions, which generalize
assumptions for the multiple treatment case and are presented
in a parallel fashion ((B-2) is stated below):

(B-1)

{(Vj ,Uj)}j∈J is independent of Z conditional on X .
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(B-3)

The distribution of ({Vj}j∈J ) is absolutely continuous with respect
to Lebesgue measure on

∏
j∈J

R.
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(B-4)

E |Yj | < ∞ for all j ∈ J .
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(B-5)

Pr(IJ = j |X ) > 0 for all j ∈ J .
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Assumptions (B-1) and (B-3) imply that Rj ̸= Rk w.p.1 for
j ̸= k , so that argmax{Rj} is unique w.p.1.

Assumption (B-4) is required for the mean treatment
parameters to be well defined.

Assumption (B-5) requires that at least some individuals
participate in each program for all X .
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Definitions of the treatment parameters only require
assumptions (B-1) and (B-3) to (B-5). However, we use
exclusion restrictions to secure identification.

Let Z [j] denote the j th component of Z .

Let Z [−j] denote all elements of Z except for the jth
component.

We will work with two alternative assumptions for the exclusion
restriction.
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Consider

(B-2a) For each j ∈ J , their exists at least one element of Z , say Z [j],
such that Z [j] is not an element of Zk , k ̸= j , and such that
the distribution of ϑj(Zj) conditional on (X ,Z [−j]) is
nondegenerate,

or

(B-2b) For each j ∈ J , their exists at least one element of Z , say Z [j],
such that Z [j] is not an element of Zk , k ̸= j , and such that
the distribution of ϑj(Zj) conditional on (X ,Z [−j]) is
absolutely continuous with respect to Lebesgue measure.
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Assumption (B-2a) requires that the analyst be able to
independently vary the index for the given value function.

It imposes an exclusion restriction, that for any j ∈ J , Z
contains an element such that (i) it is contained in Zj ; (ii) it is
not contained in any Zk for k ̸= j , and (iii) ϑj(·) is a nontrivial
function of that element conditional on all other regressors.

Assumption (B-2b) strengthens (B-2a) by adding a smoothness
assumption.

A necessary condition for (B-2b) is that the excluded variable
have a density with respect to Lebesgue measure conditional on
all other regressors and for ϑj(·) to be a continuous and
nontrivial function of the excluded variable.
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Assumption (B-2a) is used to identify a generalization of the
LATE parameter.

Assumption (B-2b) will be used to identify a generalization of
the MTE parameter.

Below, we will strengthen (B-2b) to a large support assumption
to identify ATE though the large support assumption will not
be required for most of our analysis.

Assumptions (B-2a) and (B-2b) are analogous to (OC-2) and
(OC-6) in an ordered choice setting.
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Definition of Treatment

Treatment effects are defined as the difference in the
counterfactual outcomes that would have been observed if the
agent faced different choice sets.

For any two choice sets, K,L ⊂ J , define ∆K,L = YK − YL,
the effect of the individual being forced to choose from choice
set K versus choice set L.
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The conventional treatment effect is defined as the difference in
potential outcomes between two specified states,

∆k,ℓ = Yk − Yℓ,

which is nested within this framework by taking K = {k},
L = {ℓ}.
It is the effect for the individual of having no choice except to
choose state k versus having no choice except to choose state ℓ.
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∆K,L will be zero for agents who make the same choice when
confronted with choice set K and choice set L.
Thus, IK = IL implies ∆K,L = 0, and we have

∆K,L = 1(IL ̸= IK)∆K\L,L (44)

= 1(IL ̸= IK)


∑

j∈K\L
DK,j∆j ,L


 .

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 276 / 386



Examples GED Separability Conclusion Ext References Appendix A Appendix B

Two cases will be of particular importance for our analysis.

First, consider choice set K = {k} versus choice set
L = J \ {k}.
In this case, ∆k,J\k is the difference between the agent’s
potential outcome in state k versus the outcome that would
have been observed if he or she had not been allowed to choose
state k .

If IJ = k , then ∆k,J\k is the difference between the outcome in
the agent’s preferred state and the outcome in the agent’s
“next-best”state.
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Second, consider the set K = J versus choice set L = J \ {k}
. In this case, ∆J ,J\k is the difference between the agent’s
observed outcome and what his or her outcome would have
been if state k had not been available.

Note that ∆J ,J\k = DJ ,k∆k,J\k .

Thus, there is a trivial connection between the two parameters,
∆J ,J\k and ∆k,J\k .

This paper focuses on ∆k,J\k , the effect of being forced to
choose option k versus being denied option k .

However, one can exploit equation (44) to use the results for
∆k,J\k to obtain results for ∆J ,J\k .

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 278 / 386



Examples GED Separability Conclusion Ext References Appendix A Appendix B

Treatment Parameters

The conventional definition of the average treatment effect
(ATE) is ∆ATE

k,ℓ (x , z) = E (∆k,ℓ|X = x ,Z = z), which
immediately generalizes to the class of parameters just
discussed: ∆ATE

K,L (x , z) = E (∆K,L|X = x ,Z = z).

The conventional definition of the treatment on the treated
(TT) parameter is ∆TT

k,ℓ (x , z) = E (∆k,ℓ|X = x ,Z = z , IJ = k),
which generalizes to
∆TT

K,L(x , z) = E (∆K,L|X = x ,Z = z , IJ ∈ K).
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We generalize the MTE parameter to be the average effect
conditional on being indifferent between the best option among
choice set K versus the best option among choice set L at
some fixed value of the instruments, Z = z :

∆MTE
K,L (x , z) = E (∆K,L | X = x ,Z = z ,RK(z) = RL(z)) . (45)

We generalize the LATE parameter to be the average effect for
someone for whom the optimal choice in choice set K is
preferred to the optimal choice in choice set L at Z = z̃ , but
who prefers the optimal choice in choice set L to the optimal
choice in choice set K at Z = z :

∆LATE
K,L (x , z , z̃) = E

(
∆K,L

∣∣∣∣
X = x ,Z ∈ {z , z̃} ,RK(z̃) ≥ RL(z̃),

RL(z) ≥ RK(z)

)
.

(46)
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An important special case of this parameter arises when z = z̃
except for elements that enter the index functions only for
choices in K and not for any choice in L.
In that special case, expression ( 46) simplifies to

∆LATE
K,L (x , z , z̃) = E

(
∆K,L

∣∣∣∣
X = x ,Z ∈ {z , z̃} ,

RK(z̃) ≥ RL(z) ≥ RK(z)

)

since RL(z) = RL(z̃) in this special case.
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We have defined each of these parameters as conditional not
only on X but also on the “instruments”Z .

In general, the parameters will depend on the Z evaluation
point.

For example, ∆ATE
K,L (x , z) will in general depend on the z

evaluation point.

To see this, note that YK =
∑
k∈K

DK,kYk , and YL =
∑
ℓ∈L

DL,ℓYℓ.
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By independence assumption (B-1), we have that
Z ⊥⊥ {Yj}j∈J | X , but DK,k and DL,ℓ will be dependent on Z
conditional on X and thus YK − YL will in general be
dependent on Z conditional on X .

In other words, even though Z is conditionally independent of
each individual potential outcome, it is correlated with which
choice is optimal within the sets K and L and thus is related to
YK − YL.
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Identification: Effect of Option j Versus Next Best Alternative

We now establish identification of treatment parameters
corresponding to averages of ∆j ,J\j , the effect of choosing
option j versus the preferred option in J if j were not available.

Recall that Z [j] is the vector of elements of Zj that do not enter
any other choice index, and that Z [−j] is a vector of all
elements of Z not in Z [j].

The Z [j] thus act as shifters attracting people into or out of j ,
but not affecting the valuations in the arguments of the other
choice functions.
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We can develop a parallel analysis to the binary case developed
earlier in this paper if we condition on Z [−j].

We obtain monotonicity or uniformity in this model if the
movements among states induced by Z [j] are the same for all
persons conditional on Z [−j] = z [−j] and X = x .

For example, ceteris paribus if Z [j] = z [j] increases, Rj (Zj)
increases but the Rk (Zk) are not affected, so the flow is toward
state j .
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Let DJ ,j be an indicator variable denoting whether option j is
selected.

DJ ,j = 1

(
Rj (Zj) ≥ max

ℓ ̸=j
{Rℓ (Zℓ)}

)
(47)

= 1

(
ϑj (Zj) ≥ Vj +max

ℓ̸=j
{Rℓ (Zℓ)}

)

= 1
(
ϑj (Zj) ≥ Ṽj

)
,

where Ṽj = Vj +maxℓ̸=j {Rℓ (Zℓ)}.
Thus we obtain DJ ,j = 1

(
Pj (Zj) ≥ UDj

)
, where

UDj
= FṼj

(Vj +maxℓ̸=j {Rℓ (Zℓ)} | Z [−j] = z [−j]), where FṼj
is

the cdf of Ṽj given Z [−j] = z [−j].
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In a format parallel to the binary model, we write

Y = DJ ,jYj + (1− DJ ,j)YJ\j , (48)

where YJ\j is the outcome that would be observed if option j
were not available.

This case is just a version of the binary case developed in
previous sections of the paper.

We can define MTE as

E
(
Yj − YJ\j | X = x ,Z = z , ϑj (zj)− Vj = RJ\j (z)

)
.

Recall that we have to condition on Z = z because the choice
sets are defined over the max of elements in J \ j (see equation
( 47)).
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We now show that our identification strategies presented in the
preceding part of this paper extend naturally to the
identification of treatment parameters for ∆j ,J\j .

In particular, it is possible to recover LATE and MTE
parameters for ∆j ,J\j by use of discrete change IV methods and
local instrumental variable methods, respectively.

Averages of the effect of option j versus the next best
alternative are the easiest effects to study using instrumental
variable methods and are natural generalizations of our two
outcome analysis.
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Consider identification of treatment parameters corresponding
to averages of ∆j ,J\j using either a discrete change, Wald form
for the instrumental variables estimand or using the local
instrumental variables (LIV) estimand.

The discrete change, instrumental variables estimand will allow
us to recover a version of the local average treatment effect
(LATE) parameter.

Let Z [−j] denote the excluded variable for option j with
properties assumed in (B-2a). We let z =

[
z [−j], z [j]

]
and

z̃ =
[
z̃ [−j], z̃ [j]

]
be two values of Z where we only manipulate

Z [j].
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Define

∆Wald
j (x , z [−j], z [j], z̃ [j])

=
E (Y |X = x ,Z = z̃)− E (Y |X = x ,Z = z)

Pr(DJ ,j = 1|X = x ,Z = z̃)− Pr(DJ ,j = 1|X = x ,Z = z)
,

where for notational convenience we assume that Z [j] is the last
component of Z .

Without loss of generality, we assume that ϑj(z̃) > ϑj(z).

The local instrumental variables estimator (LIV) estimand
introduced in Heckman (1997), and developed further in
Heckman and Vytlacil (1999, 2001) allows us to recover a
version of the Marginal Treatment Effect (MTE) parameter.
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Impose (B-2b), and let Z [j] denote the excluded variable for
option j with properties assumed in (B-2b). Our results are
invariant to which particular variable satisfying (B-2b) is used if
there are more than one variable with the property assumed in
(B-2b). Define

∆LIV
j (x , z) ≡

∂
∂z [j]

E (Y | X = x ,Z = z)
∂

∂z [j]
Pr(DJ ,j = 1 | X = x ,Z = z)

. (49)

∆LIV
j (x , z) is thus the limit form of ∆Wald

j (x , z [−j], z [j], z̃ [j]) as

z̃ [j] approaches z [j].

Given our previous assumptions, one can easily show that this
limit exists w.p.1.

We prove the following identification theorem.

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 291 / 386



Examples GED Separability Conclusion Ext References Appendix A Appendix B

Theorem

1 Assume (B-1), (B-3) to (B-5) and (B-2a). Then
∆Wald

j (x , z [−j], z [j], z̃ [j]) = ∆LATE
j ,J\j (x , z , z̃) where z̃ = (z [−j], z̃ [j]).

2 Assume (B-1), (B-3) to (B-5) and (B-2b). Then
∆LIV

j (x , z) = ∆MTE
j ,J\j(x , z).
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The intuition underlying the proof is simple.

Under (B-1), (B-3) to (B-5) and (B-2a) we can convert the
problem of comparing the outcome under j with the outcome
under the next best option.

This is an IV version of the selection modelling analysis of Dahl
(2002). ∆LATE

j ,J\j (x , z , z̃) is the average effect of switching to
state j from state IJ\j for individuals who would choose IJ\j at
Z = z but would choose j at Z = z̃ .
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∆MTE
j ,J\j(x , z) is the average effect of switching to state j from

state IJ\j (the best option besides state j) for individuals who
are indifferent between state j and IJ\j at the given values of
the selection indices (at Z = z , i.e., at {ϑk(Zk) = ϑk(zk)}k∈J ).
The mean outcome in state j versus state IJ\j (the next best
option) is a weighted average over k ∈ J \ j of the effect of
state j versus state k , conditional on k being the next best
option, weighted by the probability that k is the next best
option.
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For example, for the LATE parameter,

∆LATE
j,J\j (x , z, z̃) = E

(
∆j,J\j

∣∣∣∣ X = x ,Z ∈ {z, z̃} ,
Rj (z̃) ≥ RJ\j (z) ≥ Rj (z)

)

=
∑

k∈J\j


Pr

(
IJ\j = k

∣∣∣∣ Z ∈ {z, z̃} ,
Rj (z̃) ≥ RJ\j (z) ≥ Rj (z)

)
×E

∆j,k

∣∣∣∣∣∣
X = x ,Z ∈ {z, z̃} ,
Rj (z̃) ≥ RJ\j (z) ≥ Rj (z),
IJ\j = k


 ,

where we use the fact that RJ\j(z) = RJ\j(z̃) since z = z̃
except for one component that only enters the index for the jth
option.
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How heavily each option is weighted in this average depends on

Pr
(
IJ\j = k | Z ∈ {z , z̃} ,Rj(z̃j) ≥ Rk(zk) ≥ Rj(zj)

)
,

which in turn depends on {ϑk(zk)}k∈J\j .

The higher ϑk(zk), holding the other indices constant, the
larger the weight given to state k as the base state.

The LIV and Wald estimands depend on the z evaluation point.
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Alternatively, one can define averaged versions of the LIV and
Wald estimands that will recover averaged versions of the MTE
and LATE parameters,

∫
∆Wald

j (x , z [−j], z [j], z̃ [j])dFZ [−j](z [−j])

=

∫
∆LATE

j ,J\j (x , z , z̃)dFZ [−j](z [−j])

= E


∆j ,J\j

∣∣∣∣∣∣

X = x ,
Rj(Z

[−j], z̃ [j])
≥ RJ\j(Z [−j]) ≥ Rj(Z

[−j], z [j])


 ,

and∫
∆LIV

j (x , z)dFZ (z) =

∫
∆MTE

j ,J\j(x , z)dFZ (z)

= E
(
∆j ,J\j |X = x ,Rj(Z ) = RJ\j(Z )

)
.

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 297 / 386



Examples GED Separability Conclusion Ext References Appendix A Appendix B

Thus far, we have only considered identification of LATE and
MTE, and not of the more standard treatment parameters ATE
and TT.

However, following Heckman and Vytlacil (1999), LATE can
approximate ATE or TT arbitrarily well given the appropriate
support conditions.

Theorem 3 shows that we can use Wald estimands to identify
LATE for ∆j ,J\j , and we can thus adapt Heckman and Vytlacil
(1999) to identify ATE or TT for ∆j ,J\j .

With suitable modification of the weights, their analysis goes
through as before.
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Suppose that Z [j] satisfies the properties assumed in (B-2a),
and suppose that: (i) the support of the distribution of Z [j]

conditional on all other elements of Z is the full real line; (ii)
ϑj(zj) → ∞ as z [j] → ∞, and ϑj(zj) → −∞ as z [j] → −∞.

Then ∆ATE
j ,J\j(x , z) and ∆LATE

j (x , z [−j], z [j], z̃ [j]) are arbitrarily

close when evaluated at a sufficiently large value of z̃ [j] and a
sufficiently small value of z [j].

Following Heckman and Vytlacil (1999), ∆TT
j ,J\j(x , z) and

∆LATE
j (x , z [−j], z [j], z̃ [j]) are arbitrarily close for sufficiently small

z [j].
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Our discussion has focused on the Wald estimands.

Alternatively we could also follow Heckman and Vytlacil (1999,
2001, 2005) in expressing ATE and TT as integrated versions
of MTE.

By theorem 3, we can use LIV to identify MTE and can thus
express ATE and TT as integrated versions of the LIV estimand.
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For a general instrument J
(
Z [j],Z [−j]

)
constructed from(

Z [j],Z [−j]
)
, which we denote as J [j], we can obtain a parallel

construction to the characterization of standard IV:

∆IV
J [j] =

∫ 1

0

∆MTE
(
x , z , uDj

)
ωJ [j]

IV

(
uDj

)
duDj

, (50)

where

ωJ [j]

IV =
E
[
J [j] − E

(
J [j]
)
| Pj (Z) ≥ uDj

]
Pr
(
Pj (Z) ≥ uDj

| Z [−j] = z [−j]
)

Cov(Z [j],DJ ,j )
, (51)

where uDj
is defined at the beginning of this section and where

we keep the conditioning on X = x implicit.
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Note that from Theorem 3, we obtain that

∂
∂z [j]

E [Y | X = x ,Z = z]

∂Pj (z)

∂z [j]

=
∂E [Y | X = x ,Z = z]

∂Pj (z)

= E
[
Yj − YJ\j | X = x ,Z = z, ϑj

(
Zj

)
− Vj = RJ\j (Z)

]
so we obtain that LIV identifies MTE and linear IV is a
weighted average of LIV with the weights summing to one.

These results mirror the results established in the binary case.
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In the literature on the effects of schooling (S =
∑

j∈J jDJ ,j)
on earnings (YJ ), it is conventional to instrument S .

Our website presents an analysis of this case.

For the general unordered case,

∆IV
J [j] =

Cov(J [j],YJ )

Cov(J [j], S)

can be decomposed into economically interpretable components
where the weights can be identified but the objects being
weighted cannot be identified using local instrumental variables
or LATE without making large support assumptions.

However, the components can be identified using a structural
model.
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The trick we have used in this section comparing outcomes in j
to the next best option converts a general unordered multiple
outcome model into a two outcome setup.

This effectively partitions YJ into two components, as in (48).
Thus we write

YJ = DJ ,jYj + (1− DJ ,j)YJ\j ,

where

YJ\j =
∑

ℓ̸=j
ℓ∈J

DJ ,ℓ

1− DJ ,j
Yℓ × 1 (DJ ,j ̸= 1) .

In the more general unordered case with three or more choices,
to analyze IV estimates of the effect of S on YJ , we must work
with YJ =

∑
k∈J DJ ,kYk and make multiple comparisons

across potential outcomes.
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This requires us to move outside of the LATE/LIV framework,
which is inherently based on binary comparisons.

We consider models that do not impose additive separability.

This includes a general random coefficient model.
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Comparing policy p to policy p′,

E (Yp | X )− E (Yp′ | X )

=

∫ 1

0

E (∆ | X ,UD = uD)(FPp′ |X (uD)− FPp |X (uD)) duD ,

which gives the required weights.

Recall ∆ = Y1 − Y0 and we can drop the p, p′ subscripts on
outcomes and errors.
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Roy Model

Y1 = µ1 + U1;

Y0 = µ0 + U0;

I = Zγ − V ;

D = 1 [I > 0]
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Propensity Score

The propensity score conditional on Z:

D = 1 [I > 0] = 1 [Zγ > V ]

The propensity score:

P (Z ) ≡ E [D|Z ] = Pr (D = 1|Z ) = Pr (γZ > V ) = FV (Zγ)

Definition:

FV (V ) ≡ UD
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therefore

γZ > V ⇔ FV (γZ ) > UD ⇔ P (Z ) > UD

E [D] =

∞∫

−∞

P (z) fZ (z) dz

E (D) = E (E (1 [P (Z ) > UD ] |UD))

= 1− E
(
FP(Z) (UD)

)

FP(Z) (p) = Pr
(
Z < F−1

V (p)
)
= FZ

(
F−1
V (p)

)

The Normality Assumption
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Normality assumptions


U1

U0

V


 ∼ N (0,Σ) ;Σ ≡




σ2
1 σ10 σV 1

· σ2
0 σV 0

· · σ2
V




⇒
[
U1 − U0

V

]
∼ N

(
0,

[
σ2
1 + σ2

0 − 2σ10 σ1V − σ0V

σ1V − σ0V σ2
V

])

The Propensity Score P (Z )

P (Z ) = Pr (γZ > V ) = Φ

(
γZ

σV

)
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Propensity Score under normality assumptions

FP(Z) (t) = Pr (FV (Z ) < t) = Pr
(
Z < F−1

V (t)
)
= FP(Z)

(
F−1
V (t)

)

= Φ

(
F−1
V (t)− µZ

σZ

)
= Φ

(
Φ−1 (t) · σV − µZ

σZ

)

fP(Z) (t) =
∂FP(Z) (t)

∂t
= ϕ

(
Φ−1 (t) · σV − µZ

σZ

)
σV

σZ
· 1

ϕ (Φ−1 (t))
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Marginal Treatment Effect (MTE ) and Average Treatment Effect
(ATE ):

ATE = E [Y1 − Y0] = µ1 − µ0

MTE (v) = E [Y1 − Y0|V = v ]

= ATE + E [U1 − U0|V = v ]

The MTE based on UD :

MTE (uD) = E [Y1 − Y0|UD = uD ]

= ATE − E [U1 − U0|UD = uD ]

Whenever UD = P (Z ) the agent is indifferent between treatments.
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Under Normality Assumptions

⇒ [U1 − U0|V = v ] ∼ N

(
σ1−0,V

σ2
V

· v , σ2
(
1− ρ2

))

⇒ MTE (v) = ATE +
σ1V − σ0V

σV
· v

σV

Writing in terms of

UD = FV (V ) = Φ

(
V

σV

)
⇒ V = σV · Φ−1 (UD)

MTE (uD) = ATE +
σ1V − σ0V

σ2
V

· F−1
V (uD)

MTE (uD) = ATE +
σ1V − σ0V

σV
· Φ−1 (uD)
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Average Treatment Effect (ATE ):

ATE = E [E [Y1 − Y0|V = v ]] = µ1 − µ0

= E [E [MTE (v) |V = v ]]

=

∞∫

−∞

MTE (v) · ωATE (v) fv (v) dv

ωATE (v) = 1

Using UD approach we obtain:
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FV (V ) ≡ UD

ATE = E [E [MTE (v) |UD = uD ]]

ATE =

1∫

0

MTE (uD) · ωATE (uD) duD

ωATE (uD) = 1
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The Treatment on the Treated

The relationship between the treatment on treated parameter and
the marginal treatment effect is obtained below. First we do
treatment on the treated given z .

TT (z) = E [Y1 − Y0|I > 0,Z = z ] = TT (P(Z ))

=
E [Y1 − Y0 · 1 [I > 0] ,Z = z ]

Pr (I > 0)

by law of iterated expectations

=
E [(Y1 − Y0) · 1 [zγ > V ]]

Pr (P (z) > UD)

=

zγ∫
−∞

MTE (v) fV (v)dv

P (z)
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TT (P(Z )) = E [Y1 − Y0|I > 0]

=
E [Y1 − Y0 · 1 [I > 0]]

Pr (I > 0)

by law of iterated expectations

=
E [(Y1 − Y0) · 1 [P (Z ) > UD ] ,Z = z ]

Pr (P (Z ) > UD)

=

P(z)∫
0

MTE (uD) duD

P (z)
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Using Normality Assuptions

TT (Z ) = E [Y1 − Y0|I > 0,Z = z ]

= ATE + E [U1 − U0|zγ > V ,Z = z ]

define σ ≡
√

σ2
1 + σ2

0 − 2σ10

= ATE + σE

[
U1 − U0

σ
| − V

σV
> − zγ

σV

]

⇒ TT (zγ) = x (β1 − β0)−
σ1V − σ0V

σV
· λ
(
− zγ

σV

)

Where :

λ (x) ≡ ϕ (x)

1− Φ (x)
=

ϕ (x)

Φ (−x)

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 318 / 386



Examples GED Separability Conclusion Ext References Appendix A Appendix B

The propensity score is defined as Pr (D = 1|Z = z), where the
conditional on Z is not used below in order to save notation. Based
on the normality assumptions, we can obtain the following formulas:

P (z) = Φ

(
zγ

σV

)
(Under Normality)

Including this equation in the Treatment on treated effect we
obtain:

TT (z) = ATE − σ1V − σ0V

σV
· λ
(
− zγ

σV

)

TT (P (z)) = ATE − σ1V − σ0V

σV
· ϕ (Φ

−1 (P (z)))

P (z)
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TT = E [Y1 − Y0|I > 0]

=
E [Y1 − Y0 · 1 [I > 0]]

Pr (I > 0)

by law of iterated expectations

=
E [E [Y1 − Y0 · 1 [Zγ > v ]] |V = v ]

Pr (Zγ > V )

but Y1,Y0|V ⊥⊥ D|V ,
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using Fubini’s theorem

=
E [E [Y1 − Y0|V = v ] · E [1 [Zγ > v ] |V = v ]]

Pr (Zγ > V )

= E

[
MTE (v) · E [1 [Zγ > v ] |V = v ]

Pr (Zγ > V )

]

=

∞∫

−∞

E [MTE (v) · ωTT (v) fv (v) dv ]

ωTT (v) =
E [1 [Zγ > v ] |V = v ]

Pr (Zγ > V )
=

1− FZγ (v)

E (D)

The same analysis using the propensity score:
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TT = E [Y1 − Y0|I > 0]

=
E [Y1 − Y0 · 1 [I > 0]]

Pr (I > 0)

by law of iterated expectations

=
E [E [Y1 − Y0 · 1 [P (Z ) > uD ]] |UD = uD ]

Pr (P (Z ) > UD)
;UD ≡ FV (V )

but Y1,Y0|UD ⊥⊥ D|UD ,
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using Fubini’s theorem

=
E [E [Y1 − Y0|UD = uD ] · E [1 [P (Z ) > uD ] |UD = uD ]]

E (P (Z ))

= E

[
MTE (uD) ·

E [1 [P (Z ) > uD ] |UD = uD ]

E (P (Z ))

]

=

∞∫

−∞

MTE (uD) · ωTT (uD) duD

Observe that UD ∼ Uniform [0, 1]

ωTT (uD) =
E [1 [P (Z ) > uD ] |UD = uD ]

E (P (Z ))

=

∫ 1

uD
fP(Z) (p) dp

E (P (Z ))
=

1− FP(Z) (uD)

E (P (Z ))
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The Treatment on the Untreated

The relationship between the treatment on untreated parameter
and the marginal treatment effect is obtained below:

TUT = E [Y1 − Y0|I ⩽ 0,Z = z ]

=
E [(Y1 − Y0) · 1 [I ⩽ 0] ,Z = z ]

Pr (I ⩽ 0)

by law of iterated expectations

=
E [E [Y1 − Y0 · 1 [zγ ⩽ v ]] |V = v ]

Pr (zγ ⩽ V )

but Y1,Y0|V ⊥⊥ D|V ,
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using Fubini’s theorem

=
E [E [Y1 − Y0|V = v ] · E [1 [zγ ⩽ v ] |V = v ]]

Pr (zγ ⩽ V )

= E

[
MTE (v) · E [1 [zγ ⩽ v ] |V = v ]

Pr (zγ ⩽ V )

]

=

∞∫

−∞

MTE (v) · ωTUT (v) fv (v) dv

ωTUT (v) =
E [1 [zγ ⩽ v ] |V = v ]

Pr (zγ ⩽ V )
=

E [1 [zγ ⩽ v ] |V = v ]

1− Pr (zγ > v)

=

∫ v

−∞ fzγ (z) dz

1− Pr (zγ > V )
=

Fzγ (v)

1− E (D)

Heckman, Urzua, Vytlacil Understanding Instrumental Variables in Models with Essential Heterogeneity 325 / 386



Examples GED Separability Conclusion Ext References Appendix A Appendix B

The same analysis can be done with the propensity score
approach:

TUT = E [Y1 − Y0|I ⩽ 0]

=
E [Y1 − Y0 · 1 [I ⩽ 0]]

Pr (I ⩽ 0)

by law of iterated expectations

=
E [E [Y1 − Y0 · 1 [P (Z ) ⩽ uD ]] |UD = uD ]

Pr (P (Z ) ⩽ UD)

UD ≡ FV (V )

but Y1,Y0|UD ⊥⊥ D|UD ,
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using the Fubini’s theorem

=
E [E [Y1 − Y0|UD = uD ] · E [1 [P (Z ) ⩽ uD ] |UD = uD ]]

1− E (P (Z ))

= E

[
MTE (uD) ·

E [1 [P (Z ) ⩽ uD ] |UD = uD ]

1− E (P (Z ))

]

Observe that UD ∼ Uniform [0, 1]

=

∞∫

−∞

E [MTE (uD) · ωTUT (uD) duD ]

ωTUT (uD) =
E [1 [P (Z ) ⩽ uD ] |UD = uD ]

1− E (P (Z ))

=

∫ uD
0

fP(Z) (p) dp

1− E (P (Z ))
=

FP(Z) (uD)

1− E (P (Z ))
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TUT (Z ) = E [Y1 − Y0|I < 0]

=
E [Y1 − Y0 · 1 [I < 0]]

Pr (I < 0)

by law of iterated expectations

=
E [(Y1 − Y0) · 1 [γZ < V ]]

Pr (P (Z ) < UD)

=

∞∫
γZ

MTE (v) fV (v) dv

1− P (Z )
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TUT (P(Z )) = E [Y1 − Y0|I < 0]

=
E [Y1 − Y0 · 1 [I < 0]]

Pr (I < 0)

by law of iterated expectations

=
E [(Y1 − Y0) · 1 [P (Z ) < UD ]]

Pr (P (Z ) < UD)

=

1∫
P(Z)

MTE (uD) duD

1− P (Z )
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Using Normality Assumptions

TUT (Zγ) = E [Y1 − Y0|I ⩽ 0]

= α1 − α0 + X (β1 − β0) + E [U1 − U0|Zγ ⩽ V ]

= ATE + E [U1 − U0|Zγ ⩽ V ]

define σ =
√

σ2
1 + σ2

0 − 2σ10, λ (x) ≡
ϕ (x)

Φ(−x)

= ATE + σE

[
U1 − U0

σ
| V
σV

⩾ Zγ

σV

]

⇒ TUT (Zγ) = X (β1 − β0) +
σ1V − σ0V

σV
· λ
(
Zγ

σV

)
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OLS (Matching)

The relationship between the OLS parameter and the marginal
treatment effect is obtained below:

∆matching = E [Y1|D = 1]− E [Y0|D = 0]

= ATE + E [U1|Zγ > V ]− E [U0|Zγ ⩽ V ]

= ATE +
E [U1 · 1 [Zγ > V ]]

Pr (Zγ > V )
− E [U0 · 1 [Zγ ⩽ V ]]

Pr (Zγ ⩽ V )

= ATE + E

[
E [U1·1[Zγ>v ]|V=v ]

Pr(Zγ>V )

−E [U0·1[Zγ⩽v ]|V=v ]
Pr(Zγ⩽V )

]
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= E

[
ATE (v) + E [U1·1[Zγ>v ]|V=v ]

Pr(Zγ>V )

−E [U0·1[Zγ⩽v ]|V=v ]
Pr(Zγ⩽V )

]

= E

[
MTE (v) ·

(
ωATE (v) + E [U1·1[Zγ>v ]|V=v ]

MTE(v)·Pr(Zγ>V )
−

E [U0·1[Zγ⩽v ]|V=v ]
MTE(v)·Pr(Zγ⩽V )

)]

= E

[
MTE (v) ·

(
1 + E [U1·1[Zγ>v ]|V=v ]

MTE(v)·Pr(Zγ>V )
−

E [U0·1[Zγ⩽v ]|V=v ]
MTE(v)·Pr(Zγ⩽V )

)]

= E [MTE (V ) · ωmatch (V )] =

∞∫

−∞

MTE (v) · ωmatch (v) fv (v) dv
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ωmatch (v) = 1 + E [U1·1[Zγ>v ]|V=v ]
MTE(v)·Pr(Zγ>V )

−E [U0·1[Zγ⩽v ]|V=v ]
MTE(v)·Pr(Zγ⩽V )

U1,U0|V ⊥⊥ Z

E [U1 · 1 [Zγ > v ] |V = v ] = E [U1|V = v ] · (1− FZγ (v))

E [U0 · 1 [Zγ ⩽ v ] |V = v ] = E [U0|V = v ] · FZγ (v)

ωmatch (v) = 1 +
E [U1|V = v ] · (1− FZγ (v))

MTE (v) · Pr (Zγ > V )

−E [U0|V = v ] · FZγ (v)

MTE (v) · Pr (Zγ ⩽ V )
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The same analysis can be done with the propensity score:

∆matching = E [Y1|D = 1]− E [Y0|D = 0]

= ATE + E [U1|P (Z ) > UD ]− E [U0|P (Z ) ⩽ UD ]

= E

[
ATE (uD) +

E [U1·1[P(Z)>uD ]|UD=uD ]
Pr(P(Z)>UD)

−E [U0·1[P(Z)⩽uD ]|UD=uD ]
Pr(P(Z)⩽UD)

]

= E

[
MTE (uD) ·

(
1 + E [U1·1[P(Z)>uD ]|UD=uD ]

MTE(uD)·Pr(P(Z)>UD)
−

−E [U0·1[P(Z)⩽uD ]|UD=uD ]
MTE(uD)·Pr(P(Z)⩽UD)

)]

= E [MTE (uD) · ωOLS (uD)]

=

∞∫

−∞

MTE (uD) · ωOLS (uD) duD
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ω
match

(uD) = 1 + E [U1·1[P(Z)>uD ]|UD=uD ]
MTE(uD)·Pr(P(Z)>UD)

−E [U0·1[P(Z)⩽uD ]|UD=uD ]
MTE(uD)·Pr(P(Z)⩽UD)

Using Normality Assumption

ω
match

(uD) = 1 + E [U1·1[Zγ>v ]|V=v ]
MTE(v)·Pr(Zγ>V )

−E [U0·1[Zγ⩽v ]|V=v ]
MTE(v)·Pr(Zγ⩽V )

= 1 + E [U1|V=v ]·E [1[Zγ>v ]]
MTE(v)·Pr(Zγ>V )

−E [U0·|V=v ]·E [1[Zγ⩽v ]]
MTE(v)·Pr(Zγ⩽V )
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= 1 +

(
σ1V
σ2
V

·v
)
·Φ
(

γ·µZ−v√
γ′Σγ

)
MTE(v)·Φ

(
γ·µZ√

γ′Σγ+σV

)

−
(

σ0V
σ2
V

·v
)
·Φ
(

v−γ·µZ√
γ′ΣZ γ

)
MTE(v)·Φ

(
− γ·µZ√

γ′Σγ+σV

)

Matching in Z using normality assumptions

∆matching = E (Y1|D = 1)− E (Y0|D = 0)
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Matching in Z :

= ATE + E (U1|Zγ′ > V )− E (U0|Zγ′ < V )

= ATE + E (U1| − V > −Zγ′)− E (U0|V > Zγ′)

= ATE + E

(
U1| −

V

σV
> −Zγ′

σV

)
− E

(
U0|

V

σV
>

Zγ′

σV

)

= ATE + σ1E

(
U1

σ1
| − V

σV
> −Zγ′

σV

)
− σ0E

(
U0

σ0
| V
σV

>
Zγ′

σV

)

= ATE − σ1V

σV
· λ
(
−γZ

σV

)
− σ0V

σV
· λ
(
γZ

σV

)

= ATE −




σ1V

σV
· Φ
(
−Z ·γ′

σV

)
+ σ0V

σV
· Φ
(

Z ·γ′

σV

)

Φ
(

Z ·γ′
σV

)
Φ
(
−Z ·γ′

σV

)


ϕ

(
Z · γ′

σV

)
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Matching in P (Z ) using normality assumptions

∆matching = E (Y1|D = 1)− E (Y0|D = 0)

Matching in P(Z ):

= ATE + E (U1|Zγ′ > V )− E (U0|Zγ′ < V )

= ATE − σ1V

σV
· λ
(
−γZ

σV

)
− σ0V

σV
· λ
(
γZ

σV

)

= ATE −
(
σ1V

σV
· 1

P(Z )
+

σ0V

σV
· 1

1− P(Z )

)
ϕ
(
Φ−1 (P(Z ))

)

= ATE −
(

σ1V

σV
· (1− P(Z )) + σ0V

σV
· P(Z )

P(Z ) (1− P(Z ))

)
ϕ

(
Z · γ′

σV

)
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The PRTE

E (Y1 − Y0|P(Z )− UD = t)

= E (Y1 − Y0|FV (Z )− UD = t)

= E (E (Y1 − Y0|FV (Z ) = p, p − UD = t) |FV (Z )− UD = t)

= E (E (Y1 − Y0|UD = p − t) |FV (Z )− UD = t)

= E [MTE (p − t)|P(Z )− UD = t]

=

1∫

0

MTE (p − t)fP(p)dp =

1∫

0

MTE (p)fP(p + t)dp

υ /∈ [0, 1] ⇒ fP(υ) = MTE (υ) = 0
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E (Y1 − Y0| − t < P(Z )− UD < t)

= E (E (Y1 − Y0|P(Z )− UD = ξ) | − t < P(Z )− UD < t)

Θ ≡ P(Z )− UD

fΘ (θ) =

∫
fP(Z) (θ) · fUD

(θ)

= E (E (Y1 − Y0|Θ = ξ) | − t < Θ < t)

=
E (E (Y1 − Y0|Θ = ξ) · 1 [−t < Θ < t])

Pr (−t < Θ < t)

=

E

(
t∫

−t

E (Y1 − Y0|Θ = ξ)FP(Z) (ξ + 1) dξ

)

Pr (−t < Θ < t)
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=

E

((
1∫
0

MTE (p)fP(p + ξ)dp

)
· 1 [−t < P(Z )− UD < t]

)

Pr (−t < Θ < t)

=

t∫
−t

(
1∫
0

MTE (p)fP(p + ξ)dp

)
fP(Z) (ξ + uD) dξ

Pr (−t < Θ < t)

=

E

((
1∫
0

MTE (p)fP(p + ξ)dp

)
· 1 [−t < P(Z )− UD < t]

)

Pr (−t < Θ < t)

=

t∫
−t

1∫
0

MTE (uD)fP(uD + t∗)duDdt∗

Pr (−t < P(Z )− UD < t)
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Pr (−t < Θ < t) = Pr (−t < P(Z )− UD < t)

= E (1 [−t < P(Z )− UD < t])

= E (E (1 [uD − t < P(Z ) < t + uD ] |UD = uD))

= E
(
FP(Z) (t + UD)− FP(Z) (−t + UD)

)

=

1∫

0

[
FP(Z) (t + uD)− FP(Z) (−t + uD)

]
duD

FP(Z) (p) = Φ

(
Φ−1 (p) · σV − µZ

σZ

)

E (Y1 − Y0|Z − V = t)

=

1∫

0

MTE (uD)
fZ (F

−1
V (uD) + t)

E (fV (Z − t))
duD
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therefore

E (Y1 − Y0| − t < Z − V < t)

= E (E (Y1 − Y0|Z − V = t) | − t < Z − V < t)

=
E (E (Y1 − Y0|Z − V = t) · 1 [−t < Z − V < t])

Pr (−t < Z − V < t)

=

t∫
−t

1∫
0

MTE (uD)
fZ (F

−1
V (uD)+t∗)

E(fV (Z−t∗)) duDdt
∗

Pr (−t < Z − V < t)
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Pr (−t < Z − V < t)

=

∞∫

−∞

[FZ (t + v)− FZ (−t + v)] fV (v) dv

FZ (z) = Φ

(
z − µZ

σZ

)

fV (v) = ϕ

(
v

σV

)
1

σV

E (Y1 − Y0|P(Z )/UD = 1− t)

=

1∫

0

MTE (uD)
fP(uD/ (1− t)) (1− t)2 uD

E (D)
duD
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therefore

E (Y1 − Y0|1− t < P(Z)/UD < 1 + t)

= E (E (Y1 − Y0|P(Z)/UD − 1 = −t∗) |1− t < P(Z)/UD < 1 + t)

=
E (E ((Y1 − Y0|P(Z)/UD − 1 = −t∗) · 1 [−t < P(Z)/UD − 1 < t]))

Pr (1− t < P(Z)/UD < 1 + t)

=

E

((
1∫
0

MTE(uD)
fP (uD/(1−t∗))(1−t∗)2uD

E(D)
duD

)
· 1 [−t < P(Z)/UD − 1 < t]

)
Pr (1− t < P(Z)/UD < 1 + t)

=

1+t∫
1−t

1∫
0

MTE(uD)
fP (uD/(1−t∗))(1−t∗)2uD

E(D)
duDdt

∗

Pr (1− t < P(Z)/UD < 1 + t)
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Pr (1− t < P(Z )/UD < 1 + t)

= E (1 [1− t < P(Z )/UD < 1 + t])

= E (E (1 [(1− t) uD < P(Z ) < (1 + t) uD ] |UD = uD))

= E
([
FP(Z) ((1 + t) · UD)− FP(Z) ((1− t) · UD)

])

=

1∫

0

[
FP(Z) ((1 + t) · uD)− FP(Z) ((1− t) · uD)

]
duD

FP(Z) (p) = Φ

(
Φ−1 (p) · σV − µZ

σZ

)
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Treatment Effects in (uD) Treatment Effects in (v)

Figure A
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Figure B
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Y1 = α1 + U1;Y0 = α0 + U0

I = Z − V ;D = 1 [I > 0] = 1 [Z > V ]

Y = DY1 + (1−D)Y0

Z ⊥⊥ U1, U0, V

(U1, U0, V ) ∼ N (0,ΣU,V ) ;

ΣU1,U0,V ≡

⎛⎜⎜⎜⎜⎜⎜⎝
σ21 σV 1 σV 0

· σ20 σ10

· · σ2V

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1.26 0.51 −0.40

· 2.01 −0.90

· · 3

⎞⎟⎟⎟⎟⎟⎟⎠ , μ1 = 1; μ0 = 0;

20
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Y1 = α1 + U1;Y0 = α0 + U0

I = Z − V ;D = 1 [I > 0] = 1 [Z > V ]
Y = DY1 + (1− D)Y0

Z ⊥⊥ U1,U0,V

(U1,U0,V ) ∼ N (0,ΣU,V ) ;

ΣU1,U0,V ≡




σ2
1 σV 1 σV 0

· σ2
0 σ10

· · σ2
V


 =




1.26 0.51 −0.40
· 2.01 −0.90
· · 3




µ1 = 1;µ0 = 0;
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Treatment Effects Bias in (uD) Treatment Effects Bias in (v)

Figure A
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Figure B
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Y1 = α1 + U1;Y0 = α0 + U0

I = Z − V ;D = 1 [I > 0] = 1 [Z > V ]

Y = DY1 + (1−D)Y0

Z ⊥⊥ U1, U0, V

Z ∼ N
¡
μZ , σ

2
Z

¢
= N (1, 1)

(U1, U0, V ) ∼ N (0,ΣU,V ) ;

ΣU1,U0,V ≡

⎛⎜⎜⎜⎜⎜⎜⎝
σ21 σV 1 σV 0

· σ20 σ10

· · σ2V

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1.26 0.51 −0.40

· 2.01 −0.90

· · 3

⎞⎟⎟⎟⎟⎟⎟⎠ , μ1 = 1; μ0 = 0;

21
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Y1 = α1 + U1;Y0 = α0 + U0

I = Z − V ;D = 1 [I > 0] = 1 [Z > V ]
Y = DY1 + (1− D)Y0

Z ⊥⊥ U1,U0,V
Z ∼ N (µZ , σ

2
Z ) = N (1, 1)

(U1,U0,V ) ∼ N (0,ΣU,V ) ;

ΣU1,U0,V ≡




σ2
1 σV 1 σV 0

· σ2
0 σ10

· · σ2
V


 =




1.26 0.51 −0.40
· 2.01 −0.90
· · 3




µ1 = 1;µ0 = 0;
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Treatment Weights (uD) Treatment Effects Bias in (v)

Figure A

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

uD

W
AT

E(
u D

), M
TE

(u
D

), 
W

TT
(u

D
),W

TU
T(

u D
), W

M
AT

C
H

(u
D
)

WATE(u
D
)

MTE(u D)

WTT(u
D
)

WTUT(u
D

)

WMATCH(u
D
)

Figure B
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Y1 = α1 + U1;Y0 = α0 + U0

I = Z − V ;D = 1 [I > 0] = 1 [Z > V ]

Y = DY1 + (1−D)Y0

Z ⊥⊥ U1, U0, V

Z ∼ N
¡
μZ , σ

2
Z

¢
= N (1, 1)

(U1, U0, V ) ∼ N (0,ΣU,V ) ;

ΣU1,U0,V ≡

⎛⎜⎜⎜⎜⎜⎜⎝
σ21 σV 1 σV 0

· σ20 σ10

· · σ2V

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1.26 0.51 −0.40

· 2.01 −0.90

· · 3

⎞⎟⎟⎟⎟⎟⎟⎠ , μ1 = 1; μ0 = 0;

22
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Y1 = α1 + U1;Y0 = α0 + U0

I = Z − V ;D = 1 [I > 0] = 1 [Z > V ]
Y = DY1 + (1− D)Y0

Z ⊥⊥ U1,U0,V
Z ∼ N (µZ , σ

2
Z ) = N (1, 1)

(U1,U0,V ) ∼ N (0,ΣU,V ) ;

ΣU1,U0,V ≡




σ2
1 σV 1 σV 0

· σ2
0 σ10

· · σ2
V


 =




1.26 0.51 −0.40
· 2.01 −0.90
· · 3




µ1 = 1;µ0 = 0;
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The Model

Y1 = µ1 + U1;

Y0 = µ0 + U0;

I = Z · γ′ − V ;

D = 1 [I > 0]

ΣU1,U0,V ≡




σ2
1 σV 1 σV 0

· σ2
0 σ10

· · σ2
V




[
U1 − U0

V

]
∼ N

(
0,

σ2
1−0 σV 1 − σV 0

· σ2
V

)

σ1−0 =
√

σ2
U1 + σ2

U0 − 2σ10
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Propensity score:

P(Z ) ≡ Pr (D = 1|Z ) = P

(
Z · γ′

σV
>

V

σV

)

= Φ

(
Z · γ′

σV

)

The transformation of variables:

P(Z ) = Φ

(
Z · γ′

σV

)
⇒ Z · γ′

σV
= Φ−1 (P(Z ))

1− P(Z ) = Φ

(
−Z · γ′

σV

)
⇒ −Z · γ′

σV
= Φ−1 (1− P(Z ))

Φ (·) ≡ Standard Normal Probability Function.
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Definitions:

λ (x) =
ϕ (x)

1− Φ (x)
=

ϕ (x)

Φ (−x)
;ϕ (x) =

∂Φ (x)

∂x

λ (x) = E (X |X > x) ;X ∼ N (0, 1)
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Observe that:

λ

(
−Z · γ′

σV

)
=

ϕ
(

Z ·γ′

σV

)

Φ
(

Z ·γ′
σV

)

ϕ
(
Φ−1 (1− P(Z ))

)
= ϕ

(
−Z · γ′

σV

)
= ϕ

(
Z · γ′

σV

)

= ϕ
(
Φ−1 (P(Z ))

)

Φ
(
−Φ−1 (P(Z ))

)
= Φ

(
−Z · γ′

σV

)
= 1− Φ

(
Z · γ′

σV

)

= 1− Φ
(
Φ−1 (P(Z ))

)

= 1− P(Z )

Φ
(
−Φ−1 (1− P(Z ))

)
= Φ

(
Z · γ′

σV

)
= Φ

(
Φ−1 (P(Z ))

)
= P(Z )
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The Ratio :

λ
(
Φ−1 (P(Z ))

)
=

ϕ (Φ−1 (P(Z )))

1− P(Z )

λ
(
Φ−1 (1− P(Z ))

)
=

ϕ (Φ−1 (P(Z )))

P(Z )
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Treatment parameters :

ATE ≡ E (Y1 − Y0) = µ1 − µ0

MTE in V = v :

MTE (v) ≡ E (Y1 − Y0|V = v)

= ATE + E

(
U1 − U0|

V

σV
=

v

σV

)

= ATE + σ1−0E

(
U1 − U0

σ1−0
| V
σV

=
v

σV

)

= ATE +
σV 1 − σV 0

σV
· v

σV

If v = Z · γ′ ⇒ I = Z · γ′ − V = 0

There is economic intition.
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MTE in FV (V ) = p:

MTE (p) ≡ E (Y1 − Y0|FV (V ) = p)

= ATE + E

(
U1 − U0|

V

σV
= Φ−1 (p)

)

= ATE +
σV 1 − σV 0

σV
· Φ−1 (p)

If p = FV (Z · γ′) ⇒ I = F−1
V (p)− V = 0

There is economic intition.
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Treatment parameters:

TT in Z :

TT (Z ) ≡ E (Y1 − Y0|D = 1,Z )

= ATE + σ1−0E

(
U1 − U0

σ1−0
|γZ
σV

>
V

σV

)

= ATE + σ1−0E

(
U1 − U0

σ1−0
| − V

σV
> −γZ

σV

)

= ATE −
(
σV 1 − σV 0

σV

)
λ

(
−γZ

σV

)

= ATE −
(
σV 1 − σV 0

σV

) ϕ
(

Z ·γ′

σV

)

Φ
(

Z ·γ′
σV

)
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TT in P(Z ) :

TT (P(Z )) ≡ E (Y1 − Y0|D = 1,Z )

= ATE + σ1−0E

(
U1 − U0

σ1−0
| V
σV

>
γZ

σV

)

= ATE + σ1−0E

(
U1 − U0

σ1−0
| − V

σV
> −γZ

σV

)

= ATE + σ1−0E

(
U1 − U0

σ1−0
| − V

σV
> Φ−1 (1− P(Z ))

)

= ATE −
(
σV 1 − σV 0

σV

)
λ
(
Φ−1 (1− P(Z ))

)

= ATE −
(
σV 1 − σV 0

σV

)
ϕ (Φ−1 (P(Z )))

P(Z )
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Treatment parameters:

TUT in Z :

TUT (Z ) ≡ E (Y1 − Y0|D = 0,Z )

= ATE + σ1−0E

(
U1 − U0

σ1−0
|γZ
σV

<
V

σV

)

= ATE + σ1−0E

(
U1 − U0

σ1−0
| V
σV

>
γZ

σV

)

= ATE +

(
σV 1 − σV 0

σV

)
λ

(
γZ

σV

)

= ATE +

(
σV 1 − σV 0

σV

) ϕ
(

Z ·γ′

σV

)

Φ
(
−Z ·γ′

σV

)
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TUT in P(Z ) :

TUT (P(Z )) ≡ E (Y1 − Y0|D = 0,Z )

= ATE + σ1−0E

(
U1 − U0

σ1−0
| V
σV

<
γZ

σV

)

= ATE + σ1−0E

(
U1 − U0

σ1−0
| V
σV

>
γZ

σV

)

= ATE + σ1−0E

(
U1 − U0

σ1−0
| V
σV

> Φ−1 (P(Z ))

)

= ATE +

(
σV 1 − σV 0

σV

)
λ
(
Φ−1 (P(Z ))

)

= ATE +

(
σV 1 − σV 0

σV

)
ϕ (Φ−1 (P(Z )))

1− P(Z )
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Matching

∆matching = E (Y1|D = 1)− E (Y0|D = 0)
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Matching (cont.)

Matching in Z:

= ATE + E (U1|Zγ′ > V )− E (U0|Zγ′ < V )

= ATE + E (U1| − V > −Zγ′)− E (U0|V > Zγ′)

= ATE + E

(
U1| −

V

σV
> −Zγ′

σV

)
− E

(
U0|

V

σV
>

Zγ′

σV

)

= ATE + σ1E

(
U1

σ1
| − V

σV
> −Zγ′

σV

)
− σ0E

(
U0

σ0
| V
σV

>
Zγ′

σV

)

= ATE − σ1V

σV
· λ
(
−γZ

σV

)
− σ0V

σV
· λ
(
γZ

σV

)
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Matching (cont.)

= ATE − σ1V

σV
·
ϕ
(

Z ·γ′

σV

)

Φ
(

Z ·γ′
σV

) − σ0V

σV
·

ϕ
(

Z ·γ′

σV

)

Φ
(
−Z ·γ′

σV

)

= ATE −


σ1V

σV
· 1

Φ
(

Z ·γ′
σV

) +
σ0V

σV
· 1

Φ
(
−Z ·γ′

σV

)


ϕ

(
Z · γ′

σV

)

= ATE −




σ1V

σV
· Φ
(
−Z ·γ′

σV

)
+ σ0V

σV
· Φ
(

Z ·γ′

σV

)

Φ
(

Z ·γ′
σV

)
Φ
(
−Z ·γ′

σV

)


ϕ

(
Z · γ′

σV

)
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∆matching = E (Y1|D = 1)− E (Y0|D = 0)

Matching in P(Z ):

= ATE + E (U1|Zγ′ > V )− E (U0|Zγ′ < V )

= ATE + E (U1| − V > −Zγ′)− E (U0|V > Zγ′)

= ATE + E

(
U1| −

V

σV
> −Zγ′

σV

)
− E

(
U0|

V

σV
>

Zγ′

σV

)

= ATE + σ1E

(
U1

σ1
| − V

σV
> −Zγ′

σV

)
− σ0E

(
U0

σ0
| V
σV

>
Zγ′

σV

)

= ATE − σ1V

σV
· λ
(
−γZ

σV

)
− σ0

σV
· λ
(
γZ

σV

)
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= ATE − σ1V

σV
· λ
(
Φ−1 (1− P(Z ))

)
− σ0

σV
· λ
(
Φ−1 (P(Z ))

)

= ATE − σ1V

σV
· ϕ (Φ

−1 (P(Z )))

P(Z )
− σ0

σV
· ϕ (Φ

−1 (P(Z )))

1− P(Z )

= ATE −
(
σ1V

σV
· 1

P(Z )
+

σ0

σV
· 1

1− P(Z )

)
ϕ
(
Φ−1 (P(Z ))

)

= ATE −
(

σ1V

σV
· (1− P(Z )) + σ0

σV
· P(Z )

P(Z ) (1− P(Z ))

)
ϕ

(
Z · γ′

σV

)
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Matching Bias

Bias ATE (Z ) = ∆matching (Z )− ATE (Z )

Bias MTE (Z ) = ∆matching (Z )−MTE (Z )

Bias TT (Z ) = ∆matching (Z )− TT (Z )

Bias TUT (Z ) = ∆matching (Z )− TUT (Z )

Bias ATE (P(Z )) = ∆matching (P (Z ))− ATE (P (Z ))

Bias MTE (P(Z )) = ∆matching (P (Z ))−MTE (P (Z ))

Bias TT (P(Z )) = ∆matching (P (Z ))− TT (P (Z ))

Bias TUT (P(Z )) = ∆matching (P (Z ))− TUT (P (Z ))
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Empirical Example

Y1 = µ1 + U1;U1 = α11 · f1 + α12 · f2 + ε1

Y0 = µ0 + U0;U0 = α01 · f1 + α02 · f2 + ε0

I = Z · γ′ − V ;V = αV 1 · f1 + αV 2 · f2 + εV

D = 1 [I > 0]
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Empirical Example (cont.)

(
f1 f2 ε1 ε0 εV

)
∼ N (0,Σ) ;Σ ≡ Diag

(
σ2
f1

σ2
f2

σ2
V σ2

1 σ2
0

)



U1

U0

V


 ∼ N (0,ΣU1,U0,V ) ≡ N


0,

σ2
1 σV 1 σV 0

· σ2
0 σ10

· · σ2
V




σ2
1 = α2

11σ
2
f1
+ α2

12σ
2
f2
+ σ2

1; σV 0 = αV 1α01σ
2
f1
+ αV 2α02σ

2
f2

σ2
0 = α2

01σ
2
f1
+ α2

02σ
2
f2
+ σ2

0; σ10 = α11α01σ
2
f1
+ α12α02σ

2
f2

σ2
V = α2

V 1σ
2
f1
+ α2

V 2σ
2
f2
+ σ2

V ; σV = αV 1α11σ
2
f1
+ αV 2α12σ

2
f2
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Empirical Example (cont.)

A =




α11 α12 1 0 0
α01 α02 0 1 0
αV 1 αV 2 0 0 1




ΣU1,U0,V ≡




σ2
1 σV 1 σV 0

· σ2
0 σ10

· · σ2
V


 = AΣA′

[
U1 − U0

V

]
∼ N

(
0,

σ2
1−0 σV 1 − σV 0

· σ2
V

)

σ1−0 =
√

σ2
U1 + σ2

U0 − 2σ10
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Empirical Example (cont.)

µ0 = 0; µ0 = 1;
α11 varies α12 = 0.1;
α01 = 1; α02 = 0.1;
αV 1 = 1; αV 2 = 1;

σ2
f1
= σ2

f2
= σ2

V = σ2
1 = σ2

0 = 1

A =




α11 0.1 1 0 0
1 0.1 0 1 0
−1 −1 0 0 1


 ; Σ =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




ΣU1,U0,V ≡




σ2
1 σV 1 σV 0

· σ2
0 σ10

· · σ2
V


 = AΣA′
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Example: costs of breast cancer treatments using different instruments in
P(Z )
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Source: Basu, Heckman and Urzua
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Example: costs of breast cancer treatments using different instruments in
P(Z )
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Source: Basu, Heckman and Urzua
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Example: costs of breast cancer treatments using different instruments in
P(Z )

Estimated propensity score
for BCSRT and MST

MTE(ηq , uD)
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Example: costs of breast cancer treatments using different instruments in
P(Z )

ωATE(ηq , uD) MTE(uD) 
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Example: costs of breast cancer treatments using different instruments in
P(Z )

ωTT(ηq , uD) ωIV(ηq , uD) 

 

Source: Basu, Heckman and Urzua
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Example: costs of breast cancer treatments using different instruments in
P(Z )

 
 

Source: Basu, Heckman and Urzua
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Example: costs of breast cancer treatments using different instruments in
P(Z )

 
 

Source: Basu, Heckman and Urzua
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Example: unionism on wages

Source: Heckman, Schmierer and Urzua (2006)
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Example: unionism on wages, continued

Source: Heckman, Schmierer and Urzua (2006)
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Example: Chile voucher schools on test scores

Source: Heckman, Schmierer and Urzua (2006)
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Example: Chile voucher schools on test scores, continued

Source: Heckman, Schmierer and Urzua (2006)
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Example: High school on wages

Source: Heckman, Schmierer and Urzua (2006)
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Example: High school on wages, continued

Source: Heckman, Schmierer and Urzua (2006)
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